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Abstract. The present paper will be concerned to the investigation of the stress-strain field around the
cavity that is loaded or partially loaded at the inner surface by the rotationally symmetric loading. The
cavity of the spherical, cylindrical or elliptical shape is situated in a stressed elastic continuum, subjected
to the gravitation field. As the contribution to the similar investigations, the paper introduces the new
function of loading in the form of the infinite sine series. Besides, in this paper the solution of stresses
around an oblong ellipsoid cavity, has been obtained using appropriate curvilinear elliptical coordinates.
This analytical approach avoids the solutions of the same problem that lead to expressions that contain
rather complex integrations. Thus the presented solutions provide the applicable and explicit expressions
for stresses and strains developed in infinite series with easily determinable coefficients by the use of
contemporary mathematical packages. The numerical examples are also included to confirm the
convergence of the obtained solutions.
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1. Introduction

An investigation of the influence of heterogeneities (inclusion, cavities, cracks, ...) on the effective

properties of the materials is of great interest in applied mathematics and computational mechanics

and a vast amount of literature covers this subject. Cavities are good approximations for modeling

voids existing in natural materials, such as geo-materials. Particular practical importance of such

investigations is related to determination of stress-strain fields around unsupported or supported

cavities in a solid rock mass created by excavations for underground structures. These investigations

enable a better understanding of interaction between underground structure and rock medium in

three-dimensional conditions. The practical consequences that may be derived from the evaluation

of disturbances of stresses and strains in vicinity of the cavities formed by underground excavations

in solid rocks are related to the essential requirements for the safety of the tunneling works,

particularly in cases where three-dimensional geometry of the cavities is playing significant role in

the stress-strain changes.

 Determination of the stress-strain state around an elliptical cavity (oblong ellipsoid) situated in
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elastic continuum, with unsupported internal boundary, has been recently considered in the work by

Luki  et al. (2009). Also, in this paper a brief historical review of investigation of the mechanical

properties of solids containing spherical, cylindrical and elliptical cavities are given. The researches

particularly emphasized are: Neuber (1937), Sternberg and Sadowski (1952), Eshelby (1957, 1959),

Lur’e (1964), and the authors of recent studies, Tran-Cong (1997), Chen (2004), Xu et al. (1996),

Duan et al. (2005), Chen et al. (2003), Dong et al. (2003), Sharma et al. (2003), Rahman (2002),

Markenscoff (1998a, b), Riccardi and Montheillet (1999), Tsuchida et al. (2000), Chen and Lee

(2002). Most recently, Ou et al. (2008, 2009) obtained the solutions for the elastic fields around a

nanosized spheroidal cavity in an elastic medium subjected to arbitrary uniform remote loadings and

a uniformly uniaxial tension. 

In spite of the fact that stress analysis of an infinite elastic body that contains cavities is a classic

topic, the most of the solutions of a general nature lead to rather complex and often unsolvable

integrations, that can not provide the usable expressions for stresses and strains. The applicable

solutions may be found in the literature for the cavities of spherical shape and for infinite cylinders,

while the applicable solutions for ellipsoidal cavities are rather scarce. In this paper the solution of

stresses around an oblong ellipsoid cavity that is loaded or partially loaded at the inner surface by

the rotationally symmetric loading has been obtained using appropriate curvilinear elliptical

coordinates. The derivation of expressions for stresses and strains have been made starting from the

solutions of the basic Navier differential equations for the displacements and use of Neuber-

Papkovich potentials that are harmonic scalar and vector functions. Applying the Bubnov-Galerkin’s

method, the formulation of the boundary conditions has been performed using functions satisfying

bi-harmonic differential equation, and being developed in infinite series by Legendre's polynomials.

This approach made possible to avoid the formulations for stresses and strains that contains

cumbersome integrals that determine the displacements and than also to avoid equally or even more

laborious procedures to differentiate these expressions in order to obtain the strains. Besides, in

order to analyze the support around the opening, the problem of the stress-strain state is extended to

the analysis of states in modified conditions, by setting the loading on the inner side of the cavity

which simulates the support. The previously elaborated loading functions, developed in infinite

series on the basis of Legendre’s polynomials Luki  (1998), or defined by Fourier series (Jaeger and

Cook 1969), have had the inherent shortcoming at the edges of loaded surface, that is avoided in

this paper by application of the loading function based on the infinite serial developed by sine

function.

2. Basic equations 

 

We start by the Navier equations for the displacement field, Malvern (1969)

(1)

where K is the constant body force; u is displacement vector; ν is Poisson’s coefficient; G is the

shear modulus. If the only body force is the gravitational force, the Laplacian of this body force

potential is zero, i.e. 

