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Abstract. A semi-analytical method is presented for accurately prediction of the free vibration behavior
of generally laminated composite plates with arbitrary boundary conditions. The method employs the
technique of separation of spatial variables within Hamilton’s principle to obtain the equations of motion,
including two systems of coupled ordinary homogeneous differential equations. Subsequently, by applying
the laminate constitutive relations into the resulting equations two sets of coupled ordinary differential
equations with constant coefficients, in terms of displacements, are achieved. The obtained differential
equations are solved for the natural frequencies and corresponding mode shapes, with the use of the exact
state-space approach. The formulation is exploited in the framework of the first-order shear deformation
theory to incorporate the effects of transverse shear deformation and rotary inertia. The efficiency and
accuracy of the present method are demonstrated by obtaining solutions to a wide range of problems and
comparing them with finite element analysis and previously published results.

Keywords: extended Kantorovich method; laminated composite plates; free vibration; arbitrary boundary
conditions; shear deformation; rotary inertia.

1. Introduction

Nowadays, the use of laminated composite plates in structural components has been more and

more extended and this issue, undoubtedly, may be owed to widely engineering analyses performed

on this kind of structures. It doesn’t need to be noted that the free vibration analysis generally is of

most important steps in structures design process. On these facts, one can find a great number of

published articles in which the free vibration of laminated composite plates has been studied.

Nevertheless, nearly all of these works are confined to the special laminate stacking sequences

(symmetric or antisymmetric angle-ply and cross-ply laminations) with special boundary conditions

and don’t have actually the ability to analyze laminated plates with arbitrary laminations and

boundary conditions.

Many of theories developed in this field have been dedicated to the analysis of simply supported

plates with symmetric or antisymmetric angle-ply and cross-ply lay-ups. For example, the reader is
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referred to the works of Srinivas et al. (1970), Srinivas and Rao (1970), Noor (1973), Jones (1973),

Bert and Chen (1978), Putcha and Reddy (1986), Whitney (1987), Leissa and Narita (1989), Noor

and Burton (1990), Marco and Ugo (1995), Salimt et al. (1998), Fares and Zenkour (1999),

Matsunaga (2000), Kant and Swaminathan (2001a,b), Aydogdu and Timarci (2001), Guo et al.

(2002), Swaminathan and Patil (2008), etkovi  and Vuksanovi  (2009), and Zhen et al. (2009). 

Following laminated plates with simply supported boundary conditions, most of the research

works have been devoted to study the free vibration behavior of antisymmetric angle-ply and cross-

ply rectangular laminates subjected to simply supported boundary conditions at their opposite two

edges and different boundary conditions at the remaining ones (they are usually known as Levy’s

analytical solution). Khdeir (1988a,b, 1989) developed an exact methodology to analyze the free

vibration of symmetric and unsymmetric cross-ply and antisymmetric angle-ply laminated plates,

respectively. The procedure was based on a generalized Levy-type solution considered in

conjunction with a higher order laminate theory and the state-space concept. Similarly, Khdeir and

Librescu (1988) analyzed the free vibration and buckling problems of rectangular cross-ply

laminated plates. Reddy and Khdeir (1989) and Bose and Reddy (1998a,b) presented analytical and

finite element solutions of the classical, first-order and third-order laminate theories for the free

vibration study of cross-ply rectangular composite laminates under Levy’s admissible boundary

conditions. Hadian and Nayfeh (1993) applied a modified state-space technique to overcome the ill-

conditioning problem occurring in the cases of thick composite plates for the same type of problem.

Using the first-order shear deformation theory (FSDT) and Levy’s solution, Chen and Liu (1990)

studied the free vibration and static behavior of laminated composite plates. Also, within the FSDT,

Palardy and Palazotto (1990) obtained the buckling loads and fundamental frequencies of cross-ply

laminated plates. Khdeir and Reddy (1997) used the second-order theory of laminated composite

plates and a generalized Levy-type solution in conjunction with the state-space concept to analyze

the free vibration behavior of cross-ply and antisymmetric angle-ply laminated plates. 

A number of investigators have been conducted the vibration analysis of some other laminations

and boundary conditions. Taking the idea of Green (1944) (calculation derivatives of a function

represented by a Fourier series that violates the boundary conditions) for isotropic plates, Whitney

(1971) obtained the natural frequencies of flexural vibrations of a thin symmetrically laminated

rectangular plate with clamped edges. Chaudhuri and Kabir (1993) and Kabir and Chaudhuri (1994)

extended the method of Whitney (1971) for free vibration of clamped general cross-ply and

arbitrarily laminated plates, respectively. They applied the boundary-continuous generalized Navier

solution technique to solve five highly coupled linear second-order partial differential equations with

constant coefficients, and the associated geometric boundary conditions arising from the FSDT.

Kabir et al. (2001) and Kabir (1999) presented a similar work on thin and moderately thick simply

supported plates with arbitrary laminations, respectively. Also, Khalili et al. (2005) employed a

similar methodology for the analysis of symmetric cross-ply laminated plates with different

boundary conditions. They had to fulfill an elaborate mathematical procedure to obtain the unknown

due to the every set of boundary conditions on the edges of the plate. 

