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Abstract. The structural behaviors of circular concrete filled steel tube (CFT) structures are investigated
by nonlinear finite element method. An efficient three-dimensional (3D) degenerated beam element is
adopted. Based on those previous studies, a modified stress-strain relationship for confined concrete which
introduces the influence of eccentricity on confining stress is presented. Updated Lagrange formulation is
used to consider the geometrical nonlinearity induced by large deformation effect. The nonlinear behaviors
of CFT structures are investigated, and the accuracy of the proposed constitutive model for confined
concrete is mainly concerned. The results demonstrate that the confining effect in CFT elements subjected
to combining action of axial force and bending moment is far sophisticated than that in axial loaded
columns, and an appropriate evaluation about this effect may be important for nonlinear numerical
simulation of CFT structures. 

Keywords: concrete-filled steel tube; nonlinear finite element analysis; degenerated beam element;
updated lagrange formulation.

1. Introduction

Concrete-filled steel tube, which combines the advantages of steel and concrete, has attracted

more and more attentions in civil engineering during the past four decades. First, the steel tube

serves as a form for casting of core concrete, which results in reduction of cost and improvement of

construction efficiency. Moreover, compared with hollow steel tube, concrete filling may prevent

bulking of steel tube, and the stability of compressive element can be improved enormously. Among

all these advantages, the most attractive merit of CFT is that the element exhibits excellent

compressive resistance capacity, ductility, and energy dissipation ability due to the confining

pressure provided by steel tube. Owing to those distinctive merits, CFT has been demonstrated as a

suitable structural element for building columns, bridge piers, and arch ribs through worldwide

engineering practices. 

A great amount of significant research works have been continuously contributed to this subject.

In those previous researches, experimental studies have played a key role in establishment of the

general theory of CFT. Compared with experimental method, numerical approach is more

economical and effective, which may be capable to simulate many experimentally unmanageable
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cases. Moreover, through combing experimental and numerical approach, a more clear inspection

about mechanical nature can be expected. Strip method is the most commonly adopted numerical

method to analysis the resistance and ductility of CFT members (Fujimoto et al. 2004, Han 2004).

One-dimensional stress-strain relationship is generally used in the strip method, and the confining

effect is considered through modifying the peak stress and strain of constitutive curve of common

concrete. Another choice of numerical method is nonlinear finite element analysis. In recent

published literatures, nonlinear finite element analysis of CFT structures with three-dimensional

solid element has been widely carried with commercial FEM package (Huang et al. 2002, Hu et al.

2003, Hu et al. 2005, Gupta et al. 2007). With three-dimensional solid element, the nonlinear FEM

analysis can simulate such complex structural behaviors as bond-slip between steel and concrete,

confining effect under sophisticated stress states, buckling of steel tube and so on, which can obtain

a comprehensive insight about the basic mechanical nature of CFT structures. However, this

approach is generally time-consuming especially for large complex structures. Moreover, with

increment of scale of FEM model, strong nonlinearity caused by cracking and crushing of concrete,

plasticity flow of steel, and so on, may bring some dilemmas for iteration convergence. To meet the

requirement of nonlinear analysis for practical large CFT structures, three-dimensional beam-column

finite element approach may be a comprised and effective way. In this approach, the elastic-

plasticity behaviors of concrete and steel, which are the major nonlinearity factors of CFT

structures, are emphasized. Such nonlinear resources as bond-slip between concrete and steel,

buckling of tube, and so on are not considered. Some successful applications of this method can be

found in the studies of Marques (2005) and Mirza et al. (1996). 

In the present study, with three-dimensional degenerated beam element the nonlinear behaviors of

CFT structures are investigated. The theory behind the degeneration technique is not new, and has

been widely used in the formulation of shell and plate element (Ahmad et al. 1970, Worsak 1978,

Parisch 1981). To formulate degenerated beam element, the hypothesis of plane section is adopted,

and based on this hypothesis the three-dimensional displacement field can be described by nodal

variables. Meanwhile, the strain-displacement equations of three-dimensional structure are retained.

