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Abstract. This paper presents effects of anisotropy and curvature on free vibration characteristics of
cross-ply laminated composite cylindrical shallow shells. Shallow shells have been considered for different
lamination thickness, radius of curvature and elasticity ratio. First, kinematic relations of strains and
deformation have been showed. Then, using Hamilton’s principle, governing differential equations have
been obtained for a general curved shell. In the next step, stress-strain relation for laminated, cross-ply
composite shells has been given. By using some simplifications and assuming Fourier series as a
displacement field, differential equations are solved by matrix algebra for shallow shells. The results
obtained by this solution have been given tables and graphs. The comparisons made with the literature
and finite element program (ANSYS).
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1. Introduction

A composite is a structural material, which consists of combining two or more constituents on a

macroscopic scale to form a useful material. The goal of this three dimensional composition is to

obtain a property which none of the constituents possesses. In other words, the target is to produce

a material that possesses higher performance properties than its constituent parts for a particular

purpose. Some of these properties are mechanical strength, corrosion resistance, high temperature

resistance, heat conductibility, stiffness, lightness and appearance. In accordance with this definition,

the following conditions must be satisfied by the composite material. It must be man-made and not

natural. It must comprise of at least two different materials with different chemical components

separated by distinct interfaces. Different materials must be put together in a three dimensional

unity. It must possess properties, which none of the constituents possesses alone and that must be

the aim of its production. The material must behave as a whole, i.e., the fiber and the matrix

material (material surrounding the fibers) must be perfectly bonded. As a structural material,

composites offer lower weight and higher strength.

Shells are common structural elements in many engineering structures, including concrete roofs,
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exteriors of rockets, ship hulls, automobile tires, containers of liquids, oil tanks, pipes, aerospace

etc. A shell can be defined as a curved, thin-walled structure. It can be made from a single layer or

multilayer of isotropic or anisotropic materials. Shells can be classified according to their

curvatures. Shallow shells are defined as shells that have rise of not more than one fifth the smallest

planform dimension of the shell (Qatu 2004).

Shells are three-dimensional (3D) bodies bounded by two relatively close, curved surfaces. The

3D equations of elasticity are complicated that’s why all shell theories (thin, thick, shallow and

deep, etc.) reduce the 3D elasticity problem into a 2D one. This is done usually by Classical

Lamination Theory-CLT and Kirchhoff hypothesis.

A number of theories exist for layered shells. Many of these theories were developed originally

for thin shells and based on the Kirchhoff-Love kinematic hypothesis that straight lines normal to

the undeformed mid-surface remain straight and normal to the middle surface after deformation.

Among these theories Qatu (2004) uses energy functional to develop equation of motion. Many

studies have been performed on characteristics of shallow shells (Qatu 1991, 1992a, 1993a, b).

Recently, Latifa and Sinha (2005) have used an improved finite element model for the bending and

free vibration analysis of doubly curved, laminated composite shells having spherical and ellipsoidal

shapes. Large-amplitude vibrations of circular cylindrical shells subjected to radial harmonic

excitation in the spectral neighborhood of the lowest resonance are investigated by Amabili (2003).

Gautham and Ganesan (1997) deal with the free vibration characteristics of isotropic and laminated

orthotropic spherical caps. Liew et al. (2002) has presented the elasticity solutions for free vibration

analysis of doubly curved shell panels of rectangular planform. Grigorenko and Yaremchenko

(2007) have analyzed the stress-strain state of a shallow shell with rectangular planform and varying

thickness. Djoudi and Bahai (2003) have presented a cylindrical strain based shallow shell finite

element which is developed for linear and geometrically non-linear analysis of cylindrical shells.

In this paper various parameters affecting free vibration characteristic of symmetric, cross-ply,

composite, shallow shells have been examined. The shells have square planform. The Ratio of

elasticity modulus (E1/E2) of anisotropic composites has been considered as a first parameter. For

various E1/E2 values solutions are obtained from computer program written using following theory.

Furthermore, for the same ratios, problem is modeled by finite element method also (Reddy 1993).

For the solution of problem by finite element method a commercial program, named ANSYS, has

been used. a/R (ratio of shell length to radius of shell) is considered as a second parameter for

frequencies of the shell structure. Starting from a/R = 0 to 0.1 various values are examined by both

computer program and ANSYS. Various a/h (ratio of shell length to thickness of shell) values are

used as a third parameter. The results obtained from analysis have been compared with literature

and ANSYS by using tables and graphs.