(2)

có

có

1 2ν–( )∇2
u ∇ ∇ u⋅( ) 1 2ν–

G
--------------K+ + 0=

K 0=
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so the differential Eq. (1) becomes homogeneous 

(3)

Making use of Neuber-Papkovich potentials Φ0 and Φ Papkovich (1932), it has been shown that

 (4)

where 

,   (5)

Obviously, Φ0 and Φ are harmonic scalar and vector functions, respectively. Usually we make use

of the potential function ψ

(6)

So defined function is biharmonic, i.e.

(7)

Eq. (7) is basic for the solutions of the problem. Particularly, for the spherical and elliptical

cavities they are derived in the form of infinite series of Legendre’s polynomials. The solutions for

infinite cylinder have been derived in the form of infinite series of Bessel’s functions.

3. Boundary conditions

Boundary conditions required for determination unknown constants in expressions for stresses are

given in terms of stresses acting on the cavity surface. The total stresses around the cavity are

determined by superimposing primary stresses acting in the continuum without a cavity and

“partial” stresses which are caused by the presence of cavity. 

(8)

where = the total stresses, = partial stresses due to the presence of a cavity and

= primary stresses; (i, j = respective coordinate).

4. Spherical cavity

In the spherical coordinates (r, ϕ, θ), Fig. 1, for axisymmetric conditions towards z axis are 

 (9)

 , (10)

Then the Eq. (3) is satisfied by

1 2ν–( )∇2
u ∇ ∇ u⋅( )+ 0=

u Φ
1

4 1 ν–( )
-------------------∇ Φ0 r Φ⋅+( )–=

∇2Φ0 0= ∇2
Φ 0=

Ψ 1

4 1 ν–( )
------------------- Φ0 r Φ⋅+( )–=

∇2∇2Ψ 0=

σi σi
* σi

pr
+=

τij τij
* τij

pr
+=

σi τij, σi
* τij

*,
σi

pr
τij

pr,

uθ 0=

∂ur
∂θ
------- 0=

∂uϕ
∂θ
-------- 0=



412 D. Luki , A. Proki  and P. Anagnosticó có

(11)

(12)

where

(13)

are Legendre’s polynomials (µ = cosϕ), and

(14)

Constants c
n
 and d

n 
have to be determined from the boundary conditions. 

Eqs. (11), (12) and (7) provide the expressions for stresses

ur n n 3 4ν–+( )cnr
n–

n 1+( )dnr
n 2––

–[ ]Pn cosϕ( )
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∑–=

uϕ 4 n– 4ν–( )cnr
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n 2––
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Fig. 1 Spherical coordinate system
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(15)

Expressions (15) represent the “partial” stresses caused by the presence of a cavity, in the stressed

elastic continuum. They are given as infinite series based on Legendre’s polynomials P
n
(cosϕ) and

constants c
n
 and d

n
.

Unknown constants c
n
 and d

n
, as mentioned before, are to be determined for partially loaded

(supported) cavity surface, from the following boundary conditions

(16)

where  is support loading and R is sphere radius. Taking into account Eq. (8) one obtains

 

(17)

The primary stresses in continuum for “hydrostatic” stress field are defined 

 

(18)

with γ is the unit weight of the continuum and H is the height above cavity axis. 

 The loading function has been defined as infinite sine series

; ;

; on the unloaded part of the cavity (19)
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Fig. 2 Partially loaded surface in axial symmetry 
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where β is the given angle that defines loaded surface, Fig. 2 and Fig. 3. The main advantages of

this type of loading function are:

• the absence of the discontinuous transition to zero value at the ends of loaded area

• the fast convergence to the central value of the loading within loaded area, and

• the fast convergence to the zero value at the ends of the loaded area trough sine functions.

Expanding of  and  in infinite series based on Legendre’s polynomials, by the use of

the general formula

 (20)

one can obtain

(21)

Taking into account Eqs. (18)-(21), from Eq. (15) we find that

(22)

(23)
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Fig. 3 Graphical presentation of loading function 
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(r = R)

(24)

are determined by development in sine series, Appendix A.

The Eqs. (22) and (23) contains infinite sums on the both sides of the same row, therefore they

provide the possibility to form the set of linear equations for determination of unknown constants c
n

and d
n
.

5. Cylindrical cavity

In deriving the stresses around cylindrical cavity one may refer to potential Ψ defined by Eq. (6)

which provides the following relationships for “partial” stresses 

 

  

(25)
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Fig. 4 Cylindrical coordinate system
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In cylindrical coordinates (r, ϕ, z), Fig. 4, operator  is defined by

(26)

The potential function ψ has been supposed as infinite sine series 

(27)

where f(kr) is unknown function. Substituting this in Eq. (7) we obtain 

(28)

Its solution may be written as

(29)

So, general solution of Eq. (7) has the following form

(30)

where B1 and B2 are constants and  and  are the Bessel`s functions of zero and first

order.

