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Abstract. As a truly meshfree method, meshless equilibrium on line method (MELM), for 2D elasticity
problems is presented. In MELM, the problem domain is represented by a set of distributed nodes, and
equilibrium is satisfied on lines for any node within this domain. In contrary to conventional meshfree
methods, test domains are lines in this method, and all integrals can be easily evaluated over straight lines
along x and y directions. Proposed weak formulation has the same concept as the equilibrium on line
method which was previously used by the authors for enforcement of the Neumann boundary conditions
in the strong-form meshless methods. In this paper, the idea of the equilibrium on line method is
developed to use as the weak forms of the governing equations at inner nodes of the problem domain.
The moving least squares (MLS) approximation is used to interpolate solution variables in this paper.
Numerical studies have shown that this method is simple to implement, while leading to accurate results.

Keywords: computational mechanics; meshfree methods; equilibrium on line method (MELM); moving
least squares (MLS) approximation; elasticity.

1. Introduction

Due to the possibility of overcoming the drawbacks of mesh-based methods, such as the difficulty

of mesh generation, locking, poor derivative solutions, mesh distortion and the need to remeshing

the entire problem domain, meshfree methods have attracted much attention in computational

mechanics in recent decade.

Meshfree methods can be classified into two major categories: meshfree methods based on strong

forms (or meshfree strong-form methods), such as the general finite difference method (Perrone and

Kao 1975), the smoothed particle hydrodynamics (SPH) (Lucy 1977, Gingold and Monaghan 1977),

Kansa’s method (Kansa 1990), method of fundamental solution (Golberg 1995), hp-meshless cloud

method (Liszka et al. 1996), the finite point method (FPM) (Onate et al. 1996), the least-squares

collocation meshless method (Zhang et al. 2001), boundary knot method (Chen and Hon 2003), the

meshfree point collocation method (MPCM) (Lee and Yoon 2004), radial point interpolation

collocation method (Liu et al. 2005), least-squares radial point interpolation collocation method (Liu

et al. 2006a), etc.; and meshfree methods based on weak forms (or meshfree weak-form methods)

such as the diffuse element method (DEM) (Nayroles et al. 1992), the element-free Galerkin (EFG)
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method (Belytschko et al. 1994), the reproducing kernel particle method (RKPM) (Liu et al. 1995),

point interpolation method (PIM) (Liu and Gu 2001a), radial point interpolation method (RPIM)

(Wang et al. 2001), linearly conforming radial point interpolation method (LCRPIM) (Liu et al.

2006b), mesh-free minimum length method (MLM) (Liu et al. 2006c), etc.

Meshfree weak-form methods have been successfully applied to solid mechanics. However, most

of meshfree weak-form methods are “meshfree” only in terms of interpolation of the field variables

and they have to use background cells to integrate a weak form over the global problem domain;

avoiding them of being ‘truly’ meshfree methods. As a result, a computationally expensive

numerical integration is required. In order to alleviate the global integration background mesh, a

group of meshfree methods based on the local Petrov-Galerkin weak forms (or meshfree local

weak-form methods) have been developed, such as the meshless local Petrov-Galerkin (MLPG)

method (Atluri and Zhu 1998), the local boundary integral equation (LBIE) method (Zhu et al.

1998), the method of finite spheres (De and Bathe 2000), local point interpolation method (LPIM)

(Liu and Gu 2001b), local radial point interpolation method (LRPIM) (Liu and Gu 2001c), etc. 

In this paper, a novel ‘truly’ meshfree method is proposed for 2D elasticity analyses. In contrary

to conventional meshfree methods, in this method test domains are straight lines along x and y

directions. All integrals can be easily evaluated over these lines. In the MELM, the domain of

problem is represented by a set of distributed nodes and equilibrium on lines is satisfied for any

node within the domain. The proposed method is a ‘truly’ meshfree one as it needs no mesh,

neither for the purpose of interpolation of the solution variables, nor for the integration of the

equilibrium on lines. Proposed weak formulation has the same concept as those previously used by

the authors for enforcement of the Neumann boundary conditions in the strong-form meshless

methods (Sadeghirad and Mohammadi 2007, Sadeghirad and Mahmoudzadeh Kani 2009). Meshless

collocation methods using this idea for imposing the Neumann boundary conditions have been

successfully applied for analyzing the elastodynamics and fracture mechanics problems (Sadeghirad

et al. 2009, Sadeghirad et al. 2010). In this work, the idea of the equilibrium on line method is

developed to use as the weak forms of the governing equations at inner nodes of the problem

domain. The resultant method is a novel weak-form meshless method in which all required integrals

are simply calculated over straight lines. One major advantage of the weak-form meshless methods

in comparison with the strong-form methods is that they exhibit good stability and accuracy.