2. Theories

A lamina is made of isotropic homogeneous reinforcing fibers and an isotropic homogeneous

material surrounding the fibers, called matrix material (Fig. 1). Therefore, the stiffness of the lamina

varies from point to point depending on whether the point is in the fiber, the matrix or the fiber and

matrix interface. Because of these variations, macro-mechanical analysis of a lamina is based on

average properties. 
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There are many theories of shells. Classical shell theory, also known as Kirchhoff-Love kinematic

hypothesis, assumes that “The normals to the middle surface remain straight and normal to the mid-

surface when the shell undergoes deformation”. However, according to first order shear deformation

theory “The transverse normals do not remain perpendicular to the mid-surface after deformation”

(Reddy 2003). In addition, classical lamination theory says “laminas are perfectly bonded” (Gurdal

et al. 1998, Hyer 1997, Reddy and Miravete 1995, Jones 1984). The theory of shallow shells can be

obtained by making the following additional assumptions to thin (or classical) and thick (or shear

deformation) shell theories. It will be assumed that the deformation of the shells is completely

determined by the displacement of its middle surface. The derivation of equations of motion is

based on two assumptions. The first assumption is that the shallow shell has small deflections. The

second assumption is that the shallow shell thickness is small compared to its radii of curvature.

Also, the radii of curvature are very large compared to the in-plane displacement. Curvature

changes caused by the tangential displacement component u and v are very small in a shallow shell,

in comparison with changes caused by the normal component w.

2.1 Geometric properties

The vectorial equation of the undeformed surface could be written by the x and y cartesian

coordinates as

(1)

a small increment in  vector is given as 

(2)

where  is the small increment in x direction and  is the small increment in y direction (Fig. 2).

The differential length of the shell surface could be found by dot product of  by itself

(3)

where A and B are referred as Lame parameters and defined as
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Fig. 1 Fiber and matrix materials in laminated composite shallow shell
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Eq. (3) is called first fundamental form of the surface. Tangent vector to the surface could be

obtained by taking derivative of Eq. (1) with respect to surface length. Then, applying Frenet’s

formula to the derivative of tangent vector and multiplying both sides by unit normal vector gives

second quadratic form.

2.2 Kinematics of displacement

Let the position of a point, on a middle surface, shown by . If this point undergoes the

displacement by the amount of  then, final position of that point could be given as 

(5)

where  is the displacement field of the point and defined as

(6)

where  and  are the unit vectors in the direction of x, y and z. u, v, and w are the

displacements in the direction of x, y and z respectively. Using Eqs. (5) and (6) strains are

calculated as

r x y,( )
U

r ′ x y,( ) r x y,( ) U+=

U

U ui x vi y wi z+ +=

i x i y, i z

Fig. 2 Coordinates of shell mid-surface
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(7)

where Rx, Ry , and Rxy are curvatures in x-plane, y-plane and xy-plane respectively.

2.3 Stress strain relation

For an orthotropic media there are 9 stiffness coefficients written in local coordinates.

(8)

where [σ] is the stress matrices, [Q] is the stiffness matrices and [ε] strain matrices. The stresses in

global coordinates are calculated by applying transformation rules. Then, the stresses over the shell

thickness are integrated to obtain the force and moment resultants. Due to curvatures of the

structure, extra terms must be taken into account during the integration. This difficulty could be

overcame by expanding the term [1/(1 + z/Rn)] in a geometric series.

2.4 Governing equations

Equation of motion for shell structures could be obtained by Hamilton’s principle

(9)

where T is the kinetic energy of the structure 

(10)

W is the work of the external forces
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in which  are the external forces u, v, w are displacements in x, y, z direction respectively.

, are the external moments and  are rotations in x, y directions respectively. U is the

strain energy defined as 

(12)

Solving Eq. (9) gives set of equations called equations of motion for shell structures.