Gorman (1990, 1993) exploited the superposition method to obtain accurate analytical type

solutions for the free vibration of fully clamped and completely free especially orthotropic

rectangular plates. Gorman (1995) extended his previous works for analysis of cantilever plates with

rectangular orthotropy. Yu and Cleghorn (1993) investigated the generic free vibration of especially

orthotropic rectangular plates with combinations of clamped and simply supported edges (clamped,

one simply supported, and two adjacent simply supported edges) by the superposition technique. Yu
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et al. (1994) used the superposition method in order to study the free vibration behavior of

symmetric cross-ply laminated plates having all possible combinations of clamped-simply supported

edge support. Gorman and Ding (2003) utilized the method of superposition to obtain accurate

analytical solutions for natural frequencies and mode shapes of completely free symmetric cross-ply

laminated rectangular plates. Based on the use of Navier-type double Fourier-series solutions,

Kshirsagar and Bhaskar (2008) developed a new superposition approach for free vibration and

buckling studies of thin orthotropic rectangular plates with any combination of clamped, simply

supported, and free edges. In their latter work, Kshirsagar and Bhaskar (2009) used the same

technique to analyze free vibration and stability of moderately thick orthotropic rectangular plates

with any combination of simply supported and clamped edges.

All of the solution methods reviewed in the last three paragraphs is situated in the category of

analytical approaches. On the other hand, many of researchers have utilized the approximate

methods, such as finite element, finite strip, Ritz, Galerkin, and Rayleigh-Ritz methods, to analyze

the free vibrations of laminated plates for which there exist no Levy-type solutions. Zenkour and

Youssif (2000) obtained a generalized mixed variational formulation based on the third-order plate

theory to study the vibration behavior of symmetric cross-ply laminated plates subjected to three

sets of boundary conditions; all edges simply supported, all edges clamped, and two opposite edges

simply supported and the others clamped. On the basis of three-dimensional elasticity, Ye (1997)

presented a free vibration analysis of cross-ply laminated rectangular plates with clamped

boundaries. Clamped boundary conditions are imposed by suppressing the edge displacements of a

number of planes which are parallel to the mid-plane. This is achieved by coupling a number of

different vibration modes of the corresponding simply supported plate using a Lagrange multiplier

method. Hearmon (1959) applied the Rayleigh-Ritz method to obtain frequency of flexural

vibrations of special orthotropic plates, with clamped and simply supported boundary conditions,

neglecting transverse shear and rotary inertia deformations. Bert (1969) by the use of Rayleigh-Ritz

energy method and the classical laminated plate theory (CLPT) presented an approximate solution

for determining the natural frequencies of unsymmetrically laminated rectangular plates with

clamped edges. Baharlou and Leissia (1987), based on the CLPT, conducted a vibration analysis of

cross-ply and angle-ply laminated plates having arbitrarily edge conditions by using the Ritz

method. Qatu (1991) employed a similar method with algebraic polynomial displacement functions

to solve the vibration problem for laminated composite plates having two adjacent free edges and

the remaining edges simply supported, clamped or free. They presented the results for

symmetrically laminated plates. Leissa and Narita (1989) applied the Ritz method with the

displacement components assumed as the double series of trigonometric functions for the vibration

problem of symmetrically laminated composite rectangular plates with simply boundary conditions

at all of their edges. Soldatos and Messina (2001) extended a Ritz-type formulation that had been

applied in connection with vibrations of cross-ply laminated structural elements in their previous

works (Messina and Soldatos 1999a,b,c) towards the investigation of the free vibration problem of

shear deformable composite laminated plates, closed cylindrical shells, and open cylindrical panels

having an arbitrary angle-ply lay-up. Using Ritz solution, Aydogdu and Timarci (2003) carried out

the vibration analysis of symmetric and antisymmetric cross-ply laminated square plates subjected to

different sets of boundary conditions. The analysis was based on a five-degree-of-freedom shear

deformable plate theory. Liew (1996) employed a global p-Ritz method for the vibration analysis of

thick rectangular symmetrically laminated plates with various combinations of boundary conditions.

In the method a set of boundary beam characteristic orthogonal polynomials was used as admissible
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functions in the Ritz minimization procedures. Chen et al. (1997) presented a similar work for

symmetrically laminated thick rectangular plates. Their formulation was basically applicable to

rectangular laminates with any sets of boundary conditions. Parametric studies on the symmetrical

angle-ply laminates were performed. Based on the Ritz method and on the classical laminated plate

theory, Nallima and Oller (2008) developed a simple and accurate formulation for the study of the

free vibration of arbitrarily laminated composite plates.

Gorman and Ding (1995, 1996) exploited the superposition-Galerkin method to obtain an accurate

analysis of the free vibration of symmetric cross-ply, and antisymmetric angle-ply laminated plates

with combinations of clamped and simply supported edge conditions based on the FSDT. Shi et al.