However, complicated numerical integration makes them computationally expensive (Liu and Gu

2003). Numerical investigations show that proposed weak formulation leads to more accurate and

stable results in comparison with those obtained from the direct collocation method.

The MELM uses the moving least squares (MLS) approximation to interpolate the set of solution

variables (Lancaster and Salkauskas 1981, Cleveland 1993). The organization of this paper is as

follows: a brief description of the MLS approximation is presented in Section 2. Section 3 is

dedicated to the MELM formulation and discretization of governing equations. Numerical examples

for 2D elasticity problems are given in Section 4, followed by the concluding remarks.

2. The MLS approximation scheme

This section gives a brief summary of the MLS approximation to approximate the components of

the displacement field over the problem domain. The MLS interpolant  of displacement 

is defined in the domain Ω by

u
h
x( ) u x( )
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(1)

where  is a vector of basis monomials and  is a vector of

coefficients; where m is the number of basis monomials. The coefficients  in Eq. (1) are also

functions of x;  is obtained at any point x by minimizing a weighted, discrete L2 norm as

follows

(2)

where n is the number of nodes in the neighborhood of point x for which the weight function

. This neighborhood of x is called the domain of influence of x.  is the displacement

at , while  is the approximate value. Using the stationarity condition for J in Eq. (2)

with respect to  leads to

(3)

or

(4)

where matrices  and  are defined by

, (5)

(6)

The final approximated displacement is obtained by substituting  from Eq. (4) into Eq. (1)

(7)

where the MLS shape function  is defined by

(8)

A Gaussian weight function with the compact support property is considered in the present work.

The weight function corresponding to node i may be written as

(9)

where  is the distance from node xi to point x, ci is a constant controlling the shape of

the weight function wi and therefore the relative weights.  is the size of the support of the weight
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function wi and determines the domain of influence of x. Note that when ci decreases, higher

weights are obtained on nodes xi close to point x and lower weights on nodes far removed from x.

In this paper, ci is defined as

(10)

(11)

where Si is the minimum set of neighboring nodes of xi which construct a polygon surrounding

node xi and α is a user defined parameter. Effects of different values of this parameter on the ELM

results have been investigated in (Sadeghirad and Mahmoudzadeh Kani 2009). The performance of

this weight function with  will be examined in the numerical examples in section 4.

3. The meshless equilibrium on line method (MELM)

In the MELM, the problem domain is represented by a set of distributed nodes, and governing

differential equations are integrated over straight lines along x and y directions. The length of these

lines is an important parameter affecting the performance of MELM. In the present work, the length

of the lines for a node xi is defined as

(12)

where  is the distance from node xi to the nearest node around it (Fig. 1).

The integrals can be easily evaluated over the lines via Gauss quadrature technique. This

integration is computationally efficient, as the integration domains are straight finite lines.

Although the present approach can be generally applied to solving general boundary value

problems, only the linear elasticity equations are examined in the following to demonstrate the

MELM formulation. The governing equations for linear elasticity problems can be written as

in Ω (13)

where Ω is the global domain bounded by Γ, σij is the stress tensor corresponding to the

displacement field  is the body force, and  denotes . The corresponding boundary

conditions are given as follows

ci αc i, α 1/5= =

c i max xj xi– ,= j Si∈

k 1=

Li βdmini
=

dmini

∂σij

∂xj

--------- bi+ 0=

ui bi, ( ),i ∂( )/∂x
i

Fig. 1 Determination of the length of the integration lines correspondence to node xi
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(14a)

(14b)

where  and  are the prescribed displacements and tractions over the Dirichlet boundary  and

Neumann boundary Γt, respectively, and nj is the unit outward normal vector to the boundary Γ.

The stress vector is related to the strain vector by the standard Hook’s law 

(15)

where D is the elastic constitutive matrix and σ and ε are the stress and strain vectors respectively.

They are defined in 2D problems as

(16a)

(16b)

(16c)

, ,  for plane stress (16d)

  , ,  for plane strain  (16e)

Strain components εij are related to the displacements by

(17)

Let  and  be the straight lines passing through node xi which are along x and y directions,

respectively (Fig. 2). Each point on these lines is governed by the differential equilibrium Eq. (13).

This equation is rewritten in the following form along x and y directions 

(18a)

(18b)

Now Eq. (18) can be integrated over the line  

(19a)

(19b)

where P and Q are the start and end points of line , respectively (Fig. 2). Eq. (18) can be also

integrated over the line  
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(20a)

(20b)

where P' and Q' are the start and end points of line , respectively (Fig. 2). The proposed MELM

formulation can now be further extended in two alternatives: (1) balanced line (B-Line) approach

and (2) balanced area (B-Area) approach.