The expression for Ψ(r, z) given in Eq. (30) introduced in Eq. (25) is providing the solution for

the “partial” stress state caused by the presence of cylindrical cavity in elastic continuum subjected

to constant stresses in vicinity of the cavity

(31)

The primary stresses in continuum for “hydrostatic” stress field are defined by

(32)

with γ is the unit weight of the continuum and H is the height above cavity axis. 
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The loading is expressed in the form of infinite sine series 

;

; (33)

The partially loaded surface of a cylinder by constant loading p within the area defined –a/2 ≤ z ≤

+a/2 and the shape of loading function are shown on Fig. 5 and Fig. 6.

The unknown constants B1 and B2 of Eq. (31) are to be resolved from the boundary conditions

(34)

in the form 

 

(35)
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Fig. 5 Axisymmetrical partial loading 

Fig. 6 Graphical view of the loading function 
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6. Elliptical cavity (oblong ellipsoid)

Introducing the oblong ellipsoidal coordinates, Fig. 7

; ; (36)

the stress state around elliptic cavity having the shape of rotational oblong ellipsoid can be defined

on the basis of solution derived from Eq. (7), where general potential 

(Papkovich-Neuber) in the case of axial symmetry is reduced to 

 
(37)

where c is focus distance and Φ0 and Φ3 are harmonic functions 

The stresses for axisymmetrical loading, in oblong elliptical coordinates, expressed by a potential,

are expressed in the form

(38)
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Fig. 7 Oblong ellipsoidal coordinate system 
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where 

 

(39)

The general solution of Eq. (7) is postulated in the form of infinite series based on associated

Legendre’s functions of the first and second order

(40)

where f
nm
 = unknown coefficients to be defined across the stress boundary conditions. 

Using Eqs. (37) and (40) the potential may be expressed as 

(41) 

where Φ0(u, ϕ) and Φ3(u, ϕ) are harmonics given as series

(42)

For the case of m = 0 the solution in Eq. (40) is simpler 

(43)

By defined potential in Eq. (37) one may obtain 

(44)

where the harmonics Φ0(u, ϕ) and Φ3(u, ϕ) are given as 

; (45)

with use of P
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The solutions of Eqs. (41) and (44) introduced in Eq. (38) are providing the full tensor of

“partial” stresses caused by the presence of the elliptical cavity in the stressed elastic continuum. 

Due to the space consuming expressions the stress tensor will be presented here only for the case

of m = 0, i.e., by the single infinite series
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(46)

(46)

Coefficients in Eq. (46)  (i = 1, 2 ..6) and  (i = 1, 2 …, 8) are given in the Appendix

B. The partial stresses in Eq. (46) vanishes “in infinity”. It may be said that for practical problems

this is achieved at the distances equal to double size of the cavity.

The boundary conditions are given in terms of stresses

(47)

The primary stresses in continuum are defined for “hydrostatic” stress field (in oblong ellipsoidal

coordinates) 

(48)

with γ is the unit weight of the continuum and H is the height above cavity axis. 

 The same problem that appeared in the cases of spherical and cylindrical cavity, the defining of

supporting loading function is also subject of determination for ellipsoidal cavity. The selection of

the functiuon is associated with conditions imposed by the solution of differential equation

, namely the continuity of the loading function on the boundary. The supporting loading

which is the most frequent case of partially loaded cavity surface is shown on the Fig. 8 and Fig. 3
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Fig. 8 Support loading on the boundary p1(ϕ)
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and its definition is 

; ;

; outside the loaded area (49)

and case of partially loaded cavity surface is shown on the Fig. 9 and Fig. 3 

;

; outside the loaded area (50)

Expanding of  and  in infinite series based on Legendre’s polynomials, by the use

of the general formula Eq. (20) and substituting (48)-(50) into Eq. (46), we obtain the set of

equations (with m = 0) for unknown constants 

 

(51)

and

(52)

On the basis of derived expressions (51) and (52) it may be concluded that they are analogous to

the expressions (23) and (24) given in the paper (Luki  et al. 2009) for unsupported cavity, but with

the difference that for the elliptic cavity the coefficients k
n
 are to be obtained on the basis of

development of primary stresses  and supporting loading p(ϕ), by Legendre’s polynomials

(Appendix A). The remaining coefficients are given in Appendix C of the paper.
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Fig. 9 Support loading on the boundary p2(ϕ)
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7. Numerical examples

The numerical implementation of the analytical solutions described previously has been elaborated

for the example of elliptical cavity, together with results for spherical and cylindrical cavities of

similar size, situated in the same continuum under axisymmetric primary stresses. The stresses have

been computed for three cited cavities on the basis of the following data:

