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Abstract. The impact behaviour and the impact-induced damage in laminated composite cylindrical
shell subjected to transverse impact by a foreign object are studied using three-dimensional non-linear
transient dynamic finite element formulation. A layered version of 20 noded hexahedral element
incorporating geometrical non-linearity is developed based on total Langragian approach. Non-linear
system of equations resulting from non-linear strain displacement relation and non-linear contact loading
are solved using Newton-Raphson incremental-iterative method. Some example problems of graphite/
epoxy cylindrical shell panels are considered with variation of impactor and laminate parameters and
influence of geometrical non-linear effect on the impact response and the resulting damage is investigated. 
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1. Introduction

One of the important considerations in the design of fibre-reinforced plastic laminated composite

structure is the resistance of the damage caused by low velocity non-penetrating impact.

Accordingly, many experimental and analytical investigations have been reported towards

understanding impact response and predicting impact-induced damage in these laminates. A number

of researchers have deployed the 2-D and 3-D finite element method for the solution of impact on

laminated composites. Abrate (1994) reviewed most of the earlier work in this field. Inspite of

extensive literature available on the subject, there is continuing interest by researchers because

several issues pertaining to complicated impact damage phenomena and effects of several

parameters are involved. Some of the recent studies in this field include damage analysis of curved

structures, large deformation analysis and inelastic behavior of matrix material. 

Most of the earlier impact problems for laminated plates and shells have been formulated using

small deflection theory and damage analysis has been mainly confined to laminated plates. Ambur

et al. (1995) have concluded that non-linear effects can be significant for thin and moderately thick

laminated composite plates subjected to low-velocity impact. Chandrashekhara and Schroeder
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(1995) have studied impact response of laminated curved shells using finite element formulation

based on Sander’s shell theory considering geometric non-linearity in the sense of von Karman

strains. However, impact damage was not investigated in their study. Ganapathy and Rao (1998)

used 4-noded 48 d.o.f shell element based on Kirchhoff-Love thin shell theory in non-linear finite

element analysis of cylindrical/spherical shell panels. The authors predicted matrix cracking failure

by applying the general Tsai-Wu failure criterion for composite materials. Although geometrical

non-linearity was included, the study assumes that low velocity impact force and deformation can

be simulated by static model and hence does not compute impact response as a function of time.

Krishnamurthy et al. (2001) used 9-noded shell element accounting for large deformation in their

parametric studies of impact on laminated cylindrical composite shells. The shell element was based

on Mindlin-Reissener assumptions regarding transverse shear deformations and assumed parabolic

shear stress distribution across the thickness. In another paper (Krishnamurthy et al. 2003), the

authors extended their work on impact response of a laminated composite cylindrical shell as well

as a full cylinder by incorporating the classical Fourier series method into the finite element

formulation and also predicted impact-induced damage using the semi-empirical damage prediction

model of Choi and Chang (1992). According to the authors, the Fourier series method, which gives

information regarding the natural frequencies of vibration of the impacted structure, provided a

proper basis for adopting the appropriate size of the analysis time step. However, the paper doesn’t

address non-linear effects. Hou et al. (2000) provided details of the implementation of improved

failure criteria for laminated composite structures under impact loading. Out-of-plane stresses were

taken into consideration for damage initiation. It was suggested, for the first time, that delamination

is constrained by through-thickness compression stress. In another paper (Hou et al. 2001), the

authors improved the delamination criterion by taking into consideration both the interlaminar shear

and through-thickness compression stresses and verified it by experimental results for low-velocity

impact. Cho and Zhao (2002) investigated the effects of geometrical and material factors on the

mechanical behavior of composite laminates under low velocity impact and compared results

obtained by 2-D and 3-D finite element methods. In another paper (Zhao and Cho 2004), the

authors investigated impact behavior in composite shells by a low-velocity projectile using 3-D

eight-noded brick element formulation based on linear elasticity theory. They analyzed damage

using Tsai-Wu quadratic failure criterion and delamination formula suggested by Hou et al. (2000).