(2004) performed the free vibration analysis of arbitrarily laminated plate with all four edges

clamped by using Galerkin method. Liew et al. (2003) adopted the FSDT in the moving least

squares differential quadrature procedure for predicting the free vibration behavior of moderately

thick symmetrically laminated composite plates under Levy’s admissible boundary conditions. Lanhe

et al. (2005) applied the same approximate method to solve the vibration problems of arbitrarily

laminated moderately thick plates with different boundary conditions. The results were reported for

(0o, 45o) and antisymmetric angle-ply clamped and symmetric cross-ply laminates under various

boundary conditions. Dawe and Wang (1995) developed a spline finite strip method in the context

of the FSDT for predicting the natural frequencies of rectangular laminated plates. Their proposed

method had potential of analysis of arbitrary lay-ups and general boundary conditions. Akhrast et al.

(1995) presented a finite strip method for the vibration and stability analyses of general cross-ply,

symmetric and anti-symmetric angle-ply laminated composite plates according to the higher-order

shear deformation theory. Because of some limitations inherent in the semi-analytical solution

procedures, the analysis could only be carried out efficiently for the plates with two opposite ends

simply supported. Akhras and Li (2007) improved their previous methodology (Akhrast et al. 1995)

to find the critical buckling load and natural frequencies of composite plates with the same lay-ups

but under more general boundary conditions. The results were presented for the plates with all

edges simply-supported or clamped. Numayr et al. (2004) applied the finite difference method to

solve differential equations of motion of free vibration of composite plates with different boundary

conditions (fixed at four edges, fixed from two adjacent edges and simple at the other two edges,

and simply supported at four edges). Solutions were obtained for symmetric and angle-ply

laminated plates. Bambill et al. (2000) used the Rayleigh-Ritz method and the finite element

method (FEM) to analyze the free vibration of orthotropic plates with a free edge and varying

thickness in one direction. Employing the finite strip transition matrix technique, Ashour (2001)

studied the flexural vibration of orthotropic plates with variable thickness in one direction, under

various boundary conditions. Also, Huang et al. (2005) developed a discrete method for analyzing

the transverse vibration of orthotropic rectangular plates with variable thickness in two directions.

They obtained the natural frequencies for plates with two opposite edges having the same supports,

but the other edges had arbitrary boundary conditions.

In this paper, the extended Kantorovich method (EKM) is employed to study the free vibration

behavior of laminated composite plates with arbitrary lamination and boundary conditions. With the

extended Kantorovich approach, it may be assumed that a mode shape is in the form of either a

product of two independent functions of problem spatial variables (e.g., f(x) and g(y) for a

rectangular plate) or a sum of product of independent functions of problem spatial variables. Taking

this assumption along with an energy method, two coupled sets of ordinary differential equations -

instead of one set of partial differential equations- are obtained. The coupled differential equations
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are solved in an iterative manner which starts by guessing a solution for a set of the equations. Then

the solution of the other set may be derived analytically or numerically. Subsequently, the obtained

solution is used as a beginning point to solve the former set of the equations. This iterative procedure

will be continued until the solution is converged. The EKM was used for the problem of vibrations

analysis of plates and shells, initially, by Kerr (1969). In his paper, Kerr (1969) studied the vibrations

of a uniformly stretched rectangular membrane. He showed that the final results are independent of

the initial choice of the functions and that for the treated problem, the generated expressions for the

eigenvalues and eigenfunctions are identical with the corresponding exact solution. Following the

work of Kerr (1969), various investigators employed the EKM for the free vibration analysis of

isotropic (Jones and Milne 1976, Laura et al. 1979, Bhat et al. 1993, Lee and Kim 1995, Chang

2003, and Shufrin and Eisenberger 2005, 2006) and anisotropic (Bercin 1996 and Lee et al. 1997)

plates. Bercin (1996) utilized the Galerkin method with the EKM to obtain the natural frequencies of

fully clamped orthotropic thin rectangular plates. Lee et al. (1997) generalized the work of Lee and

Kim (1995) to analyze moderately thick laminated composite rectangular plates with symmetrically

cross-ply laminations and edges elastically restrained against rotation. They presented the numerical

results for the plates whose all edges subjected to the same boundary conditions.

In this study the multi-term version of EKM is conjugated to the FSDT for the free vibration of

rectangular laminated plates with arbitrary boundary conditions. However, since the procedure used

is simple and straightforward it can be adopted in developing higher-order shear deformation and

layerwise laminated plate theories. In order to verify the convergence, accuracy, and efficiency of

the proposed theory different examples are considered: cross-ply and angle-ply laminated plates

under Levy’s admissible boundary conditions, a symmetric cross-ply laminated plate under various

boundary conditions, and finally, (θ o, 2θ o, −θ o) laminated plates with arbitrary boundary conditions.

Also, through these examples the influences of boundary conditions and lay-ups on the vibration

behavior of the laminate are studied. 

2. Theoretical formulation

The mathematical formulation is based on the FSDT, in order to account the effects of both

transverse shear deformation and rotary inertia. The used reference coordinate system and laminate

configuration are presented in Fig. 1. The laminated plate has a total thickness h, width b in the

lateral (y-) direction, and length a in the longitudinal (x-) direction, including a generally lamination.