A nonlinear analysis program for concrete structures with degenerated beam element developed by

Xiang et al. (2005) is adopted in the present study. 

One-dimensional stress-strain relationship of concrete and steel is adopted in formulation of

degenerated beam element. As aforementioned, to involve the confining effect, some modifications

about stress-strain relationship of common concrete should be introduced. The current available

works about stress-strain relationship of confined concrete are mainly based on the experimental

results of axial compressive elements. However, for the structures under axial force and bending

moment in combination, it should be noted that the confining effect may be more complicated.

Through experimental investigation, Chen et al. (2002) found that for eccentrically loaded CFT

column, with increment of load eccentricity, the confining stress applied on core concrete decreases

gradually. Based on the experimental results, Chen et al. (2004) proposed a modified stress-strain

relation for confined concrete which involves the influence of load eccentricity on confining

pressure. Meanwhile, Hu et al. (2005) obtained a similar conclusion by three-dimensional nonlinear

finite element analysis, and an empirical equation for confining pressure is presented. 

For high-rise and long-span structures, geometrical nonlinearity should never be neglected. The

secondary moment caused by large deformation may weak the confining effect of CFT structures.

In the present study, the updated Lagrange formulation is employed to investigate the influence of

geometrical nonlinearity on the structural behaviors of CFT members. 
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2. Formulation of degenerated beam element

2.1 Geometry and displacement field

The position of any point in the element illustrated in Fig. 1 can be given as

 (1)

in which  is the coordinates of any point in the element,  is the coordinates of node i (i = 1~2).

 and  form the local orthogonal coordinate system shown in Fig. 1. y' and z' are the local

coordinates in  and  directions, respectively. The interpolation function  is written as

 (2)

where ri is the isoparametric coordinate of node i. 

The local orthogonal coordinate system shown in Fig. 1 can be constructed with the following

way

(3)

in which  is expressed as

(4)

where L is the length of element. Then, with the given  can be finally determined through

Eq. (3). 

The displacement field can be expressed in the form

(5)

where  is the displacement vector at any point in the element,  is the nodal displacement

vector at node i, and  is relative nodal displacement produced by normal rotations. With

the hypothesis of plane section,  can be expressed as
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Fig. 1 The beam element
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(6)

where  and  are the normal rotations about local axes of  and . Considering

displacement transformation relation, Eq. (6) can be written in terms of the normal rotations about

global axes as

(7)

in which  and  represent the direction cosine of  and  in global

coordinate system. Then, Eq. (5) can be rewritten as

(8)

where

(9)

and  is the normal rotation vector about global axes. 

2.2 Geometrical nonlinearity and updated Lagrange formulation

Geometrical nonlinearity may occur in high-rise and long-span structures. Generally, the large

displacement can be assumed to be a function of time, and the solutions of static and kinematic

variables are given in a series of discrete time points, 0, ∆t, 2∆t…, t. To obtain the solutions for

t + ∆t, two different formulations, i.e., total Lagrange formulation and updated Lagrange

formulation, can be employed. In total Lagrange formulation (T. L.), all static and kinematic

variables are referred to the initial configuration. For updated Lagrange formulation (U. L), the

procedure is similar with T. L., but all static and kinematic variables are referred to the last

configuration (Parisch 1981). In the present paper, the U. L. formulation will be adopted. 

For large displacement motion, the virtual work equation can be written as

(10)

where Sij and Eij are the Kirchoff stress tensor and Green strain tensor, p0i and q0i mean body force

and surface trace, ui is the displacement tensor, and δ stands for variation. 

Since U. L. formulation is referred to the last configuration, the Green strain should be given in

an incremental form, which is defined as
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(11)

in which  and  represent the linear and nonlinear strain, respectively. Substituting Eq. (8)

into Eq. (11), the matrix form of linear and nonlinear strain-displacement relation can be derived

(12)

(13)

where  and  are the linear and nonlinear strain matrix, respectively. Using the virtual work

equation given in Eq. (10), the geometrical stiffness matrix can be finally obtained, and the details

about derivation procedure can be referred to the work of Bathe and Bolourchi (1980).