They validated the numerical results with experimental result by Choi and Chang (1992) for

laminated plate and also concluded that damage propagation in composite shell takes place much

differently from that in composite plate. Her and Liang (2004) have studied the transient response

of impact in cylindrical and spherical shells using 3-D finite element formulation. Impact-induced

damages (matrix cracking and delamination) were predicted using failure criteria suggested by Choi

and Chang (1992). However, large deformation effect was not included in their analysis. The

investigations by Gning et al. (2005) involved the identification and modeling of damage initiation

and development in glass-reinforced epoxy composite cylinders subjected to drop weight impact.

Delamination was characterized using an energy balance model under the assumption that the loss

in energy of the impactor during a drop weight impact is entirely used to create delaminations. Zhu

et al. (2006) incorporated effects of strain rate dependency and inelastic behavior of matrix material

for analyzing the mechanical response of laminated shell. The study was, however, concentrated on

transient response of laminated shell subjected to suddenly applied static loading uniformly

distributed over the bottom surface of the panel and also didn’t consider damage phenomena. In the

paper by Kumar et al. (2007), the authors have carried out parametric studies on impact response
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and damage in curved composite laminates using 3D eight noded layered brick element and

investigated effect of material degradation. However, formulation was based on linear elasticity

theory. 

In the present paper, a non-linear three-dimensional transient dynamic finite element analysis is

carried out to predict impact-induced damage in curved composite laminate subjected to transverse

impact by a metallic impactor. A layered version of twenty noded isoparametric hexahedral element

incorporating geometrical non-linearity is developed based on total Lagrangian approach and the

generalized Green’s strain tensor is used in the strain-displacement relationships. In author’s

knowledge, the use of layered 20 noded brick element as such or in combination with geometrical

non-linearity has not been reported in open literature. The layered version of this element is

different from the isotropic element in the sense that it can contain multiple plies inside it and

accounts for changes in material properties and orientation of the plies inside the element. For

computational efficiency, 14 point integration formula is used instead of standard 3×3×3 formula
for numerical integration of element matrices. The non-linear system of equations resulting from

large deformation formulation and non-linear contact law are simultaneously solved iteratively using

Newton-Raphson method. Example problems of graphite/epoxy cylindrical shell panels with

parametric variations are considered and influence of geometrical non-linearity on the impact

response and resulting damage is discussed. 

2. Finite element methodology

2.1 Non-linear equilibrium equations

Using the principle of virtual work, the finite element equation of equilibrium after including the

inertia forces at time tn+1 can be given as (Zienkiewicz and Taylor 1993)

(1)

where  is residual or out-of-balance force vector, [B] strain-displacement matrix, 

stress vector at any point, [N] shape function matrix, ρ mass density,  acceleration vector at

any point and  is load vector which consists of contact force between impactor and shell.

In the large displacement problem 

 and

(2)

where  is the contribution from the linear part of the Green’s strain and  is the

contribution from the quadratic part of the Green’s strain and is a linear function of the element

nodal displacements .  is the material property matrix relating the strains to the stresses

in global coordinate system.

In Eq. (1)  
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Using Newmark implicit time integration method with constant average acceleration (α=0.5 and

β = 0.25), the nodal acceleration vectors  can be expressed in terms of nodal displacements

 as follows

(4)

Eqs. (3) and (4) can be put into Eq. (1) to form 

(5)

In Eq. (5),  can be referred to as load vector due to inertia term at time  and is given as 

(6)

In Eq. (6),  is the mass matrix.

The solution of non-linear Eq. (5) is achieved iteratively using Newton-Raphson scheme. It is,

therefore, necessary to find relation between  and . If Eq. (5) is differentiated,

we have

(7)

where tangent stiffness matrix  is 

(8)

In Eq. (8), [G] is matrix of shape function derivatives and [S] is a matrix of stress array. For the

present 3D element, [S] is given as 

,

where [I] is an identity matrix of size 3×3.