Fig. 1 The plate geometry and coordinate system
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The middle plane of the plate lies on the x-y plane of the reference Cartesian coordinate system.

2.1 Displacement field 

For the linear free vibrations of the plate (periodic motion), displacements are assumed as (Reddy

2004)

, (1)

where , and  represent the displacement components in the x, y,

and z directions, respectively, of a material point in the laminate and ω denotes the frequency of

vibration. Considering the technique of separation of spatial variables, the displacement field in (1)

may be represented as follows

, (2)

For the sake of brevity, the Einstein summation convention has been introduced – a repeated index

indicates summation over all values of that index. Also , and 

denote the displacement of a point on the middle plane of the laminate along the x-, y-, and z-

direction, respectively,  and  are the rotations of a transverse normal about the

y- and x-axis, respectively, and n is the total number of terms which is considered in the summation.

Upon substitution of the displacement field (2) into the linear strain-displacement relations of

elasticity (Fung 1965) the following strain-displacement relations will be obtained 

,  ,  (3)

where

,

,

,

, (4)

In Eq. (4) a prime indicates an ordinary derivative with respect to corresponding coordinate.
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2.2 Equations of motion
Using Hamilton’s principle (Reddy 2002), two sets of equations of motion and boundary

conditions are obtained. If the functions , and  are assumed to be known, the first set

of equations of motion can be shown to be

 

 

  

 

(5)
         

In Eq. (5) 

, (6)

and the generalized stress and moment resultants are given by

(7)

in which the stress and moment resultants are 

(8)

Also moments of inertia are defined as 

(9)

where ρ is the mass density. 

The boundary conditions corresponding to Eq. (5) consist of specifying the following quantities at

the edges parallel to the y-axis (i.e., at x = 0, a)

u j v j wj ψ j, , , φ j

 

 

D
jk[ ] χ j{ } χ k{ }T yd

0

b

∫= χ j{ }T u j  v j  wj  ψ j  φ j[ ]=
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h/2–

h/2
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I0 I1 I2, ,( ) ρ 1 z z
2, ,( ) zd

h/2–

h/2
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Primary variables:

                                                            

Secondary variables: (10) 

If, on the other hand, the functions , and  are assumed to be known, then the second

set of equations of motion will be 

    

(11)

where the generalized stress and moment resultants are defined as 

(12)

and

, (13)

The boundary conditions corresponding to Eq. (11) consist of specifying the following quantities

at the edges parallel to the x-axis (i.e., at y = 0, b)

Primary variables:

                                                            

Secondary variables: (14) 

2.3 Laminate constitutive relations

The linear plane stress constitutive relations for the kth orthotropic lamina with respect to the

laminate coordinate axes (see Fig. 1) are given by Reddy (2004) 

uj vj ψj φj wj, , , ,
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(15)

where  is the transformed reduced stiffness matrix and  (i, j = 4, 5) are the off-axis

stiffness coefficients of the kth lamina. Upon substitution of Eq. (3) into Eq. (15) and the

subsequent results into Eq. (8), the stress and moment resultants are obtained, which can be

presented as follows 

(16)

Here, k2 is the shear correction factor introduced as in the first-order shear deformation plate and

shell theories. Also Aij, Bij, and Dij (i, j = 1, 2, 6) denote the extensional stiffnesses, the bending-

extensional coupling stiffnesses, and the bending stiffnesses, respectively. These stiffnesses are given

by

,

, (17)

where N is the total number of layers. Upon substitution of Eqs. (3) into (16) and the subsequent

results into Eqs. (7) and (12), the generalized stress resultants are obtained, which can be

represented as follows

(18)
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where

(20)

(21)

and the coefficient matrices , and  in Eqs. (18) and (19) are defined as

(22)

(23)

In Eqs. (22) and (23) [α] and [β] are

(24)

(25)

It must be noted that the sign ⊗ used in Eqs. (22) and (23) is referred to array multiplication of

two matrices. 

2.4 Governing equations of motion

The equations of motion in (5) and (11) can be expressed in terms of displacements by

substituting the generalized stress resultants from (18) and (19). Hence, two sets of homogeneous

ordinary differential equations will be obtained as follows 

ξj{ } uj′  vj  uj  vj′  ψj′ φj  ψj  φj′[ ]T, ηj{ } φj  wj  ψj  wj′[ ]T= =
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(26)

and

(27)

3. Solution of the governing equations of motion

Here, we employ the state-space approach to solve the equations of motion obtained in the

previous section. Taking the state-space vectors as

(28)

reduces the system of Eq. (26)  to a system of coupled first-order ordinary differential equations

which, on the other hand, may be presented as 

 

 

X1{ } u x( ){ }    X2{ } u′ x( ){ }   X3{ } v x( ){ }   X4{ } v′ x( ){ }=,=,=,=

X5{ } ψ x( ){ }   X6{ } ψ ′ x( ){ }   X7{ } φ x( ){ }   X8{ } φ′ x( ){ }=,=,=,=

X9{ } w x( ){ }   X10{ } w′ x( ){ }=,=
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(29)