3. Constitutive model of material

To deal with material nonlinearity, the cross-section of degenerated beam element will be

subdivided into a series of pieces, and the axial stress of every piece will be computed with one-

dimensional constitutive model (Xiang et al. 2005). In this section, the uniaxial constitutive model

of confined concrete and steel will be discussed. 

3.1 Concrete

The experiment studies have revealed that confining effect of steel tube can increase compressive

strength and ductility of concrete. Generally, to describe a complete curve of one-dimensional

stress-strain relation of concrete confined by steel tube, several characteristic points should be

identified. For the ascending branch, the compressive strength of confined concrete fcc, the

corresponding strain εcc, and the initial elastic modulus of concrete E0 must be determined. 

The compressive strength of confined concrete can be written in a simple and natural way as

(14)

in which fc is the compressive strength of unconfined concrete, frp is the average radial pressure

acted on the core concrete, and m is an empirical constant which ranges from 4.0 to 6.0 (Hu et al.

2003) (In the present study, the value of m is assumed to be 4.2). It has been found that the average

radial pressure frp apparently depends on the width-to-thickness ratio (D/t) (Hu et al. 2003). With

experimental results (Hu et al. 2003, Schneider 1998, Susantha et al. 2001), an empirical formula of

frp is presented through trial and error

 (15)

The compressive strength of confined concrete given in Eq. (14) is established based on

experimental studies of concentrically loaded columns. However, for eccentrically loaded CFT

elements, the confining effect may be more sophisticated. Through experimental studies, Chen et al.
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(2002) found that the confining stress of steel tube acted on core concrete decreases gradually with

increment of load eccentricity. With experimental investigation and three-dimensional nonlinear

finite element analysis, a similar phenomenon is also observed by Hu et al. (2005). In the present

study, to take the effect of eccentricity on confining stress into account, a modified form of Eq. (14)

is presented

(16)

where α is a reduction parameter for radial pressure frp, which is defined as

(17)

where e represents the load eccentricity, and can be expressed as M/N (M and N represent the

moment and axial force acted on the given section, respectively). 

εcc, the strain corresponding to maximum stress fcc, is defined in the present study as

(18)

in which ε0 is the strain corresponding to maximum compressive stress fc of unconfined concrete. 

The confining effect does not exist in the initial elastic stage of loading due to the fact that

Poisson ratio of concrete is lower than that of steel in this period. Therefore, it is assumed that the

initial elastic modulus of confined concrete is equal to that of unconfined common concrete. 

With the three parameters fcc, εcc, and Ec, the stress-strain relation of confined concrete in the

ascending branch can be described by Saenz equation (Saenz 1964)

(19)

where Ecs is secant modulus of concrete at peak stress point, which is given as fcc/εcc. 

For descending branch, with the experimental results (Gupt 2007, Hu 2003, Schneider 1998,

Susantha 2001), an exponential degrading function illustrated in Fig. 2 is proposed
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Fig. 2 Compressive stress-strain relation of steel tube confined concrete
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(20)

in which fcu is the ultimate residual compressive stress shown in Fig. 2, and k is a parameter to

describe the descending rate which is assumed to be 0.3 in the present study. fcu is determined

through the following equation

(21)

where β is an empirical parameter, which is assumed to be 0.6 in this paper. 

The elastic-brittle model is adopted for tension of confined concrete, and the tensile strength is

employed that of common concrete. 

3.2 Steel

Under compressive load, axial compressive stress will be generated in steel tube. Meanwhile,

owing to volume expansion of core concrete, the steel tube is also subjected to hoop tension stress.

The biaxial stress state will occur in steel tube. With Von Mises criterion, the yield envelope of steel

tube under biaxial stresses can be written as

(22)

in which σv is the axial stress of steel tube. With the assumption that hoop stress σh is assumed to

be 0.1 fy (Elremaily and Azizinamini 2002), the vertical yield stress of steel tube can be solved from

Eq. (22)

, (23)

where  and  represent the axial compressive and tensile yield stress of steel tube, respectively. 