 

(13)

When the shell has small curvature it is referred to as a shallow shell. Shallow shells are defined

as shells that have a rise of not more than 1/5th the smallest planform dimension of the shell (Qatu

2004). It has been widely accepted that shallow shell equations should not be used for maximum

span to minimum radius ratio of 0.5 or more. For shallow shells, Lame parameters are assumed to

equal to one (A = B = 1). This gives Eq. (13) in simplified form as 

 

(14)

Eq. (14) is defined as equation of motion for thick shallow shell. For thin shallow shells this

equation reduces to
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 (15)

The Navier type solution can be applied to thick and thin shallow shells. This type solution

assumes that the displacement field of the shallow shells could be represented as sine and cosine

trigonometric functions.

3. Numerical examples

Before proceeding further, the modeling of the shell structure in ANSYS package program has

been checked to avoid getting wrong results. A cylindrical shell structure which is solved by Qatu

(2004) as an example problem in section 7.3.1.1 has been chosen (Fig. 3). 

The studies were made for isotropic steel. The thickness of the shell is h = 0.02 in, the length of

the shell is a = 11.74 in, Radius of the cylindrical shell is R = 5.836 in, unit mass is 734 × 10-6 lb s2/

in4, modulus of elasticity is 29.5 × 106 lb/in2 and Poisson’s ratio is 0.285. The same cylindrical shell

has been solved by Bert et al. using Love’s shell theory, by Rat and Das who included shear

deformation and rotary inertia, by Bray and Eagle using experimental procedure and finally by Qatu

using classical shell theory. All the results obtained by researchers have been given in Qatu (2004).

The same problem has been solved again by modeling the structure with finite element method and

using ANSYS package program. A 160 × 20 mesh has been chosen. Each mesh element which is

called SHELL99 has 8 degree of freedom. Results of that model prepared in ANSYS have been

given in Table 1.

 

Fig. 3 Cylindrical shells modeled by using ANSYS
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Using results given in Table 1 and results obtained by using ANSYS, the graphs have been

drawn. The results have been given for first three (m = 1, 2, 3) longitudinal modes and first thirth

(n = 1, 2,…, 30) circumferential modes. The three graphs have been drawn together in Fig. 4.

The correctness of the ANSYS model has been checked in this example problem. The problem

has been solved by Qatu, Bert et al., Rath et al., and Bray et al. The results obtained by those

researchers have been compared by the results obtained by modeling the problem in ANSYS. For

three cases graphs have been drawn and a perfect match has been observed with the results. 

The governing Eq. (14) (using SDSST theory) and the governing Eq. (15) (using CLSST theory)

derived in the theory section are solved by using Mathematica program separately. Furthermore,

ANSYS packet program has been used in solution. The geometry of the shell structures has been

created using arc-length method in ANSYS. Then, area element has been defined between the arc

lines. Finally using SHELL99 finite element, the area has been meshed.