Note that in the above relations each of the state variables, intrinsically, is a  vector (e.g.,

). In order to solve Eq. (29), let us assume that  and 

are chosen. Next, the coefficient matrices  and  are found. Since these coefficients are

constant, the coefficient matrix [T] in Eq. (29) is a matrix of constant elements and therefore the

solution of matrix differential Eq. (29) may be obtained analytically as follows (Franklin 1968)

(30)

where [Λ] is the matrix of distinct eigenvectors of matrix [T] and {K} is a vector of unknown

constants to be found by imposing the boundary conditions at the edges x = 0, a. Also the diagonal

matrix [E] is defined as

(31)

where  are the eigenvalues of the coefficient matrix [T] which, in general, must

be regarded to have complex values. Substitution of Eq. (30) into the set of arbitrary boundary

conditions at the edges x = 0, a results in a homogeneous system of equations

(32)

For a nontrivial solution, the determinant of the coefficient matrix [L] in Eq. (32) should be zero

(33)

The roots of the above equation are – the square of – the frequencies of natural vibration and

substitution of the normalized solutions for {K} obtained from Eq. (32) into Eq. (30) give the

corresponding mode shapes (displacement fields). 

Next, we can substitute the general solution of ,…, and  into Eq. (23) to find

the coefficient matrices  and  which, here, will be constant. The solution procedure of

Eq. (27) is completely analogous to the one presented for Eq. (26)  and therefore, for the sake of

brevity will not be taken up here. This procedure (solving the coupled systems of ordinary

differential equations) will be continued until the discrepancy between the natural frequencies

generated by solving the systems of Eqs. (26) and (27) get a value of order ε, where ε is a

prescribed relative error convergence criterion.

It is to be remarked, generally, the initial guesses to start iterative procedure are arbitrary

functions and do not require to satisfy any of the boundary conditions. This latitude for selection of

initial assumed functions is related to this fact that the boundary conditions are automatically

satisfied in the subsequent iterations. Also, the iterative essence of the method causes that for a

specified value of n, the final form and preciseness of the converged solution is independent of the

form of the initial guess of the mode shapes.

X′{ } T[ ] X{ }=

n 1×
u ′{ } u1
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λk k 1 2 … 10n, , ,=( )

L[ ] K{ } 0=

Lij 0 i j,, 1 2 … 10n, , ,= =

ui x( ) vi x( ) …,, wi x( )
A

ij
[ ] B

ij
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4. Numerical results

Based on the mathematical procedure discussed in the preceding sections, a computer program

was provided to solve the vibration problems of laminated plates. Three different numerical

examples are studied in this section to demonstrate the validity and accuracy of the presented

formulation and the capability of the method to analyze laminated plates with various laminations

and boundary conditions. The results obtained from this theory are compared with those obtained by

the Levy method, for the cases that Levy’s solution exists (i.e., for cross-ply and antisymmetric

angle-ply laminates with at least two simply supported opposite edges). For other cases that there

exist no Levy-type solutions, the present results are compared with those of finite element analysis

as well as those presented by Liew (1996) and Lanhe et al. (2005). 

In all examples, each lamina is assumed to be of the same thickness and density. The numerical

results are presented for two types of material chosen same for all laminae, whose properties are

Material I:  

Material II: (34)

where E, G, and ν denote Young’s modulus, shear modulus, and Poisson’s ratio, respectively, and

the subscripts 1, 2, and 3 indicate the on-axis material coordinates. Unless otherwise stated, the

shear correction factor (k2) takes the value of 5/6. For convenience, the natural frequencies are

defined in term of the following non-dimensional frequency parameter

(36)

To designate the boundary conditions on the four edges of the plate, a 4-word notation such as

SFSC, in which S, C, and F delegate simply supported, clamped, and free boundary conditions, is

employed. The 1-4th word indicates the boundary conditions on edges x = 0, y = 0, x = a, and y = b

respectively. In order to compare the numerical results with the results presented in the other works

three types of simply supported boundary conditions will be used. These simple support conditions

in the first-order shear deformation laminated plate theory are defined, say at x = 0, a, as below 

(37)

(38)

(39)

Moreover, other boundary conditions which will be used in the following examples (i.e., clamped

and free boundary conditions) are defined, say at x = 0, a, as

(40)

       (41)

It is to be noted that throughout the solution procedure of the presented numerical examples the

value of parameter ε has been selected 10-7.