One-dimensional perfect elasto-plastic constitutive model is adopted for steel tube. To improve the

stability of numerical calculation, the modulus of steel after yield is assumed to be 1% of initial

elastic modulus. 

4. Example studies

4.1 Concentrically loaded short column

Since the concentric compressive test can reveal the basic mechanical performance of CFT, the

major studies about CFT structures are focused on short column under concentric compressive load.

Several groups of test about CFT short columns subjected to concentric compressive load are

chosen as numerical examples. The details of those specimens are summarized in Table 1. The
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Table 1 Properties of test specimens

Specimen D (mm) t (mm) L (mm) D/t L/D fy (MPa) Es (Gpa) fc (MPa) Ec (Gpa) Reference

C2 141.4 6.50 608.0 21.8 4.3 313.0 206.01 23.81 23.53
Schneider

(1998)

4HN 150.0 4.00 — 37.5 — 279.9 210.00 28.70 24.90

Susantha
 et al.
(2001)

3MN 150.0 3.20 — 46.9 — 287.7 190.00 22.00 21.80

4MN 150.0 4.00 — 37.5 — 279.9 210.00 22.00 21.80

2LN 150.0 2.00 — 75.0 — 336.5 212.00 18.10 19.70

3LN 150.0 3.20 — 46.9 — 287.7 190.00 18.10 19.70

4LN 150.0 4.00 — 37.5 — 279.9 210.00 18.10 19.70

CU022 140.0 6.50 602.0   21.53 4.30 313.0 — 23.80 —

Hu et al. 
(2003)

CU040 200.0 5.00 840.0 40.0 4.20 265.8 — 27.15 —

CU047 140.0 3.00 602.0 47.0 4.30 285.0 — 28.18 —

CU070 280.0 4.00 840.0 70.0 3.00 272.6 — 31.15 —

CU100 300.0 3.00 900.0 100.0 3.00 232.0 — 27.23 —

CU150 300.0 2.00 840.0 150.0 2.80 341.7 — 27.23 —

Note: fc = compressive strength of concrete, fy = tensile strength of steel tube

Fig. 3 Axial load versus axial strain for CFT short columns
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Fig. 3 Continued
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experimental and numerical curves for axial load versus axial strain are plotted in Fig. 3, and good

agreement can be observed. Generally, it has been widely accepted that the behaviors of CFT

columns are mainly influenced by width-to-thickness ratio (D/t) of steel tube. From Fig. 3, it can be

viewed that for the columns with D/t less than 40.0 (C2, 4HN, 4MN, 4LN and CU022), owing to

strong radial pressure applied on the core concrete, obvious stain-hardening behavior can be

observed both from experimental and numerical results. When D/t is not less than 70.0 (2LN,

CU070, CU100 and CU150), significant strain-softening behavior is exhibited for CU070, CU100

and CU150. However, this softening behavior is not so obvious for 2LN. From Table 1, it can be

found that although D/t of 2LN (75.0) and CU070 (70.0) is quite close, the value of fy /fc of 2LN

(18.59) is far grater than that of CU070 (8.75), which may result in a more sustained radial

constraint on core concrete after peak load for specimen 2LN. This phenomenon implies that the

post-peak behavior of CFT is dependant not only on geometrical parameter (D/t) but also on

material parameter ( fy /fc). For the specimens with D/t between 40.0 and 70.0 (3MN, 3LN, CU040

and CU047), although some discrepancies exist between numerical and experimental results, the

behavior of CFT columns can be approximately classified as elastic-perfectly plasticity. 

4.2 Eccentrically loaded short column

For eccentrically loaded CFT columns, it has been aforementioned that with increment of

eccentricity, the volume expansion of core concrete may decrease gradually, which will weak the

confining pressure acted on core concrete. In the present study, a reduction parameter α is

introduced in Eqs. (16) and (17) to consider the influence of eccentricity on confining stress. It can

be found from Eq. (17) that when eccentricity e is equal to 0, which implies that the load is

concentrically applied, α is taken as 1.0. For the column subjected to eccentrical load, α will

decrease gradually with e. When e is greater than D/2, α is assumed to be zero, which means no

confining pressure is applied on core concrete, and the behavior of core concrete is similar to that of

normal unconfined concrete. With the modified confining pressure model, three tests about

eccentrically loaded CFT column (Tang et al. 1982, Cai 2003, Matsui et al. 1995), which denote as

specimen A1, A2, and A3, respectively, are investigated, and M-N interaction envelopes are plotted

in Fig. 4. To give a more clear inspection about this topic, the numerical results for α = 0.0 and 1.0

