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1. Introduction

The static equilibrium equations of a cantilever rectangular blade subject to either a concentrated

or uniformly distributed transverse load were established by Carnegie (1957) based on Euler-

Bernoulli beam theory. The exact solution for static bending of a cantilever blade under a

distributed transverse force including the shear deformation was obtained by Subrahmanyam et al.

(1980). However, the solution is not accurate as a result of improper boundary conditions used. A

general review of the structural and dynamic aspects of pretwisted beams can be found in review

paper by Rosen (1991). The exact analytical solution of in-plane static problems for a curved beam

with variable curvature and cross-section was established by Tufekci and Arpaci (2006) by using

the initial value method. The differential equations governing the structural behavior for a curved-

beam with varying cross-section and under generalized load were derived by Gimena et al. (2009).

In this paper the equilibrium equations of static bending of a twisted Timoshenko beam subjected

to simultaneous concentrated and distributed bending loads are established. The closed-form

solutions for the uniform cantilever blade under either a concentrated or uniformly distributed

transverse force or moment are derived. The effects of the twist angle, thickness ratio, length-to-

thickness ratio and loading conditions on the static bending behaviors of the cantilever blades are

investigated. 

2. Formulation

Fig. 1 shows the twisted beam configuration, the inertial coordinate xyz and the twist coordinate

XYz. By applying the principle of minimum potential energy (Reddy 1986) to the total potential

energy of the beam system, the static equilibrium equations of a twisted Timoshenko beam

subjected to distributed transverse forces (fx, fy) and bending couples (qx, qy), concentrated bending

forces (Fx, Fy) and bending moments (Qx, Qy) are obtained as
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 (1a)

 (1b)

 (1c)

 (1d)

and the boundary conditions at z = 0, L are

either    or ux is prescribed  (2a)

either    or uy is prescribed  (2b)

either    or ϕx is prescribed  (2c)

either or ϕy is prescribed  (2d)

By performing mathematical operations on Eqs. (1) and (2) (Carnegie 1957, Subrahmanyam et al.

1980), the closed-form solutions of deflection ux and uy for cantilevered twisted beams subjected to

a concentrated load Fy at the free end along the negative y-axis can be shown to be

 (3a)

  (3b)

where R = ,  = z/L and βL = total twist angle. 

Similarly, for cantilevered twisted beams subjected to a uniformly distributed lateral load fy along

the negative y-axis, the expressions of deflections ux and uy are given as

 (4a)
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Fig. 1 Beam configuration and coordinate systems
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 (4b)

For the case of cantilevered twisted beams under a single moment Qx at the free end along the

positive x-axis, the expressions for displacements ux and uy are 

  (5a)

  (5b)

For the example of cantilevered twisted beams under a uniformly distributed couple qx along the

positive x-axis, the expressions for deflections ux and uy are 

 (6a)

   (6b)

3. Numerical results and remarks

Figs. 2(a) and 2(b) present the effects of thickness ratio and length-to-thickness ratio on bending

deflections of cantilever rectangular blades subject to the concentrated force at the free end,
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Fig. 2 Relative tip displacements (δ) versus (a) thickness ratio and (b) length-to-thickness ratio for cantilever
rectangular blades under tip transverse forces 

Fig. 3 Relative tip displacements (δ) versus (a) thickness ratio and (b) length-to-thickness ratio for cantilever
rectangular blades under tip bending moments
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respectively. Similar results can also be obtained for blades under a uniformly distributed load. Figs.

3(a) and 3(b) illustrate the influence of thickness ratio and length-to-thickness ratio on deflections of

rectangular blades under a single moment at the free end, respectively. Likewise, the displacements

for blades under a uniformly distributed couple have the same tendency. For each example, the

blade is subjected to the loading applied in the flexible-plane (thickness) or stiff-plane (width)

direction. The maximum tip deflections are nondimensionalized by division by that of the

corresponding straight blade obtained by the Euler-Bernoulli beam theory.

Based on the results, several remarks can be summarized as follows. The relative maximum

deflection decreases for the blade loaded in flexible-plane direction and increases for the blade

loaded in stiff-plane direction with the increasing twist angle for thickness ratio other than one. The

relative maximum deflection always increases when the thickness ratio is increased regardless of the

twist angle and applied loading. The shear deformation or length-to-thickness ratio will merely

affect the bending behaviors of the blades subject to transverse forces. When the length-to-thickness

ratio is increased, the relative maximum deflection is decreased for the blades under transverse

forces, and remains unchanged for the blades subject to bending moments. 
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