• Continuum properties: γ = 28 kN/m3 ; ν = 0.3 ; E= 20 × 106 kN/m2

• Geometry: H = 100 m

1. spherical cavity ro = 2 m; ∆r = 0.2 m

2. cylindrical cavity ro = 2 m; ∆r = 0.2 m

3. oblong ellipsoidal cavity uo = 1.44 m; ∆u = 0.1 m; c = 3 m

where ∆r = the applied increment of radial coordinate for estimation of stress field at consecutive

radial distances and ∆u = the applied increment of u-coordinate for estimation of stress field at

consecutive oblong ellipsoidal surfaces.

• The loading on the inner side of the cavity

1. spherical cavity p = 200 kN/m2 ; β =π/4

2. cylindrical cavity p = 200 kN/m
2 ; a = 2 m

3. oblong ellipsoidal cavity p = 200 kN/m2 ; β =π/4

For presentation and numerical interpretation of the obtained analytical results, particularly for the

elongated oblong rotational ellipsoid, the numerical case that has been selected provides the

possibility to derive many conclusions on the basis of the presented diagrams of the obtained

results. First of all the obtained results are showing the inpact of the geometry of the elliptic cavity

on the values of stresses, then the significant result is obtained by the impact of the internal loading

on the state of stresses around the cavity. Morever, possibly the most important result is that the

obtained values shown on diagrams clearly confirm that the stresses obtained for an elongated

ellipsoidal cavity are bounded by the stress state for spherical cavity on one side, and by the stress

state for infinitive cylindrical cavity on the other side. This has been presented within the frames of

numerical case by the diagrams on Fig. 10 and Fig. 11. It also shown that the influence of the

cavity to the initial stress state is vanishing at the distance of appr. four diameters of the cavity i.e.,

the stress state become equal to the initial one, that is the well known feature confirmed by other

means, particularly within the frame of rock mechanics.

Fig. 10 Radial stresses for considered cavities
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8. Conclusions

This paper represents the study of the stress-strain states around unsupported and partially

supported cavities in the stressed continuum. The similarity of the resolution of the problems for the

cavities of different shapes has been elaborated, and importance of application of adequate

coordinates has been confirmed, as the aid for simplifying the mathematical operations.

The presently available studies of stress concentration in rock mass were mainly concerned with

analytical solutions for spherical and infinite cylinder cavity. The extension of these solutions to a

more general shape (of an oblong ellipsoid), that is most common shape of underground rock

excavations, has been considered in this paper. The solutions for all cavity shapes are also presented

for the purpose of comparison of their numerical outcomes.

Besides, it has been demonstrated that the introduced single parametric loading function in the

form of infinitive sine series, may be very useful for further studies of stress states around cavities.

Some advantages in the use of such a function have been noted.
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Notations 

An, Bn : coefficients

Anm, Cnm : coefficients (m = 0→ An, Cn)

B1, B2 : constants

c : focus distance

cn, dn : constants

Φ : harmonic vector function

Φ0 : harmonic scalar function 

fnm : unknown coefficients

G : shear modulus 

H : height above cavity axis (m)

K : constant force

K0(kr) : Bessel’s function of zero order

K1(kr) : Bessel’s function of first order

p : constant loading

p(ϕ) : support loading function

pk(ϕ) : support loading function (k = 1,2)

Pn(cosϕ) : Legendre’s polynomials of first order 

R : sphere radius (m)

: spherical coordinates

: cylindrical coordinates

u : displacement vector

: oblong ellipsoidal coordinates

: Legendre’s polynomials of second order

β : given angle that defines loaded surface

γ : unit weight of the continuum

∆r : increment of radial coordinate

∆u : applied increment of u-coordinate

: total stresses

: partial stresses due to the presence of a cavity

: primary stresses

ν : Poisson’s coefficient

Ψ : potential function

r ϕ θ, ,

r ϕ z, ,

u ϕ θ, ,

Qn chu( )

σi τi j,,

σi
* τi j,

*,

σi

pr
τi j,

pr
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Appendix A

The development of a function in the trigonometric series and Legendre’s polynomials is defined by expres-
sion

where the coefficients Hnm are defined by expression

where λ0 = 2 (m = 0) and λm = 1 (m ≠ 0)
In case of : m = 0 one may obtain 

where Hn is to be determined by expression

In the literature known development of the function is

where Hn is defined by

where

Appendix B
 
 Coefficients in expressions defining stresses Eq. (46)
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Appendix C

Coefficients related to unknown constants in expressions Eq. (51) and Eq. (52)
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where
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Remaining coefficients are 

 

 

 