2.2 20-noded layered brick element

In the present analysis, three-dimensional 20-noded isoparametric layered brick element (Fig. 1) is

developed to model the laminated structure. Element tangent stiffness matrix for this element is

given as

(9)
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In above equation,  is the material property matrix relating the strains within the ply to the

stresses in ply coordinate system and [T] is the transformation matrix relating the strains in the ply

principal directions to those in the global reference axis. The material density ρ, the elasticity matrix

, transformation matrix [T] and [S] matrix in Eq. (9) depend on the material properties and the

orientations of the plies through the thickness of the element. This element formulation was

implemented in our computer program in such a way that when the material properties and ply

orientations are same through the thickness, numerical integrations of the equation using Gaussian

quadrature is carried out at element level, otherwise it is accomplished from one ply-group to

another ply-group through the element thickness. 

2.3 Calculation of impact force

In order to solve Eq. (5), the contact force between impactor and laminated shell must be known.

Although, the present formulation can simulate any type of complex contact conditions between

impactor and laminate, the modified version of Hertzian contact law proposed by Yang and Sun

(1982) is used in this study. This approach consists of determining the relationship between contact

force Fc with the indentation depth α during loading and unloading. 

For brevity, the contact force (Fc)n+1 can be written in general form of contact law as

(10)

where  is the displacement of the centre point of the impactor at (n+1)th time-step.  is the

displacement of mid-surface of the laminate at the impact point in the direction of impact.  is

calculated by applying Newmark’s method to equation of motion of impactor (Chandrashekhara and

Schroeder 1995). The following expressions for velocity and displacement of the impactor are

obtained 

(11)

In a particular iteration (i + 1) of (n + 1)th time-step, the contact force can be expressed as 
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Fig. 1 Layered version of twenty-noded isoparametric brick element
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(12)

The  is computed from the above equation using Newton-Raphson root finding algorithm.

2.4 Stress calculation

From the known displacements, the strains are calculated at reduced integration Gaussian points

2×2×2 inside finite elements, since they have most precise values at these points. These strains are
extrapolated at the vertex nodes of the element using trilinear extrapolation in the local coordinate

system. Values for midside nodes are calculated as an average between values for two vertex nodal

values. Then a global smoothing is performed for all nodes of the finite element model by

averaging of contributions from the neighboring finite elements. Since the element may contain

several plies of different orientations, the strains in each individual ply are calculated from element

strains using interpolation procedure. The strains in each ply are then transformed in material axes

system using standard formula for transformation of strains. Finally the stresses in each ply are

obtained using the stress-strain relation for the ply in material axes system. Once the combined state

of stress is known, appropriate failure criterion may be applied to predict the impact-induced

damages within each ply. This procedure is repeated for each time step.

2.5 Impact damage analysis

Impact damage in laminated composite is a very complicated phenomenon and there are still no

generally accepted analytical models that can accurately predict the damages. It is reported in

previous study (Choi and Chang 1992) that intraply matrix cracking is the initial damage mode.

Delamination initiates once the matrix crack reaches at the interfaces between the ply groups

containing different fibre orientations after propagating throughout the thickness of the ply group

that contained the cracked ply. This type of matrix crack is referred to as the “critical matrix crack”.

The authors (Choi and Chang 1992) proposed two failure criteria, critical matrix cracking criterion

and impact-induced delamination criterion. They validated these damage models with experimental

observations and also suggested some empirical constants.

 The critical matrix cracking criterion for nth ply is given as 

(13)

where x-y-z is right-handed ply coordinate system with x-axis representing the fibre direction. Yt and

Yc are the in situ ply transverse tensile and compressive strengths respectively within the laminate

and Si is the in situ interlaminar shear strength.  and  are the averaged inplane transverse

normal stress and averaged interlaminar transverse shear stress respectively within the nth ply. em is

the strength ratio pertaining to matrix cracking. The region where em is greater than or equal to

unity represents the location of the critical matrix cracking.