3.1 Alternative 1: balanced line (B-Line) approach

In this alternative, Eqs. (19), (20) are directly used for discretization. These equations have the

physical meaning of representing the equilibrium law on the so-called B-Lines. Consider B-Lines

and their associated applied stresses as depicted in Fig. 3.

The final formulation can be obtained by substituting stress and strain components from Eq. (15)-

(17) into Eq. (19), (20) giving

(21a)

(21b)
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i
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Fig. 2 The  and  lines and their start and end pointsΓx
i

Γyi

Fig. 3 The B-Lines and stresses applied on them: (a) in x direction and (b) in y direction
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(21c)

(21d)

By substituting Eq. (7) into Eq. (21) for all nodes within the problem domain, it leads to the

following discretized system of linear algebraic equations

, , (22)

where N is the total number of nodes on the problem domain, and  is the vector of unknown

parameters associated to node j, and

(23a)

(23b)

(23c)

(23d)

and

(24)

In the discretized system of algebraic Eq. (22), the total number of unknowns is 2N, while the

total number of equations is 4N. For the purpose of solving this system of algebraic equations, the

following four types are examined:

Type 1- The equilibrium law on lines  and  was only satisfied along x and y directions,

respectively. As a result, the number of equations and unknowns would remain the same.

Type 2- The equilibrium law on the line  was only satisfied along y direction and the

equilibrium law on the line  was only satisfied along x direction. As a result, the number of

equations and unknowns would be the same.

Type 3- The equilibrium law on both lines  and , as one set of lines, was simultaneously

satisfied along both x and y directions. As a result, similar number of equations and unknowns are

obtained.

Type 4- The discretized system of algebraic Eq. (22) can be solved by using the least-squares

method.
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3.2 Alternative 2: balanced area (B-Area) approach

In this alternative, in order to estimate  and  into Eqs. (19),

(20), the following simple finite difference approximations are used (Fig. 4) 

(25)

Substituting Eq. (25) into Eqs. (19), (20) leads to

(26a)

(26b)

(26c)

(26d)

Eq. (26) has the physical meaning of representing the equilibrium law of the B-Area (Fig. 4). The

final formulation is obtained by substituting stress and strain components from Eqs. (15)-(17) into

Eq. (26) which gives

(27a)

(27b)

∂σxx/∂x ∂σxy/∂x ∂σxy/∂y, , ∂σyy/∂y

 

 

 

 

 

 

 

Fig. 4 The B-Areas and stresses applied on them: (a) in x direction, and (b) in y direction
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(27c)

(27d)

By comparison between Eq. (21) and (27) one can see that in contrary to the alternative 1, there

are no 2nd order derivatives of displacements in alternative 2.

Substitution of Eq. (7) into Eq. (27) for all nodes leads to the following discretized system of

linear algebraic equations 

, , (28)

where

(29a)

(29b)

 (29c)

 (29d)

and

(30)

In the discretized system of algebraic Eq. (28), the total number of unknowns is 2N, while the

total number of equations is 4N. For solving this system of algebraic equations, four different types,

similar to the alternative 1, are examined.

In the present study, the standard collocation method is used to impose both the Dirichlet and

Neumann boundary conditions, because the MLS shape functions do not satisfy the Kronecker delta

condition. 

3.3 The MELM flowchart

The implementation of the MELM can be carried out according to the following routine:

1. Choose a finite number of nodes in the domain Ω and on the boundary Γ of the given physical

domain; decide the basis functions, weight functions and support domains sizes so that the MLS

approximation is well defined; choose between two alternatives available in the MELM: B-Line

and B-Area approaches; choose between four types available for both B-Line and B-Area

approaches;

2. Loop over nodes located inside the global domain:

• Determine the integration lines as the test domains corresponding to the considered node xi
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i.e., lines  and  for the B-Line approach or lines , ,  and  for the B-Area

approach;

• Loop over the integration lines:

• Loop over the Gauss points along considered integration line:

• Determine the nodes xj located in the support domain of the MLS approximation for

calculating the shape functions at considered Gauss point;

• Calculate the shape functions and their derivatives at considered Gauss point;

• Evaluate numerical integrals in Eqs. (23), (24) for the B-Line approach and Eqs. (29), (30)

for the B-Area approach;

• End loop

• Calculate the shape functions at the start and end points of considered integration line;

• Assemble contributions to the global matrices Kp and fp in which  according to

Eqs. (22)-(24) for the B-Line approach and (28)-(30) for the B-Area approach;

• End loop

End loop.