Table 1 Natural frequency parameters (Hertz) obtained by using CLSST and ANSYS

m n CLSST ANSYS m n CLSST ANSYS m n CLSST ANSYS

1

0 5328,25 5325,99

2

0 5442,58

3

0 5458,11 5446,97

1 3270,54 3336,81 1 4837,71 4832,71 1 5197,96 5205,68

2 1861,97 2144,79 2 3725,02 3729,93 2 4563,85 4565,18

3 1101,78 1469,94 3 2742,67 2799,58 3 3813,65 3817,14

4 705,71 1061,33 4 2018,09 2142,28 4 3114,51 3139,31

5 497,54 803,13 5 1515,06 1684,79 5 2530,39 2587,26

6 400,18 642,65 6 1174,98 1363,45 6 2069,45 2157,05

7 380,82 556,52 7 953,72 1139,82 7 1719,25 1829,20

8 416,82 533,12 8 824,39 993,07 8 1464,11 1585,77

9 488,69 561,49 9 770,52 912,16 9 1291,20 1414,21

10 583,96 628,94 10 778,47 889,54 10 1190,96 1306,51

11 696,30 724,51 11 834,33 917,13 11 1154,97 1256,83

12 822,76 840,92 12 925,62 985,64 12 1174,09 1259,24

13 961,95 973,94 13 1043,11 1086,24 13 1238,37 1306,82

14 1113,21 1121,24 14 1180,85 1211,93 14 1338,48 1392,15

15 1276,17 1281,56 15 1335,26 1357,80 15 1466,80 1508,31

16 1450,68 1454,19 16 1504,23 1520,68 16 1617,78 1649,69

17 1636,62 1638,73 17 1686,51 1698,52 17 1787,61 1812,07

18 1833,93 1834,97 18 1881,37 1890,06 18 1973,77 1992,46

19 2042,59 2042,76 19 2088,34 2094,50 19 2174,60 2188,81

20 2262,58 2262,04 20 2307,14 2311,34 20 2389,01 2399,71

21 2493,87 2492,77 21 2537,59 2540,26 21 2616,30 2624,22

22 2736,47 2734,93 22 2779,58 2781,06 22 2855,96 2861,71

23 2990,36 2988,52 23 3033,04 3033,61 23 3107,69 3111,75

24 3255,54 3253,55 24 3297,90 3297,84 24 3371,26 3374,05

25 3532,02 3529,36 25 3574,13 3573,71 25 3646,52 3648,43

26 3819,79 3818,06 26 3861,71 3861,21 26 3933,35 3934,75

27 4118,84 4117,60 27 4160,63 4160,34 27 4231,69 4232,96

28 4429,18 4428,72 28 4470,86 4471,14 28 4541,48 4543,02

29 4750,81 4751,49 29 4792,41 4793,63 29 4862,68 4864,92

30 5083,73 5085,96 30 5125,26 5127,88 30 5195,25 5198,69
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As an example a simply supported cylindrical shell which has a radius of curvature in one plane

and infinite radius of curvature in other plane, is considered (Fig. 5). The shell, in hand, has a

square planform where length and width are equal to unity (a = b = 1). As a material, a laminated

composite has been used with a [0°/90°/90°/0°] symmetrical cross-ply stacking sequence. To

determine the effect of anisotropy, shell thickness and radius of curvature on free vibration

characteristics of cylindrical shallow shell, problem has been solved for various values. First, ratio

of modulus of elasticity (E1/E2) which is the ratio of modulus of elasticity in fiber direction to

matrix direction has been taken as a variable from 1 to 50. Next, effect of shell thickness ratio that

ratio of shell width to shell thickness, a/h = 100, 50, 20, 10 and 5, has been examined. Furthermore,

radius of curvature has been considered. For different shell width/shell radius ratios which vary

from infinity (plate) to 0.1, graphs have been obtained.

For each case, the shell has been solved with three theories. First theory is the classical laminated

shallow shell theory (CLSST) which assumes “normals to the middle surface remain straight and

normal after deformation”. Second theory used in the solution of composite laminated shallow shell

is shear deformation shallow shell theory (SDSST). SDSST is similar to CLSST except about

transverse normals i.e., the transverse normals do not remain perpendicular to the mid-surface after

deformation. The FEM is a powerful numerical method to solve mechanic problems. The FEM is

easier and faster than the analytical methods to solve complicated problems. Therefore, simply

supported shallow shell of which analytical solution is known, is solved for the verification of the

FEM, and chosen to demonstrate the suitability and accuracy of FEM comparing with analytical

results. The comparisons indicate that the FEM can be used with good confidence in shallow shell

problems of which analytical solution is not known. Entire structure is meshed by finite elements in

this theory. Then assuming a suitable displacement fields for each meshing element, the behavior of

the structure has been obtained. In this paper, a finite element package program ANSYS has been

used. The structure is meshed by 25 × 25 elements. A 8-noded quadratic element is considered as a

Fig. 4 The results for first three (m = 1, 2, 3) longitudinal modes

Fig. 5 Cylindrical shallow shell
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Table 2 Natural frequency parameters ( ) for cross ply laminated [0o/90o/90o/0o] cylindrical
shallow shells for shear deformation shallow shell theory (SDSST), classical shallow shell theory
(CLSST) and ANSYS (a/b = 1, E1/E2 = 5, G12/E2 = G13/E2 = G13/E2 = 0.5, υ12 = 0.25 and K2 = 5/6)