The semi-empirical delamination criterion for nth interface is given as (Choi and Chang 1992) 

Fc( )n 1+

i 1+
φ dn d

·
n t

1

4
---
Fc( )n Fc( )n 1+

i 1+
+

m
----------------------------------- t∆( )2– wn 1+

t
–∆+⎝ ⎠

⎛ ⎞=

Fc( )n 1+

i 1+

σ
n

y

Y
n
-------
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

τ
n

yz

S
n

i

-------
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

+ em
2

Y Yt if σy 0≥,=

Y Yc if σy 0 <,=⎩
⎨
⎧

=

σ
n

y τ
n

yz



Analysis of impact response and damage in laminated composite cylindrical shells 355

(14)

where  is an empirical constant, the value of which was suggested by Choi and Chang (1992).

The subscript n and n + 1 correspond to the upper and lower plies of the nth interface respectively.

 is the averaged interlaminar longitudinal shear stress within the (n+1)th ply. ed is the strength

ratio pertaining to delamination. The region, where ed is greater than or equal to unity at the end of

the impact, gives the estimation of the delamination size.

Although the above equations were proposed by Choi and Chang (1992) for the case of line-

loading impact on laminated plate, several further investigators assumed this equation to be equally

applicable to point-nose impact and also to curved shells. However as discussed earlier, Zhao and

Cho (2004) have shown that damage propagation in shell takes place much differently from that in

composite plate. Since the objective of this paper is mainly to demonstrate the effect of geometrical

non-linearity, we here adopt the damage criteria suggested by Choi and Chang (1992) for damage

analysis of cylindrical shells. Needless to mention here, any three-dimensional stress-based failure

criteria can be implemented in the present formulation and the code.

3. Numerical results and discussions

The above non-linear finite element formulation was implemented in a specially developed

computer code and some benchmark problems of isotropic and laminated composite problems were

solved for validation. 

Next, some example problems of T300/976 graphite/epoxy laminated cylindrical shell panels with

variation of impactor parameters and shell dimensions and curvature are considered to study the

impact behaviour of curved composite laminate. Effect of geometrical non-linearity on impact

response and resulting damage are investigated. The problem descriptions of impact on a general
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Fig. 2 Problem description of impact on a general doubly curved shell
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doubly curved shell are depicted in Fig. 2 in which  is the right-handed global (reference)

coordinate system and the impacted side is the first layer in the stacking sequence. For all the

example problems considered, the mesh size chosen is 12×12×4 elements and mesh density is kept
higher at the centre than the sides in the curvilinear plane of the laminate.

3.1 Validation

3.1.1 Large deformation of hinged-hinged and pinned-pinned beams
As an example, benchmark problem of simply-supported isotropic beam involving geometric

nonlinearity is considered. A uniform beam of length L = 100, cross-section dimensions of 1×1,
made of a material with E=30×106 is considered. The beam is simply supported at both ends and
subjected to a uniformly distributed load of intensity q per unit length. The units are consistently

chosen, so that the exact deflection at the middle of the beam in linear bending theory is 0.5208,

when q=1. In linear bending theory, where the beam is assumed to undergo pure bending (i.e.,

there is no axial deformation); it is immaterial to consider whether the beam is allowed free

movement in the axial direction at the supported ends. However, in non-bending, this is a crucial

distinction. Hinged-hinged (HH) condition is designated for the case where there is no axial restraint

at both ends and pinned-pinned (PP) condition for the one where there is full restraint. In the former

case, inextensional bending occurs which is largely of a linear nature, and in the latter case, bending

with extension exists. Both the cases are considered here. Using symmetry, half of the beam is

modeled with 4×1×1 elements and three different integration schemes i.e., standard 3×3×3 (3
gauss points in all directions), 3×3×2 (2 gauss points in thickness direction) and standard 14 points
integration were employed. 

The HH case is ideal to test the consistency aspect of the problem. As a non-linear element

formulation is being used, a correct model should be able to recover the purely linear bending

response under increasing load. This is possible only if the element can ensure that the inextensional

axial condition (i.e., there is no axial restraint at both ends, no axial force should develop) is

consistently recovered throughout. The PP case is ideal to examine the significance of the

consistency aspect of the problem where the non-linear action becomes important. Table 1 shows

the deflection under the load as q increases from 1 to 10. Results from Reddy (2004) are also

shown in which two versions of beam element has been used. The first version which will have

locking uses 2 points integration for bending energy and extensional energy while the second

version which will be lock free uses 2 points integration for bending energy and 1 point integration

for the extensional energy. It is clear that the present element model is able to capture both the

behavior correctly. 