3. Form the final stiffness and force matrices K and f from global matrices Kp and fp according to

the chosen type in step 1:

• Type 1: 

• Type 2: 

• Type 3: 

• Type 4: 

(Type 4 leads to an overdetermined system of algebraic equations which should be solved with

the least-squares method in step 5.)

4. Loop over nodes located at the Dirichlet boundary Γu or at the Neumann boundary Γt:

• Determine the nodes xj located in the support domain of the MLS approximation for

calculating the shape functions at considered boundary node;

• Calculate the shape functions and their derivatives at considered boundary node;

• Calculate contributions of the boundary condition equations by directly imposing conditions

(14a) and (14b) to the approximated displacements and stresses obtained from the MLS

approximation at the boundary node;

• Assemble contributions to the linear system K and f;

(Detailed discussion of the formulation to directly enforce the Dirichlet and Neumann

boundary conditions is presented in Appendix A).
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End loop.

5. Solve the linear system for the nominal nodal values .

6 Calculate the displacements and their derivatives by using Eqs. (7), (8) at those sample points

under consideration.

4. Numerical examples

Several numerical examples of two-dimensional elastostatics are studied to illustrate the

performance of the proposed method. A quadratic displacement interpolation (m = 6) is chosen for

the analysis. Unless stated otherwise, in application of the MELM, the length of lines for each node

is defined as , where  is the distance from node xi to its nearest node, and the width

of B-Area is chosen as , where Ls is the length of B-Area, and Type 3 of B-Line and B-

Area approaches is applied. Also, the size of the support domains  is defined as ,

where  is defined in Eq. (11). Numerical integration is carried out using only 3 quadrature points

for each line. The mechanical parameters are taken as E = 1000 and ν = 0.25 in all numerical

investigations. Also, first three examples are solved for plane stress case and in the last one plane

strain case is assumed.

For the purpose of error estimation and convergence studies, the following error norm is adopted

(Boroomand et al. 2005, Sadeghirad and Mohammadi 2007).

(31)

In which  and  are the exact values of  and  at node

i respectively;  and  are the results at node i obtained from the

numerical simulation; and N is the total number of nodes.

4.1 Patch test

A high-order patch test with second-order displacement field is studied. A linearly varying axial

stress is applied on the right end of the patch while other boundaries of the patch are Dirichlet

boundaries as shown in Fig. 5. The exact solution for this problem is assumed as 
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the MELM (see Table 1). The used MLS shape functions can reproduce second-order polynomials

and the boundary conditions are exactly enforced. Therefore, the MELM has the capability of

exactly reproducing the displacement and stress fields of the patch test if the required numerical

integrations in the MELM are exactly calculated. However, the MLS shape functions have no

simple polynomial form and the integration cannot be exactly evaluated and some errors appear in

the numerical results. These errors are small because the required integrals over straight lines in the

MELM can be evaluated with appropriate accuracy by the Gauss quadrature technique. The

observed errors of the calculated displacements and stresses in this example are less than 10−7.

4.2 Cantilever beam

Performance of the MELM is studied for a cantilever beam problem (Fig. 6), for which the

following exact solution is available (Timoshenko and Goodier 1970) 

(33a)

(33b)

u
Py

6EI
--------- 6L 3x–( )x 2 ν+( )y2 3D

2

2
--------- 1 ν+( )–+=

ν
P–

6EI
--------- 3νy

2
L x–( )x 3L x–( )x2

+[ ]=

Fig. 5 A higher-order patch test with 16 irregular nodes

Table 1 Numerical results for a patch test with 16 irregular nodes*

Nodes Coordinates ui νi

6 (1,2.5) 2.000000 0.718750 2500.000000 0.000000 0.000000

7 (3,0.5) 3.000000 −0.531250 500.000000 0.000000 0.000000

10 (3.5,1) 4.500000 −1.750000 1000.000000 0.000000 0.000000

11 (5.5,2.5) 13.250000 −9.406250 2500.000000 0.000000 0.000000

*All numerical results coincide with the analytical values by six digits.

σxx( )i σyy( )i σxy( )i

Fig. 6 Geometry of the cantilever beam
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while the stresses are

, , (34)

In the numerical model, the analytical displacement solution from Eq. (33) is prescribed on the

boundary : ,  (Fig. 7). On the remaining boundaries, exact tractions are

specified. 

Convergence studies are carried out using fifteen different regular nodal distributions, namely

,

 and  nodes. The convergence curves are presentsd in

Fig. 7. For comparison, the convergence curves for the standard collocation method which is

discussed in Appendix A, and the MELM are plotted in the same figure (Fig. 7). By application of

the MELM an improvement in error values for both displacements and stresses is observed, in

comparison to the standard collocation method. Also, values of error in B-Area and B-Line

approaches are approximately the same.