E1 40E2=  G12 G13 0.6E2= =   G23, , 0.5E2,  ν12 0.25= =

E1 25E2=  G12 G13 0.5E2= =   G23, , 0.2E2,  ν12 0.25= =

ω ω a
2
/h( ) ρ/E2=

S1: u0 Nxy Mx φ w 0= = = = =

S2: Nx v0 Mx φ w 0= = = = =

S3: u0 v0 Mx φ w 0= = = = =

C:  u0 v0 ψ φ w 0= = = = =

F:  Nx Nxy Mx Mxy Qx 0= = = = =
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Example 1: Cross-ply and angle-ply laminated plates with opposite two edges simply
supported 

The main intention of the present example is to perform a numerical comparison between the

present results with those obtained from the Levy method. For this purpose, square laminated plates

with either cross-ply or antisymmetric angle-ply lamination will be examined. The plates have an

aspect ratio a/h = 10 and lamina material properties of type I. As previously mentioned, Levy’s

analytical solution exists only for antisymmetric angle-ply and any cross-ply laminated plates if at

least two parallel opposite edges of the plates have simple supports. More specifically, for

antisymmetric angle-ply and cross-ply laminates the simple support conditions (in the FSDT) must,

say at x = 0, a, be of type S1 and S2, respectively. 

In Table 1 the dimensionless fundamental frequencies of (45o, −45o)5 and (30o, −30o)5 ten-layer

laminates subjected to various boundary conditions on edges y = 0, b, are tabulated. Similarly, Table 2

shows the results for (0o, 90o) and (0o, 90o)5 antisymmetric cross-ply laminated plates. It clearly can

be seen that there are excellent agreements between the results of the present method and those of

the Levy method. The influence of increasing the number of terms summed in the initial assumed

function on the preciseness of the numerical results, for the special specimens investigated in this

example, has been examined. In Table 1 the fundamental frequency parameters associated with (45o,

−45o)5 lay-up for values of n = 1 and n = 2 are instanced. It is observed that this increment has no

effect on the results –which are presented herein for an accuracy of four decimal points. To

rationalize this fact, it can be said that for the special cases which have been studied (laminated

Table 1 Fundamental frequency parameters of antisymmetric angle-ply (θ o, −θ
o)5 laminated plates under

various boundary conditions 

SSSS SSSC SCSC SFSF SFSS SFSC

θ = 45°

Present method n = 1 19.3804 20.2650 21.2502 6.5655 10.6042 10.8810

n = 2 19.3804 20.2650 21.2502 6.5655 10.6042 10.8810

Levy method (Reddy 2004) 19.38 20.27 21.25 6.57 10.60 10.88

θ = 30°

Present method 18.505 19.110 19.808 10.107 12.329 12.478

Levy method (Reddy 2004) 18.51 19.11 19.81 10.11 12.33 12.48

Table 2 Fundamental frequency parameters of (0o, 90o) and (0o, 90o)5 laminated plates under various boundary
conditions

SSSS SSCS CSCS FSFS FSSS FSCS

(0°, 90°)

Present method 10.473 12.609 15.151 6.881 7.215 7.741

Levy method (Reddy 2004) 10.473 12.610 15.152 6.881 7.215 7.741

(0°, 90°)5

Present method 15.779 18.044 20.471 10.900 11.079 11.862

Levy method (Reddy 2004) 15.779 18.044 20.471 10.900 11.079 11.862
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plates with Levy’s admissible boundary conditions), transverse deformations of the plate during the

natural vibration occur such that the lines of extremum points are placed-exactly or nearly- parallel

to the x- and/or y-axis. These conditions permit us to treat the problems as spreadable models and

consequently, using single-term initial guesses may be terminated in solutions with an excellent

accuracy. It is worth to be noted, by taking the initial assumed functions in the form of

trigonometric series satisfying simply supported boundary conditions S1 or S2 on parallel edges of

the plate, the proposed method can be led to the analytical solution of Levy. However, to

demonstrate the generality of the present solution and likewise its accuracy, some simple

polynomial functions were utilized as the initial guesses in the solution procedure. 

As an interesting model, which with help of it the influence of increasing the number of terms in

the initial assumed functions on the computed natural frequencies may be seen more distinctly, (45o,

−45o)s laminated plate with SFSC boundary conditions is studied (simple supports are of type S2).

The lowest three natural frequency parameters of the plate calculated for various values of n are

listed in Table 3. Since for the problem in hand, no analytical solution exists the numerical results are

verified by those obtained from finite element analysis. Finite element analyses were carried out

using commercial package of ANSYS with SHELL99 element and sufficiently fine mesh generation.

Table 3 reveals that the single-term theory predicts the natural frequencies values inaccurately. But

Table 3 also shows that the increase in the number of terms in the initial guess improves rapidly

preciseness of the results. Moreover, Table 3 indicates that there is quite good agreement between the

results of the present method and FEM. The transverse deformations of vibrations of the plate in its

three first natural modes are illustrated by Fig. 2. Inspection of Fig. 2 and the previous paragraph

explanations, one can easily find the reason of unsuccessful of the single-term theory to appropriate

prediction of the free vibration behavior of the plate; specially, in the higher modes. In Fig. 3 the

second transverse mode shape of the plate is plotted for n = 1 and n = 2. It is observed that for the

specimen studied here, the single-term approach cannot suggest a proper mode shape, whereas the

multi-term approach -even for n = 2- gives a perfectly right configuration.