3.1.2 Clamped 16-ply symmetric laminate subjected to uniform load

Next a 16-ply  graphite-epoxy square laminate of size b=254 mm and

thickness h=2.114 mm is considered. The plate is clamped on all edges and subject to uniform load

q. The material properties of graphite-epoxy unidirectional ply are taken as:

E11=131 GPa; E22=E33=13.03 GPa; G12=G23=G13=6.41 GPa; ν12=ν23=ν13=0.38.

Fig. 3 gives the comparison between present analysis and the results by Noor (1985) for laminate

central deflection of the mid-ply. The present result is in good agreement with the results reported

by the author.

x1 x2– x3–

±5 02
o
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Table 1 Central deflection for a simply supported beam under uniformly distributed load (UDL)

UDL per unit 
length, q

Present solution Reddy (2004)

3×3×3
integration rule

3×3×2
integration rule

14 point
integration rule

2×2 selective 
(energy-based)
integration rule

2×1 selective 
(energy-based)
integration rule

(A) Hinged-Hinged (HH) Condition

1 0.514751 0.514751 0.513443 0.5108 0.5208

2 1.02881 1.02881 1.02620 0.9739 1.0417

3 1.54128 1.54128 1.53738 1.3764 1.5625

4 2.05131 2.05131 2.04612 1.7265 2.0833

5 2.55805 2.55806 2.55161 2.0351 2.6042

6 3.06073 3.06073 3.05304 2.3116 3.1250

7 3.55859 3.55859 3.54970 2.5630 3.6458

8 4.05098 4.05098 4.04091 2.7930 4.1667

9 4.53727 4.53727 4.52606 3.0060 4.6875

10 5.01692 5.01692 5.00460 3.2051 5.2083

(B) Pinned-Pinned (PP) Condition

1 0.366698 0.366698 0.366272 0.3669 0.3687

2 0.544018 0.544018 0.543636 0.5424 0.5466

3 0.662900 0.662900 0.662555 0.6601 0.6663

4 0.754704 0.754704 0.754387 0.7510 0.7591

5 0.830619 0.830620 0.830323 0.8263 0.8361

6 0.895961 0.895961 0.895682 0.8912 0.9027

7 0.953697 0.953698 0.953432 0.9485 0.9617

8 1.00567 1.00567 1.00541 1.0002 1.0150

9 1.05309 1.05309 1.05285 1.0473 1.0638

10 1.09683 1.09683 1.09660 1.0908 1.1089

Fig. 3 Load-deflection curve for 16-ply  square laminate (size b=254 mm and thickness
h=2.114 mm) with clamped edges and subjected to uniform load
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3.1.3 Impact response of a rectangular graphite/epoxy laminated plate

As another example, a rectangular graphite/epoxy laminated plate with a ply orientation of [0/−45/

45/90]2S is investigated with plate dimensions and impactor parameters to be same as those taken in

an earlier paper by the author (Kumar et al. 2007). A linear analysis was carried out for this

problem and the results of contact force and plate centre displacement are presented in Fig. 4 along

with the literature results (Kumar et al. 2007) obtained by linear analysis using eight noded layered

brick element. A good agreement between the two results may be observed.

3.2 Impact response

T300/976 Graphite/epoxy cylindrical shells of different dimensions and curvatures with [904/08/

904] lay-up and clamped on their edges are considered. At first, [904/08/904] cylindrical shell is

taken with geometric properties: a=b=100 mm; R1=R=10a, a; and R2=  (Fig. 2). The impactor

is a steel mass of 200 gm having a half sphere head of 10 mm diameter and initial velocity 5 ms−1.