The vertical displacement along the neutral axis of the beam and the distribution of shear stress

on a cross-section at the mid-span of the beam are depicted in Fig. 8.

Fig. 9 depicts the effects of various MELM types (stated in section 3) in application of B-Line

and B-Area approaches. The results clearly show that stable convergence rates are obtained for all

types of B-Line and B-Area approaches.

One of the most effective parameters in the MELM method is the length of B-Line or B-Area. So

the influence of this parameter is investigated only for a nodal distribution of  nodes.

Fig. 10 depicts the error norms of displacements and stresses for different values of ,

where Li is the length of B-Line or B-Area and  is the distance from node xi to the nearest

node to it. According to this figure, by increasing the value of r1, the error is decreased until an
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Fig. 7 Rate of convergence for the cantilever beam problem with regular nodal distributions: (a) displacement
ux, (b) displacement uy, (c) stress σxx, and (d) stress σxy
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Fig. 8 Cantilever beam analyzed by B-Line approach: (a) distribution of vertical displacement along the neutral
axis fiber of the beam, and (b) distribution of shear stress along the central cross-section of the beam 

Fig. 9 The error norms of (a,c) displacement uy and (b,d) stress σxx in the cantilever beam problem for various
types of (a,b) B-Line approach and (c,d) B-Area approach 

Fig. 10 The error norms of displacements and stresses in the cantilever beam problem for different values of
 for (a) B-Line approach and (b) B-Area approach r1 Li/dmin

i

=
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optimum value for which the lowest norm of error can be achieved. By further increase in r1, the

error is also increased.

Another effective parameter in the B-Area approach is the width of B-Area. So the influence of

this parameter is studied for a nodal distribution of  nodes. Fig. 11 depicts the error

norms of displacements and stresses for different values of , where  are the width

and length of B-Area, respectively. The results show that the B-Area approach is less sensitive to

the width of B-Area for studied range of r2 values.

4.3 Infinite plate with a circular hole

An infinite plate with a central hole of radius a is considered (Fig. 12). The plate is subjected to a

uniform tension, , in the x direction at infinity. The exact solution for stresses is as follows

(Timoshenko and Goodier 1970) 

(35a)

(35b)
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Fig. 11 The error norms of displacements and stresses in the cantilever beam problem for different values of
 for B-Area approach r2 δ/Ls=

Fig. 12 Infinite plate with a circular hole under tension
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Fig. 13 Sample nodal distributions for modeling the plate with circular hole: (a) 121 nodes, and (b) 289 nodes

Fig. 14 Rate of convergence for the plate with circular hole with regular nodal distributions: (a) displacement
ux, (b) displacement uy, (c) stress σxx, and (d) stress σxy

(35c)

The displacement components (rigid-body displacement and rotation set to zero) are
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(36b)
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Due to symmetry, only one-quarter of the plate is considered. The domain ABCDE shown in

Fig. 12 is modeled with the exact tractions imposed along BC and CD. Due to symmetry, the

essential boundary conditions are:  along AB, and  along DE.

Convergence studies are carried out using eleven different nodal distributions, with 169, 225, 289,

361, 441, 625, 841, 1089, 1369, 1681 and 2209 nodes. Fig. 13 illustrates two samples 121-node and

289-node models.

The convergence rates are studied in Fig. 14. The results show that the error values in B-Line and

B-Area are less than the error values in the standard collocation method.

Fig. 15 depicts the vertical displacement and the distribution of stress σxx along the line x = 0. The

displacement and stress profiles match the analytical solution very well.

u2 0= u1 0=

Fig. 15 The plate with circular hole analyzed by B-Line approach: distribution of (a) vertical displacement
and (b) stress σxx along the line x = 0 

Fig. 16 The error norms of (a,c) displacement uy and (b,d) stress σxx in the plate with circular hole for various
types of (a,b) B-Line approach, (c,d) B-Area approach 
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Effects of various MELM types (stated in section 3) in application of B-Line and B-Area

approaches are depicted in Fig. 16.

The influence of the length of B-Line or B-Area is studied for a nodal distribution of 625 nodes.

Fig. 17 depicts the error norms of displacements and stresses for different values of ,

where Li is the length of B-Line or B-Area and is  the distance from node xi to the nearest

node to it.

The influence of the width of B-Area in the B-Area approach is studied for a nodal distribution of

625 nodes. Fig. 18 depicts the error norms of displacements and stresses for different values of

, where  are the width and length of B-Area, respectively.