Fig. 3 Continued
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are also given. From Fig. 4, it can be viewed that the results of proposed model agree with

experimental results well. Moreover, it can be found that the numerical results for α = 1.0 and 0.0

can be viewed as the upper and lower boundaries for experimental results. When the column is

concentrically loaded or e is comparably small, the experimental results are located near the curve

of α = 1.0 (completely confined concrete). With increment of e (M/N), the test points approach the

curve of α = 0.0 (unconfined concrete) gradually. 

To give a further mechanical explanation about the phenomenon illustrated in Fig. 4, for specimen

A1, Fig. 5 presents the sectional stress distribution of core concrete under failure when e/D = 0.07,

0.23, and 0.57. From Fig. 5, it can be found that for e/D = 0.07 (small eccentrically loaded column),

the core concrete is under whole-section compression. Therefore, it can be deduced that the

Fig. 4 M-N interaction curve for eccentrically loaded CFT
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confining pressure applied on core concrete may be similar with that of axial loaded CFT column.

On the contrary, when e/D = 0.57 (large eccentrically loaded column), a large portion of core

concrete has been tensile cracked, and trivial confining pressure can be predicted. The case of

e/D = 0.23 can be viewed as an intermediate state between small and large eccentrically loaded

column, and a reduction of confining pressure may be an appropriate way to reflect the actual

behavior. 

4.3 Slender column

For slender columns, especially when eccentrical or transverse load is applied, geometrical

nonlinearity will occur due to large deformation. The experimental tests for eccentrically loaded

CFT slender columns executed by Zeghiche et al. (2005) are studied. The results of relation

between load and mid-height transverse deflection are shown in Fig. 6. To investigate the influence

of geometrical nonlinearity (GN), the results that only material nonlinearity is involved are also

given. It can be observed from Fig. 6 that the behaviors of columns before peak can be well

predicted by the proposed model with geometrical nonlinearity. It seems that the deviation from the

experiment curve after peak may be account for the difficulty of load controlling in experiment

Fig. 5 Stress distribution of core concrete
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during softening period. Moreover, it can also be found that if the geometrical nonlinearity is not

involved, the resistance capacity will be obviously overestimated. 

The sectional stress distribution of specimen C19 under failure is plotted in Fig. 7. It should be

worth to notice that geometrical nonlinearity has significant influence on the failure mode of

eccentrically loaded CFT column. If no geometrical nonlinearity occurs (i.e., short column), the

whole section is under compression, and the failure can be attributed to crushing of core concrete.

However, for slender column, owing to large transverse deflection, a secondary moment will be

introduced, and crack of concrete can be obviously observed. 

A group of CFT columns with slenderness ratio (λ = 4L/D) varied from 32 to 96 is

comprehensively tested by Matsui et al. (1995). The experimental and numerical results of M-N

interaction envelopes are illustrated in Fig. 8, and excellent agreement can be observed. In Fig. 8,

due to perturbation and truncation error in numerical computation, which should amplify the

geometrical nonlinear effect, meaningful numerical solution for concentric compressive test is

Fig. 6 Axial load versus mid-height deflection of eccentrically loaded slender column
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Fig. 7 Sectional stress distribution of C19 under failure

Fig. 8 M-N interaction curve for eccentrically loaded CFT (D × t = 165.2 × 4.08 mm)