The material properties of fiberite T300/976 graphite/epoxy composite are considered as listed in

reference (Choi and Chang 1992). The results of contact force, impactor displacement and shell

centre displacement are presented in Fig. 5 for linear and non-linear analyses of shell curvatures

R=10a and R=a. The maximum contact force increases and both contact duration and amplitude of

shell response decrease with decrease in shell radius. This signifies that increasing the curvature has

a stiffening effect on the cylindrical shell which increases the natural frequencies. For the shell with

curvature R=a, a considerable reduction in peak contact force and increase in both contact period

as well as maximum shell central deflection were observed, when non-linearity was implemented in

the analysis. However, these differences were not significant in case of shell with curvature R = 10a

despite this shell having more central deflection. Instead, a small increase in peak contact force and

a marginal decrease in contact period and maximum central deflection were observed. This indicates

∞

Fig. 4 Comparison of (a) contact force and (b) plate centre displacement in a 76.2 by 76.2 mm T300/934
graphite/epoxy laminated plate ([0/−45/45/90]2S) with clamped edges impacted by 12.7 mm diameter
aluminum sphere at a velocity of 25.4 ms−1
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that non-linear approach has caused decrease in flexural rigidity of the shell having higher stiffness

due to curvature while this has resulted in increase in flexural rigidity of the shell having lower

curvature-induced stiffness. 

Next, cylindrical shell of larger dimensions a=b=300 mm and curvature R=a is considered

which is again clamped on its edges and is subjected to impact by a steel mass of 200 gm having a

half sphere head of 10 mm diameter and initial velocity 10 ms−1. The results of contact force,

impactor displacement and shell centre displacement are plotted in Fig. 6 for linear and non-linear

solutions. Again a noticeable increase in contact duration and small reduction in maximum contact

force are observed in case of non-linear approach. Maximum central deflection also increased

considerably in non-linear solution. A comparison of this result with that of Fig. 5 leads to the

conclusion that effect of geometrical non-linearity is more pronounced in the problem case of Fig. 6.

This can be attributed to the reason that maximum shell deflection in the problem of Fig. 6 is

Fig. 5 (a) Contact force, (b) impactor displacement and (c) plate centre displacement in graphite/epoxy
cylindrical shells ([904/08/904]) (a=b=100 mm; R=10a and R=a), with clamped edges and impacted
by blunt-ended steel cylinder of nose radius 5 mm and mass 200 gm having initial velocity of 5 ms−1
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significantly more than that in the problem of Fig. 5 and even higher than the shell thickness. 

3.3 Impact-induced damages

Impact-induced damages (critical matrix cracking and the extent of delamination) are studied for

the above cylindrical shells. The shell with [904/08/904] lay-up with dimensions a=b=100 mm and

curvatures R=10a and R=a is subjected to impact by a steel mass of 200 gm and nose radius

5 mm traveling at a velocity of 5 ms−1. The value of strength ratio, em (critical matrix cracking

failure criterion) at any point in the bottom [904] ply group of the shell is found to be maximum at

time approximately 720 µs for R/a=10 (linear analysis), 712 µs for R/a=10 (non-linear analysis),

440 µs for R/a=1 (linear analysis) and at 520 µs for R/a=1 (non-linear analysis), as plotted in

isometric view in Fig. 7. The matrix cracking failure contour is extended much wider along the

Fig. 6 (a) Contact force, (b) impactor displacement and (c) centre displacement in graphite/epoxy cylindrical
shell ([904/08/904] lay-up) (a=b=300 mm; R=a), with clamped edges and impacted by blunt-ended
steel cylinder of nose radius 5 mm and mass 200 gm having initial velocity of 10 ms−1
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fibre direction of the cracked [904] ply group than in the direction normal to the fibre direction.

The maximum values of strength ratio, ed (impact-induced delamination criterion) in the bottom 0/

90 plies interface during the impact are plotted in Fig. 8 for the four cases. It is seen that

delamination propagates much wider in the fibre direction of the [904] ply group below the

delaminated interface than in the direction normal to it. 

From Figs. 7 and 8, it is observed that there is a considerable increase in the sizes of both the

damages in case of non-linear solutions for the shell with higher curvature (R=a) despite the fact

that maximum contact force was less in non-linear case. This increase in damage size can be mainly

attributed to larger shell deflection and hence larger bending stress attributing to matrix cracking

and delamination. In case of shell with lower curvature (R=10a) also, there is a considerable

difference in the damage profiles obtained by linear and non-linear solutions. 