4.4 square patch with near-tip field

A cracked square patch with an edge crack is considered here (Fig. 19). Closed-form solutions of

mode I crack for plane strain case are (Anderson 1991)

(38a)
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=
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Fig. 17 The error norms of displacements and stresses in the plate with circular hole for different values of
 for (a) B-Line approach; (b) B-Area approach r1 Li/dmin
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=

Fig. 18 The error norms of displacements and stresses in the plate with circular hole for different values of
 for B-Area approach r2 δ/Ls=
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(38b)

where r is the distance from the crack tip, θ is the angle from the tangent to the crack path at the

crack tip (Fig. 19(a)). Due to the symmetry about the y-axis, only upper half of the patch is

modeled. As shown in Fig. 19(b), the known near-tip displacement fields and symmetry boundary

conditions are prescribed on the right boundary and segment AB of the lower boundary

respectively, while the analytical tractions obtained from the known near-tip displacement fields are

specified along other boundaries of the patch. Also, the faces of the crack have the traction-free

uθ KI
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2
---

4ν

1 ν+
------------–⎝ ⎠

⎛ ⎞sin
θ

2
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2
---sin

3θ

2
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Fig. 19 (a) A square patch with an edge crack, (b) the upper half of patch considered in the computation 

Fig. 20 Rate of convergence for the patch with an edge crack problem with regular nodal distributions: (a)
displacement ux, (b) displacement uy, (c) stress σxx, and (d) stress σxy 



530 A. Sadeghirad, S. Mohammadi and I. Mahmoudzadeh Kani

conditions. 

In the computation, the stress intensity factor is prescribed as . Convergence studies are

carried out using seven different nodal distributions, with ,

 and  nodes. For comparison, the convergence curves for the collocation

method and the MELM are plotted in the Fig. 20. By application of the MELM, obtained results are

more accurate and stable than those obtained from the collocation method. 

Stress intensity factors were computed using the domain form of the J-integral with the domain

shown in Fig. 4 (Moran 1978). Tables 2 and 3 list stress intensity factors for different nodal

distributions. It can be concluded that the MELM results in more accurate and stable results.

5. Conclusions

The concepts of a newly developed weak formulation, the equilibrium on line method (ELM),

were used for construction of a truly meshless method, the meshless equilibrium on line method

(MELM). The ELM was previously used by the authors for enforcing the Neumann boundary

conditions in the strong-form meshless methods. Based on the concepts of the ELM, weak

formulations were proposed and used in the MELM. The resultant method is a novel weak-form

meshless method in which all required integrals are simply calculated over straight lines.

KI 1=

13 25× 15 29× 18 35× 21 41×, , ,
25 49× 29 57×, 35 69×

Table 2 Comparison of computed stress intensity factors between collocation method and various types of B-
Line method 

Nodes
Collocation 
(Error %)

B-Line (Error %)
Type 1

B-Line (Error %)
Type 2

B-Line (Error %)
Type 3

B-Line (Error %)
Type 4

13×25 1.0842 (8.42) 1.0498 (4.98) 1.0531 (5.31) 1.0514 (5.14) 1.0702 (7.02)

15×29 1.0682 (6.82) 1.0416 (4.16) 1.0425 (4.25) 0.9612 (3.88) 1.0654 (6.54)

18×35 0.9413 (5.87) 0.9627 (3.73) 0.9599 (4.01) 0.9657 (3.43) 1.0562 (5.62)

21×41 0.9478 (5.22) 0.971 (2.90) 0.9618 (3.82) 0.9708 (2.92) 0.9571 (4.29)

25×49 1.0626 (6.26) 0.9758 (2.42) 0.9631 (3.69) 0.9764 (2.36) 0.9587 (4.13)

29×57 0.9518 (4.82) 1.0225 (2.25) 0.9717 (2.83) 0.9793 (2.07) 0.9648 (3.52)

35×69 1.0487 (4.87) 1.0201 (2.01) 0.9806 (1.94) 1.0185 (1.85) 1.0297 (2.97)

Table 3 Comparison of computed stress intensity factors between collocation method and various types of B-
Area method

Nodes Collocation 
(Error %)

B-Line (Error %)
Type 1

B-Line (Error %)
Type 2

B-Line (Error %)
Type 3

B-Line (Error %)
Type 4

13×25 1.0842 (8.42) 1.0502 (5.02) 1.0581 (5.81) 1.0479 (4.79) 1.0672 (6.72)

15×29 1.0682 (6.82) 0.9562 (4.38) 0.9442 (5.58) 0.9606 (3.94) 1.0651 (6.51)