a/h a/R ANSYS SDSST CLSST

100

0.000 8.3182320 8.3419561 8.3466158

0.005 8.3554634 8.3476910 8.3523485

0.010 8.4660912 8.3648721 8.3695228

0.020 8.8945184 8.4332445 8.4378686

0.025 9.2028989 8.4841601 8.4887647

0.033 9.8354765 8.5931268 8.5976906

0.050 11.4494426 8.8970644 8.9015209

0.100 17.7495839 10.3847602 10.3888021

50

0.000 8.2824179 8.3280318 8.3466158

0.005 8.2918191 8.3294614 8.3480430

0.010 8.3198537 8.3337484 8.3523233

0.020 8.4309702 8.3508743 8.3694217

0.025 8.5132524 8.3636951 8.3822221

0.033 8.6884797 8.3913259 8.4098092

0.050 9.1705102 8.4697626 8.4881238

0.100 11.4231408 8.8810714 8.8988334

20

0.000 8.1342034 8.2328074 8.3466158

0.005 8.1357984 8.2330311 8.3468371

0.010 8.1403834 8.2337022 8.3475009

0.020 8.1586703 8.2363860 8.3501554

0.025 8.1722922 8.2383982 8.3521457

0.033 8.2017396 8.2427437 8.3564439

0.050 8.2852836 8.2551448 8.3687102

0.100 8.7224188 8.3217438 8.4345926

10

0.000 7.7777913 7.9214445 8.3466158

0.005 7.7783773 7.9214963 8.3466647

0.010 7.7795769 7.9216516 8.3468112

0.020 7.7843752 7.9222728 8.3473973

0.025 7.7879295 7.9227386 8.3478368

0.033 7.7956157 7.9237449 8.3487863

0.050 7.8176524 7.9266189 8.3514980

0.100 7.9353888 7.9421093 8.3661152

5

0.000 6.8597888 6.9862196 8.3466158

0.005 6.8603666 6.9862292 8.3466210

0.010 6.8607220 6.9862580 8.3466364

0.020 6.8620771 6.9863732 8.3466982

0.025 6.8630546 6.9864596 8.3467445

0.033 6.8652316 6.9866463 8.3468446

0.050 6.8714516 6.9871794 8.3471304

0.100 6.9048843 6.9900556 8.3486726

Ω ωa
2

ρ/E2h
2=
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Table 3 Natural frequency parameters ( ) for cross ply laminated [0º/90º/90º/0º] cylindrical
shallow shells for shear deformation shallow shell theory (SDSST), classical shallow shell theory
(CLSST) and ANSYS (a/b = 1, E1/E2 = 25, G12/E2 = G13/E2 = G13/E2 = 0.5, υ12 = 0.25 and K2 = 5/6)