Impact-induced damages are also predicted for the example problem of Fig. 6. The value of

strength ratio, em at any point in the shell with [904/08/904] lay-up is found to be maximum in the

bottom [904] ply group at time approximately 660 µs in case of linear solution and 1164 µs in case

of non-linear solution, as plotted in Fig. 9. The maximum value of strength ratio, ed and predicted

delamination size in the bottom 0/90 plies interface of [904/08/904] lay-up are plotted in Fig. 10 for

Fig. 7. Maximum strength ratio, em in bottom [904] ply of [904/08/904] cylindrical shells (dimensions: a=b=
100 mm) having different curvatures (i) R/a=10 (linear analysis), (ii) R/a=10 (non-linear analysis),
(iii) R/a=1 (linear analysis) and (iv) R/a=1 (non-linear analysis), all with clamped edges and impacted
by 200 gm mass at a velocity of 5 ms−1 (em values: A=0.2, B=0.5, C=1.0)
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Fig. 8 Maximum strength ratio, ed and predicted delamination sizes at 0/90 interface of [904/08/904] cylindrical
shells (dimensions: a=b=100 mm) having different curvatures (i) R/a=10 (linear analysis), (ii) R/a=
10 (non-linear analysis), (iii) R/a=1 (linear analysis) and (iv) R/a=1 (non-linear analysis), all with
clamped edges and impacted by 200 gm mass at a velocity of 5 ms−1 (ed values: A=0.2, B=0.5, C=
1.0)

Fig. 9 Maximum strength ratio, em in bottom [904] ply of [904/08/904] lay-up cylindrical shell (dimensions: a=
b=300 mm; R=a) with clamped edges and impacted by 200 gm mass at a velocity of 10 ms−1: (i)
linear analysis and (ii) non-linear analysis (em values: A=0.2, B=0.5, C=1.0)
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the two cases. Again there is a considerable increase in size and change in profile of damages in

non-linear case when compared with those in linear case. 

4. Conclusions

Three-dimensional non-linear finite element and transient dynamic analysis of laminated

composite cylindrical shell panel subjected to transverse impact is performed using 20 noded

layered hexahedral element and implemented by a specially developed computer code. The tangent

stiffness matrix accounting for the geometric non-linearity is formulated using generalized Green’s

strain tensor. The non-linear system of equations was solved iteratively using Newton-Raphson

method by considering suitable displacement and force convergence norms. Several numerical

problems of graphite/epoxy laminated cylindrical shells are studied with variation of parameters

such as impactor mass and velocity, shell dimension and shell curvature. The major focus has been

given to investigate non-linear geometrical effects on impact response and resulting damages. Some

specific observations can be deduced from the study:

(1) When geometrical non-linearity was considered, considerable changes in time-variations of

contact force, impactor displacement and shell deflection were observed. However, the effect

of non-linearity was observed to be significantly different for different curvatures, indicating

that there exists coupling between flexibility brought by geometrical non-linearity and

curvature-induced stiffness.

(2) The effect of geometrical non-linearity on impact response was found to be more pronounced

for the cases when the shell deflection is higher than the shell thickness. 

(3) Considerable changes in the sizes and profiles of both the impact damages (critical matrix

cracking and delamination) are noticed when a non-linear approach is used in the solution.

Since the damages were calculated at the bottommost ply of the laminate, the difference in

damage profiles predicted by linear and non-linear solutions was quite consistent with the

difference in shell deflections and not the contact forces.

Fig. 10 Maximum strength ratio, ed and predicted delamination sizes at 0/90 interface of [904/08/904] lay-up
cylindrical shell (dimensions: a=b=300 mm; R=a) with clamped edges and impacted by 200 gm
mass at a velocity of 10 ms−1: (i) linear analysis and (ii) non-linear analysis (ed values: A=0.2, B=
0.5, C=1.0)
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