18×35 0.9413 (5.87) 0.9616 (3.84) 0.9546 (4.54) 0.9639 (3.61) 0.9406 (5.94)

21×41 0.9478 (5.22) 0.9652 (3.48) 0.9588 (4.12) 0.9684 (3.16) 0.9521 (4.79)

25×49 1.0626 (6.26) 1.0301 (3.01) 1.0397 (3.97) 1.0301 (3.01) 1.0413 (4.13)

29×57 0.9518 (4.82) 1.0286 (2.86) 1.0311 (3.11) 0.9784 (2.16) 0.9601 (3.99)

35×69 1.0487 (4.87) 0.9786 (2.14) 0.9768 (2.32) 0.9805 (1.95) 0.9674 (3.26)
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Four numerical examples were solved for investigation of the MELM. Obtained results showed

that the MLM is more accurate and stable than the collocation method. The superiority of the

MELM in stability and accuracy in comparison with the direct collocation method is related to the

weak formulation of the MELM.

References

Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications (1st Edition), CRC Press, Boca
Raton, FL.

Atluri, S.N. and Zhu, T. (1998), “A new meshless local Petrov-Galerkin (MLPG) approach in computational
mechanics”, Comput. Mech., 22, 117-127.

Belytschko, T., Lu, Y.Y. and Gu, L. (1994), “Element-free Galerkin methods”, Int. J. Numer. Meth. Eng., 37,
229-256.

Boroomand, B., Tabatabaei, A.A. and Onate, E. (2005), “Simple modifications for stabilization of the finite point
method”, Int. J. Numer. Meth. Eng., 63, 351-379.

Chen, W. and Hon, Y.C. (2003), “Numerical investigation on convergence of boundary knot method in the
analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems”, Comput. Meth.
Appl. Mech. Eng., 192, 1859-1875.

Cleveland, W.S. (1993), Visualizing Data, AT&T Bell Laboratories, Murry Hill, NJ.
De, S. and Bathe, K.J. (2000), “The method of finite spheres”, Comput. Mech., 25, 329-349.
Gingold, R.A. and Monaghan, J.J. (1977), “Smoothed particle hydrodynamics: theory and application to non-

spherical stars”, Mon. Not. R. Astron. Soc., 181, 375-389.
Golberg, M.A. (1995), “The method of fundamental solutions for Poisson's equation”, Eng. Anal. Bound. Elem.,

16, 205-213.
Kansa, E.J. (1990), “Multiquadrics-A scattered data approximation scheme with applications to computational

fluid dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations”, Comput. Math.
Appl., 19, 147-161.

Lancaster, P. and Salkauskas, K. (1981), “Surfaces generated by moving least squares methods”, Math. Comput.,
37, 141-158.

Lee, S.H. and Yoon, Y.C. (2004), “Meshfree point collocation method for elasticity and crack problems”, Int. J.
Numer. Meth. Eng., 61, 22-48.

Liszka, T.J., Duarte, C.A.M. and Tworzydlo, W.W. (1996), “hp-Meshless cloud method”, Comput. Meth. Appl.
Mech. Eng., 139, 263-288.

Liu, G.R. and Gu, Y.T. (2001a), “A point interpolation method for two-dimensional solids”, Int. J. Numer. Meth.
Eng., 50, 937-951.

Liu, G.R. and Gu, Y.T. (2001b), “A local point interpolation method for stress analysis of two-dimensional
solids”, Struct. Eng. Mech., 11, 221-236.

Liu, G.R. and Gu, Y.T. (2001c), “A local radial point interpolation method (LRPIM) for free vibration analyses
of 2-D solids”, J. Sound Vib., 246, 29-46.

Liu, G.R. and Gu, Y.T. (2003), “A meshfree method: meshfree weak-strong (MWS) form method for 2D solids”,
Comput. Mech., 33, 2-14.

Liu, G.R., Kee, B.B.T. and Chun, L. (2006a), “A stabilized least-squares radial point collocation method (LS-
RPCM) for adaptive analysis”, Comput. Meth. Appl. Mech. Eng., 195, 4843-4861.

Liu, G.R., Li, Y. and Dai, K.Y. (2006b), “A linearly conforming radial point interpolation method for solid
mechanics problems”, Int. J. Comput. Meth., 3, 401-428.

Liu, G.R., Dai, K.Y., Han, X. and Li, Y. (2006c), “A mesh-free minimum length method for 2-D problems”,
Comput. Mech., 38, 533-550.

Liu, X., Liu, G.R., Tai, K. and Lam, K.Y. (2005), “Radial point interpolation collocation method for the solution
of partial differential equations”, Comput. Math. Appl., 50, 1425-1442.