Table 3 Convergence and comparison studies of the lowest three frequency parameters for (45o, −45o)s square
laminated plate under SFSC boundary conditions

Mode number
n

FEM
1 2 3 4 5

1 9.932 9.465 9.438 9.435 9.433 9.475

2 25.971 22.067 21.852 21.836 21.833 22.035

3 38.448 27.752 27.299 27.239 27.234 27.431

Fig. 2 Transverse mode shapes of (45°, −45°)s square laminated plate under SFSC boundary conditions (a) the
first, (b) second, (c) third mode
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Example 2: Symmetric cross-ply laminated plates under various boundary conditions 

Consider a (0o, 90o, 0o) square laminated plate with aspect ratio a/h = 10 and lamina material

properties of type I. Liew (1996) and Lanhe et al. (2005) educed the natural frequencies of the plate

under different boundary conditions using p-Ritz and moving least squares differential quadrature,

respectively. The numerical results of the present method are compared with those reported by Liew

(1996) and Lanhe et al. (2005) in Table 4 for the lowest five frequency parameters. It is noted that

both Liew (1996) and Lanhe et al. (2005) performed their analyses in the framework of the FSDT.

In this example, the shear correction factor is taken to be k2 = π2/12. It is obvious that the presented

results match very well with the results of the two other methods, especially with those given by

Liew (1996). 

A convergence study is carried out through Table 5 in which frequency parameters pertinent to

Fig. 3 The second transverse mode shape of (45°, −45°)s square laminated plate under SFSC boundary
conditions obtained using (a) one-term, (b) two-term initial functions

Table 4 Comparison of frequency parameters for (0o, 90o, 0o) square laminated plate under various boundary
conditions

Mode number CCCC CFCF CCFF CFFF SSFF*

1 Present method 21.131 18.953 5.882 5.469 1.266

Liew (1996) 21.131 18.953 5.882 5.469 1.266

Lanhe et al. (2005) 21.191 18.953 5.888 5.472 1.275

2 Present method 29.633 19.087 11.255 5.995 7.614

Liew (1996) 29.634 19.087 11.254 5.996 7.616

Lanhe et al. (2005) 29.651 19.084 11.249 6.002 7.627

3 Present method 39.670 21.712 22.366 11.941 20.665

Liew (1996) 39.671 21.713 22.366 11.941 20.666

Lanhe et al. (2005) 39.799 21.727 22.352 11.904 20.624

4 Present method 43.993 31.521 24.463 22.117 20.859

Liew (1996) 43.993 31.522 24.464 22.118 20.860

Lanhe et al. (2005) 44.102 31.570 24.581 22.118 20.872

5 Present method 45.067 38.391 25.285 22.698 23.015

Liew (1996) 45.068 38.390 25.286 22.700 22.916

Lanhe et al. (2005) 45.159 38.661 25.300 22.799 22.936

*The simple supports are of type S3.
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CCCC and SSFF boundary conditions are tabulated versus n. From Table 5 it is implied that the

convergence rate varies with the variation of the mode sequence and combination of boundary

conditions. However, for the present model, choosing n = 4 provides a reliable accuracy with four

decimal points.

Example 3: (θo, 2θo, −θo) laminated plates with arbitrary boundary conditions

Eventually, the free vibration behavior of (θ o, 2θ o, −θ o) square laminated plates subjected to

arbitrary boundary conditions is studied. The plate has aspect ratio a/h = 100 and material properties

of type II. Also, the kind of all simply supported boundary conditions applied to the edges of the

plate is assumed to be S1. The lowest three natural frequencies of (45o, 90o, −45o) laminated plate

under SSCC, SSSS, CCCF, SSFC, CFSF, and SSFF boundary conditions obtained from the present

theory and results of finite element analysis are listed in Table 6. There is quite good agreement

between all results of the two methods, which may be outcome of smallish thickness of the plate.

Table 7 shows the fundamental frequency parameters of (45o, 90o, −45o) laminated plate under

various boundary conditions for the increasing values of n. It is seen that as the number of terms in

the initial guessed functions are increased, from one to seven, the natural frequencies turn gradually

into smaller and more accurate values. Table 7 also reveals that depending on the type of applied

boundary conditions, employing functions with two to seven terms can lead to the numerical results

with an accuracy of three significant digits. Furthermore, it can be concluded that whatever the

symmetry of boundary conditions with respect to x and y axes being the more, generally, the

number of terms required to reach a certain level of accuracy is less. 

Table 5 Convergence study of the lowest three frequency parameters for (0o, 90o, 0o) square laminated plate
with CCCC and SSFF boundary conditions

Supports Mode number
n

1 2 3 4

CCCC 1 21.1308 21.1306 21.1306 21.1306

2 29.6335 29.6332 29.6332 29.6332

3 39.6703 39.6703 39.6703 39.6702

SSFF 1 1.2696 1.2667 1.2665 1.2665

2 7.6216 7.6151 7.6144 7.6144

3 20.6972 20.6662 20.6662 20.6662

Table 6 Frequency parameters of (45o, 90o, −45o) laminated plate with various boundary conditions