a/h a/R ANSYS SDSST CLSST

100

0.000 15.1848853 15.1966195 15.2277943

0.005 15.2714771 15.2004253 15.2315928

0.010 15.5291199 15.2118367 15.2429825

0.020 16.5179723 15.2573956 15.2884551

0.025 17.2247461 15.2914739 15.3224693

0.033 18.6565540 15.3648371 15.3956952

0.050 22.2396947 15.5725053 15.6029822

0.100 35.7649855 16.6483393 16.6769989

50

0.000 15.0831433 15.1043949 15.2277943

0.005 15.1052244 15.1053385 15.2287305

0.010 15.1708014 15.1081688 15.2315388

0.020 15.4301547 15.1194844 15.2427663

0.025 15.6217762 15.1279651 15.2511812

0.033 16.0279668 15.1462701 15.2693443

0.050 17.1349999 15.1984395 15.3211112

0.100 22.1675867 15.4768842 15.5974535

20

0.000 14.4766898 14.5084431 15.2277943

0.005 14.4808661 14.5085857 15.2279289

0.010 14.4918844 14.5090135 15.2283327

0.020 14.5356024 14.5107244 15.2299479

0.025 14.5682132 14.5120074 15.2311591

0.033 14.6385884 14.5147787 15.2337755

0.050 14.8377184 14.5226923 15.2412468

0.100 15.8694447 14.5653161 15.2814952

10

0.000 12.8759190 12.8912312 15.2277943

0.005 12.8778295 12.8912607 15.2278141

0.010 12.8808951 12.8913493 15.2278737

0.020 12.8932463 12.8917036 15.2281121

0.025 12.9023542 12.8919693 15.2282909

0.033 12.9222139 12.8925433 15.2286771

0.050 12.9787274 12.8941828 15.2297803

0.100 13.2795994 12.9030251 15.2357311

5

0.000 9.7176957 9.6925563 15.2277943

0.005 9.7194062 9.6925597 15.2277845

0.010 9.7204281 9.6925699 15.2277551

0.020 9.7244933 9.6926106 15.2277551

0.025 9.7274923 9.6926412 15.2277551

0.033 9.7340677 9.6927071 15.2277551

0.050 9.7527723 9.6928956 15.2277551

0.100 9.8531592 9.6939123 15.2277551

Ω ωa
2

ρ/E2h
2=
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Table 4 Natural frequency parameters ( ) for cross ply laminated [0º/90º/90º/0º] cylindrical
shallow shells for shear deformation shallow shell theory (SDSST), classical shallow shell theory
(CLSST) and ANSYS (a/b = 1, E1/E2 = 50, G12/E2 = G13/E2 = G13/E2 = 0.5, υ12 = 0.25 and K2 = 5/6)

a/h a/R ANSYS SDSST CLSST

100

0.000 20.7615920 20.7697041 20.8519882

0.005 20.8861260 20.7725750 20.8548479

0.010 21.2546187 20.7811850 20.8634248

0.020 22.6662115 20.8155881 20.8976956

0.025 23.6739017 20.8413518 20.9233606

0.033 25.7098528 20.8969019 20.9786985

0.050 30.7856245 21.0547801 21.1359801

0.100 49.8238221 21.8869447 21.9651424

50

0.000 20.5170113 20.5293619 20.8519882

0.005 20.5487779 20.5300691 20.8526841

0.010 20.6430781 20.5321904 20.8547715

0.020 21.0158582 20.5406734 20.8631190

0.025 21.2911836 20.5470330 20.8693772

0.033 21.8740232 20.5607652 20.8828904

0.050 23.4588662 20.5999425 20.9214446

0.100 30.6143513 20.8100439 21.1282430

20

0.000 19.0690313 19.0768068 20.8519882

0.005 19.0751625 19.0769093 20.8520780

0.010 19.0914234 19.0772169 20.8523476

0.020 19.1564672 19.0784473 20.8534259

0.025 19.2048946 19.0793699 20.8542346

0.033 19.3093024 19.0813631 20.8559814

0.050 19.6045764 19.0870555 20.8609706

0.100 21.1261749 19.1177388 20.8878684

10

0.000 15.8118649 15.7948517 20.8519882

0.005 15.8149750 15.7948703 20.8519912

0.010 15.8198621 15.7949262 20.8520001

0.020 15.8394997 15.7951499 20.8520358

0.025 15.8540723 15.7953176 20.8520625

0.033 15.8857057 15.7956800 20.8521203

0.050 15.9756740 15.7967152 20.8522854

0.100 16.4526620 15.8022988 20.8531763

5

0.000 10.9302473 10.8910270 20.8519882

0.005 10.9327131 10.8910274 20.8519681

0.010 10.9344903 10.8910288 20.8519079

0.020 10.9415767 10.8910341 20.8516669

0.025 10.9468415 10.8910382 20.8514862

0.033 10.9582819 10.8910469 20.8510959

0.050 10.9908705 10.8910719 20.8499807

0.100 11.1651203 10.8912067 20.8439639

Ω ωa
2

ρ/E2h
2=
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Table 5 Natural frequency parameters (Ω =  ) for cross ply laminated [0º/90º/90º/0º] cylindrical
shallow shells for ANSYS (a/b = 1, E1/E2 = 5, G12/E2 = G13/E2 = G13/E2 = 0.5, υ12 = 0.25 and K2 = 5/6)

a/h a/R ANSYS (simply supported) ANSYS (fixed-end supported)

100

0.000
0.025
0.050
0.100

8.3182320
9.2028989

11.4494426
17.7495839

16.831862
17.225190
18.351772
22.271284

50

0.000
0.025
0.050
0.100

8.2824179
8.5132524
9.1705102

11.4231408

16.726121
16.826086
17.121982
18.256028

20

0.000
0.025
0.050
0.100

8.1342034
8.1722922
8.2852836
8.7224188

16.044672
16.061555
16.111848
16.311423

10

0.000
0.025
0.050
0.100

7.7777913
7.7879295
7.8176524
7.9353888

14.207273
14.212161
14.226600
14.284313

5

0.000
0.025
0.050
0.100

6.8597888
6.8630546
6.8714516
6.9048843

10.576349
10.578038
10.583014
10.602918

ωa
2

ρ/E2h
2

Table 6 Natural frequency parameters ( ) for cross ply laminated [0º/90º/90º/0º] cylindrical
shallow shells for ANSYS (a/b = 1, E1/E2 = 25, G12/E2 = G13/E2 = G13/E2 = 0.5, υ12 = 0.25 and K2 = 5/6)

a/h a/R ANSYS (simply supported) ANSYS (fixed-end supported)