Fig. 9 The relation between axial resistance capacity and slenderness ratio
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difficult to obtained, therefore, no corresponding numerical results are presented. However, it can be

observed that with decrease of eccentricity, the curve of numerical simulation approach test points

gradually. Moreover, it is quite interesting to find that, for column with λ = 96, the shape of M-N

interaction curve is distinctively different from that of other columns, which may imply that with

increment of slenderness ratio λ, the secondary moment caused by geometrical nonlinearity can

significantly accelerate the collapse of slender columns. In Fig. 9, the relations between axial

resistance capacity and slender ratio subjected to different eccentricity are presented. From the

results, it can be found with increment of slenderness, the axial resistance capacity of small

eccentrically loaded columns (e.g., e/D = 0.2, 0.4 and 0.6) should be decrease enormously due to

geometrical nonlinearity. However, for large eccentrically loaded cases (e.g., e/D = 0.8 and 1.0), an

almost flat curve is observed, and this phenomenon may imply that bending moment will control

the failure of column for large eccentrically loaded columns, and the secondary effect caused by

large deformation is undermined. 

4.4 Arch

During the past two decades, CFT has been widely used as arch rib in bridge engineering. For

example, Wushan Yangzhi Bridge in China has a CFT rib with span of 440 m. Generally, the arch

rib is subjected to combining action of axial force and moment. Unlike CFT columns, the

compressive eccentricity of arch is implicit and is not a constant value along arch axis. In the

present study, a linear FEM analysis will be carried in prior, and the eccentricity of every element is

obtained through linear analysis result of M/N. 

An experiment of CFT arch carried by Chen et al. (2002) is studied. The geometrical

configuration and material properties are shown in Fig. 10. The curve of inner edge of arch is given

as

(24)

in which the coordinates X and Y are defined through the way illustrated in Fig. 10. 

Two load cases, i.e., Case 1 and Case 2, are carried in the experiment. In Case 1, a vertical

concentrated load is applied at crown (Point A). In Case 2, the concentrated load is applied at 1/4

span (Point B). The results of vertical displacement of arch are given in Fig. 11, and agreement

Y X
2
/3.45=

Fig. 10 Geometrical configuration and material properties of CFT arch
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Fig. 11 Vertical displacement of CFT arch
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between experiment and numerical results can be observed. 

Fig. 12 gives the stress distribution of core concrete of 1/4 span section and crown section under

failure, and an obvious crack of core concrete can be viewed. Therefore, in can be deduced that for

the experimental load cases the confining effect of steel tube on core concrete may be comparably

weak. As comparison, the results of failure stress distribution of core concrete under whole-span

uniform distributing load case, which is not carried in experiment, are also presented in Fig. 13. It

can be found that for 1/4 span section, the whole section of core concrete is under compressive, and

for half span section, only a small portion of core concrete cracked. It can be concluded that under

whole-span uniform distributing load case, comparably strong confining pressure can be predicted in

CFT arch rib. 

Fig. 12 Stress distribution of core concrete under Case 1 and 2
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5. Conclusions 

The mechanical behaviors of CFT structure are investigated by nonlinear FEM analysis. The

degenerated beam element is adopted in numerical simulation. Based on those previous

experimental studies, some modifications about stress-strain relationship of core concrete, which

include a reducing parameter on confining stress caused by eccentricity and a numerical model for

descending branch, are proposed. Updated Lagrange formulation is used to describe the large

deformation effect. From the study results, the following conclusions can be drawn. 

(1) In the present study, some modifications about constitutive model of confined concrete are

proposed, and numerical consistence and extension of the proposed model are emphasized. The

structural behaviors of concentrically loaded CFT columns with D/t varied from 21.8 to 150 are

investigated, and the resistance capacity and ductility are well predicted. 

(2) For eccentrically loaded CFT columns, the confining stress should be reduced gradually with

eccentricity, and this effect can be described effectively by a reduction parameter, which is

illustrated in Eqs. (16) and (17). 

(3) For CFT slender columns, the secondary moment caused by large deformation may weak the

confining effect, and the failure mode may be quite different with that of CFT short columns. 

(4) For CFT arch, considering that the eccentricity is implicit and is not a constant value along

arch axis, it can be found that the confining effect in arch structure is more complicated and

variable than that in columns. To obtain a whole comprehension and inspection about mechanical

behaviors of CFT arch, further intensive researches with nonlinear FEM is strongly recommended.
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