Liu, W.K., Jun, S. and Zhang, Y.F. (1995), “Reproducing kernel particle methods”, Int. J. Numer. Meth. Fl., 20,



532 A. Sadeghirad, S. Mohammadi and I. Mahmoudzadeh Kani

1081-1106.
Lucy, L.B. (1977), “A numerical approach to the testing of the fission hypothesis”, Astron. J., 82(12), 1013-1024.
Moran, B. and Shih, C.F. (1978), “Crack tip and associated domain integrals from momentum and energy

balance”, Eng. Fract. Mech., 27, 615-641.
Nayroles, B., Touzot, G. and Villon, P. (1992), “Generalizing the finite element method: diffuse approximation

and diffuse elements”, Comput. Mech., 10, 307-318.
Onate, E., Idelsohn, S., Zienkiewicz, O.C. and Taylor, R.L. (1996), “A finite point method in computational

mechanics: applications to convective transport and fluid flow”, Int. J. Numer. Meth. Eng., 139, 3839-3866.
Perrone, N. and Kao, R. (1975), “A general finite difference method for arbitrary meshes”, Comput. Struct., 5,

45-58.
Sadeghirad, A. and Mahmoudzadeh Kani, I. (2009) “Modified equilibrium on line method for imposition of

Neumann boundary conditions in meshless collocation methods”, Commun. Numer. Meth. En., 25, 147-171.
Sadeghirad, A., Mahmoudzadeh Kani, I., Noorzad, A., Rahimian, M. and Vaziri Astaneh, A. (2010), “Elastic

fracture analyses using an enriched collocation method”, Arab. J. Sci. Eng., 35, 165-181.
Sadeghirad, A., Mahmoudzadeh Kani, I., Rahimian, M. and Vaziri Astaneh, A. (2009), “A numerical approach

based on the meshless collocation method in elastodynamics”, Acta Mech. Sinica., 25, 857-870.
Sadeghirad, A. and Mohammadi, S. (2007), “Equilibrium on line method (ELM) for imposition of Neumann

boundary conditions in the finite point method (FPM)”, Int. J. Numer. Meth. Eng., 69, 60-86.
Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Edition, McGraw Hill, New York.
Wang, J.G., Liu, G.R. and Wu, Y.G. (2001), “A point interpolation method for simulating dissipation process of

consolidation”, Cornput. Method. Appl. Mech. Eng., 190, 5907-5922.
Zhang, X., Liu, X.H., Song, K.Z. and Lu, M.W. (2001), “Least-squares collocation meshless method”, Int. J.

Numer. Meth. Eng., 51(9), 1089-1100.
Zhu, T., Zhang, J.D. and Atluri, S.N. (1998), “Local boundary integral equation (LBIE) method in computational

mechanics and a meshless discretization approach”, Comput. Mech., 21(3), 223-235.



Meshless equilibrium on line method (MELM) for linear elasticity 533

Appendix A. The collocation method

The governing Eq. (13) can be rewritten in terms of the displacement field by substituting Eqs. (15)-(17)
into Eq. (13).

 

(A.1)

The discretized system of equations in a collocation method is formed by substituting the meshless approxi-
mation (Eqs. (7), (8)) into governing Eq. (A.1) and collocating the differential equation at each node in the
analysis domain. Based on this procedure, discretized equations at inner node xp of the problem domain are
obtained as 

 (A.2)

where np is the number of nodes in the neighborhood of node xp for which the weight function
; and Nr is the number of the inner nodes inside the problem domain not belonging to the

boundaries.
Dirichlet and Neumann boundary conditions (Eqs. (14a), (14b)) are directly satisfied by substituting the

meshless approximation (Eqs. (7), (8)) into Eqs. (14a), (14b). The discretized equations for enforcement the
boundary conditions at node xq on the Dirichlet boundary and node xs on the Neumann boundary are written
as 

 (A.3)

 (A.4)

where nq and ns are the number of nodes in the neighborhood of node xq and xs for which the weight function
 and  respectively; and Nu and Nt are the number of the nodes located on the

Dirichlet and Neumann boundaries respectively;  and  are the prescribed displacements and tractions
over the Dirichlet and Neumann boundaries respectively; and ni is the unit outward normal vector to the
boundary.

Eqs. (A.2), (A.3), (A.4) lead to a system of algebraic equations of the form

Ku = f  (A.5)

where K is the ‘stiffness’ matrix, u is the vector of nodal values  and f is the ‘load’ vector. It can be easily
seen that the stiffness matrix K in the presented collocation method is banded because the support domains
are compact. However, in general, K is asymmetric.
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