100

0.000
0.025
0.050
0.100

15.1848853
17.2247461
22.2396947
35.7649855

33.126135
33.971616
36.385301
44.698512

50

0.000
0.025
0.050
0.100

15.0831433
15.6217762
17.1349999
22.1675867

32.224896
32.446374
33.101033
35.593490

20

0.000
0.025
0.050
0.100

14.4766898
14.5682132
14.8377184
15.8694447

27.613495
27.656769
27.785879
28.296011

10

0.000
0.025
0.050
0.100

12.8759190
12.9023542
12.9787274
13.2795994

20.288736
20.304197
20.350359
20.533761

5

0.000
0.025
0.050
0.100

9.7176957
9.7274923
9.7527723
9.8531592

12.569716
12.576113
12.595262
12.671524

Ω ωa
2

ρ/E2h
2=
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meshing element named as SHELL99. The element has 100 layers to model the composite materials

used in the structure. For each layer geometric and material properties is entered to program.

Furthermore, thicknesses of each layer, fiber orientations and stacking sequence must be entered

carefully. During solution process, subspace and block Lanczos mode extracting methods used

separately to calculate first 30 frequencies.

The problem defined (Fig. 5) has been solved by ANSYS and Mathematica program. The results

obtained by ANSYS and Mathematica, have been compared in tables and graphs. Non-dimensional

natural frequency parameters have been preferred for comparison purposes. Those parameters

have been obtained multiplying natural parameters by the term  in which a is the

shell planform dimension, ρ is the shell unit mass, E2 is the elasticity modulus of the shell in

matrix direction and h is the shell thickness. A simple dimension analysis of the parameter

( ) gives non-dimensional natural frequency parameters.

Tables 2, 3 and 4 give non-dimensional natural frequency parameters ( ) varying

with shell thickness, shell curvature and shell anisotropy. The planform dimensions of the shell are

equal to unity. For each case, three solutions have been carried out. Cylindrical shallow shells have

been solved by Mathematica program with the shear deformation shallow shell theory (SDSST) and

classical shallow shell theory (CLSST). The results obtained by using both theories are the same

given by Qatu (2004) and ANSYS results are in good agreement with the other results.

The non-dimensional frequency parameters are compared for two different boundary conditions,

namely simply supported and fixed end of all four edges in Tables 5, 6 and 7. Frequency parameters

have been given for various E1/E2 ratios, a/R ratios and a/h ratios.

a
2

ρ/E2( )h2

Ω ωa
2

ρ/E2h
2=

Ω ωa
2

ρ/E2h
2=

Table 7 Natural frequency parameters ( ) for cross ply laminated [0º/90º/90º/0º] cylindrical
shallow shells for ANSYS (a/b = 1, E1/E2 = 50, G12/E2 = G13/E2= G13/E2 = 0.5, υ12 = 0.25 and K2 = 5/6)

a/h a/R ANSYS (simply supported) ANSYS (fixed-end supported)

100

0.000
0.025
0.050
0.100

20.7615920
23.6739017
30.7856245
49.8238221

45.619966
46.823099
50.252560
62.013315

50

0.000
0.025
0.050
0.100

20.5170113
21.2911836
23.4588662
30.6143513

43.298782
43.624668
44.586552
48.231493

20

0.000
0.025
0.050
0.100

19.0690313
19.2048946
19.6045764
21.1261749

33.717305
33.788658
34.001205
34.837356

10

0.000
0.025
0.050
0.100

15.8118649
15.8540723
15.9756740
16.4526620

22.677674
22.705309
22.787902
23.114987

5

0.000
0.025
0.050
0.100

10.9302473
10.9468415
10.9908705
11.1651203

13.220198
13.232260
13.268337
13.411531

Ω ωa
2

ρ/E2h
2=
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Fig. 6 Natural frequency parameters ( ) and elasticity ratio effect for cross ply laminated
[0o/90o/90o/0o] cylindrical shallow shells for shear deformation shallow shell theory (SDSST), classical
shallow shell theory (CLSST) and ANSYS

Ω ωa
2

ρ/E2h
2=
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Fig. 6 shows variation of natural frequency parameters ( ) versus elasticity ratio

effect, shell thickness ratio effect and shell curvature effect for cross ply symmetrically laminated

[0º/90º/90º/0º] cylindrical shallow shells. The graphs have been drawn according to results obtained

by three theory; shear deformation shallow shell theory (SDSST), classical shallow shell theory

(CLSST) and finite element method.

4. Conclusions

In this study, free vibration characteristic of symmetrically laminated, cylindrical, composite

shallow shells have been investigated by using three different theories. Effects of shell curvatures,

shell thicknesses and material anisotropy have been shown with various graphs and tables for

shallow shells which have square planform. The tables give non-dimensional natural frequencies

versus shell thickness and shell curvatures using three different theories. Each table has been

prepared for different material anisotropy value (E1/E2). Analysis and assumptions used in the

SDSST and CLSST is similar to that is used in Qatu (2004). Finite element analysis has been

performed by using commercial finite element program named ANSYS.

In the Tables 2, 3 and 4, the following results have been observed. The curvature of shallow

shells has the increasing effects on the non-dimensional natural frequencies. As the curvature value

increases the non-dimensional natural frequencies also increase. Furthermore, as the curvature value

increases the non-dimensional natural frequencies obtained by the solutions of the three theories

differ from each other. These differences are mainly caused by the different assumptions between

the theories. Next, the thickness effect has been studied. The first important result gained from

tables is that, as the thickness increases the results from CLSST (thin shell) differ from other two

theories, as expected. The last observation for the thickness is about the range of change of the non-

dimensional natural frequencies. The non-dimensional natural frequency for a shallow shell varies in

a wide range for the thin shells and closer range for the thick shells. The last observation on tables

gives the anisotropy effect. Different material anisotropy values have been considered for each table.

A careful examination between tables shows the increase in anisotropy causes increase in the non-

dimensional natural frequency values. In addition, this increments also cause the results of ANSYS

differ from others.

The non dimensional frequency parameters of fixed-end boundary conditions are higher than

simply supported boundary case in Tables 5, 6 and 7. The geometry of the shell also has effects on

the fixed-end shallow shells. However, when the shallow shell fixed-end supported, the effects of

the shell geometry do not distinct as the simply supported case. Like simply supported case, the

effect of the shell curvature on non dimensional frequency parameter has reduced as the shell

thickness increase.

When the graphs in Fig. 6 has been examined, It is concluded that assumption of lame parameters

equals to unity for shallow shells in the analysis of CLSST and SDSST gets fail as the curvature

ratio increase. But luckily, the effect of this assumption decreases as the shell gets thicker. In Fig. 6,

frequency parameter versus elasticity ratio graphs have been drawn for different curvature ratios.

The solutions obtained by different theories have been given on a separate graph. Graphs in each

line of Fig. 6 have been drawn for the same thickness ratio. The differences in frequency parameters

of ANSYS solution for the each case of curvature ratios have been represented better than other two

theories. Considering shell thickness the results of SDSST for the thick shallow shell case have

Ω ωa
2

ρ/E2h
2=
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been coincided with ANSYS solutions but differ with CLSST solutions as expected.

In the literature shallow shells are defined as “shells that have rise of not more than one fifth the

smallest planform dimension of the shell”. In this study, to verify shallow shell definition, FEM

solutions have been compared with CLSST and SDSST solutions, which assumes Lame parameters

equal to one (A = B = 1), for different situations. As the thickness of the shallow shell increases, the

results of FEM and other two theories get closer. Hence, definition of the shallow shell must be

done considering the shell thickness. Elasticity ratio i.e., anisotropy, also affects the results. For

isotropic case results of three theories agree with each other. However, as the anisotropy increases

results of the theories gets differ.

As a conclusion, it could be said that, for shallow shells, no general definition could be done

without considering effects of curvature ratio, thickness ratio and anisotropy.
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