Mode number SSCC SSSS CCCF SSFC CFSF SSFF

1 Present method 16.209 14.173 11.440 9.698 6.429 2.452

FEM 16.211 14.175 11.442 9.698 6.430 2.453

2 Present method 32.056 25.642 22.319 19.554 11.566 9.270

FEM 32.063 25.647 22.326 19.553 11.568 9.278

3 Present method 34.236 28.713 28.242 26.831 20.502 10.693

FEM 34.245 28.734 28.249 26.834 20.506 10.704
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The transverse component of the mode shape, corresponding to the lowest three natural

frequencies of (θ o, 2θ o, −θ o) laminated plates under CFSC and CSFF boundary conditions is

depicted in Figs. 4 and 5, respectively. It is seen that due to asymmetrically boundary conditions,

the distributions of the lines of extremum points are basically complicated and skewed with respect

to x and y axes. Therefore, as Table 7 shows, among the support conditions listed in Table 7, CFSC

and CSFF boundary conditions need the most values of n to attain a specified degree of accuracy.

Fig. 6 displays the variations of the fundamental natural frequencies against lamination angle, θ,

Table 7 Convergence and comparison studies of the fundamental frequency parameters for (45o, 90o, −45o)
laminated plate under various boundary conditions

Supports
n

FEM
1 2 3 4 5 6 7

CCCC 19.2016 19.1803 19.1799 19.1799 19.1798 19.1798 19.1798 19.182

CFSC 9.3583 8.9680 8.9476 8.9443 8.9436 8.9432 8.9430 8.944

CCFF 4.0477 3.9674 3.9375 3.9315 3.9298 3.9291 3.9291 3.930

CSFF 3.4882 3.3095 3.2907 3.2873 3.2858 3.2856 3.2854 3.286

CFFF 1.4531 1.4272 1.4229 1.4222 1.4215 1.4215 1.4215 1.424

Fig. 4 Transverse mode shapes of (θ o, 2θ
o, −θ

o) square laminated plates under CFSC boundary conditions
(a) 1st mode, θ = 15°, (b) 2nd mode, θ = 15°, (c) 3rd mode, θ = 15°, (d) 1st mode, θ = 45°, (e) 2nd
mode, θ = 45°; (f) 3rd mode, θ = 45°, (g) 1st mode, θ = 75°, (h) 2nd mode, θ = 75°, (i) 3rd mode,
θ = 75°
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Fig. 5 Transverse mode shapes of (θ o, 2θ
o, −θ

o) square laminated plates under CSFF boundary conditions
(a) 1st mode, θ = 15°, (b) 2nd mode, θ = 15°, (c) 3rd mode, θ = 15°, (d) 1st mode, θ = 45°, (e) 2nd
mode, θ = 45°, (f) 3rd mode, θ = 45°, (g) 1st mode, θ = 75°, (h) 2nd mode, θ = 75°, (i) 3rd mode, θ =
75°

Fig. 6 Variations of the fundamental frequency parameters versus θ, for (θ o, 2θ
o, −θ

o) square laminated
plates under CCCC, FSSC, and CFCS boundary conditions
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for (θ o, 2θ o, −θ o) laminated plates under CCCC, FSSC, and CFCS boundary conditions obtained

from the present method and FEM. By comparing the results of the two methods, it is found that

they are all in very close agreement. It is also obviously seen that the kind of boundary conditions

applied on the edges of the plate may have a considerable effect on the amount and trend of the

natural frequencies variations for different values of angle θ.

Fig. 7 shows the variations of the lowest three natural frequencies versus θ for (θ o, 2θ o, −θ o)

laminated plates with SSSS and CFSC boundary conditions. A first look at Fig. 7 indicate that the

variation trends of the frequencies in the different natural modes do not comply specified fashions.

For example, although the variations of the first frequency for SSSS boundary conditions,

meanwhile the fiber angle changes from 0° to 90°, are negligible; but the variations of the third

frequency are quite tangible. In addition, Fig. 7 illustrates that the maximum difference between the

two first natural frequencies occurs when the distance between the second and third natural

frequencies is the minimum at the same fiber angle (e.g., for SSSS boundary conditions it happens

at about θ = 45°).

5. Conclusions

An accurate solution based on idea of the EKM is developed to study the vibration behavior of

laminated composite plates with arbitrary lamination and boundary conditions. To incorporate the

effects of transverse shear deformation and rotary inertia the formulation is exploited in the

framework of the FSDT. The procedure used is simple and straightforward and, therefore, it can be

easily adopted in developing higher-order shear deformation and layerwise laminated plate theories.

Several numerical examples, including laminated plates with cross-ply, symmetric and

antisymmetric angle-ply, and general laminations with various sets of boundary condition, are

studied. The numerical results are compared with those of the Levy-type solutions and also with

those of the published results and finite element analysis when there exist no analytical solutions.

Fig. 7 Variations of the lowest three natural frequency parameters versus θ, for (θ o, 2θ
o, −θ

o) square
laminated plates under (a) SSSS, (b) CFSC boundary conditions
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All the numerical results demonstrate the capability of the proposed method for the analysis of

laminated plates with arbitrary lamination and boundary conditions as well as its excellent accuracy.

Some convergence studies are performed to investigate the influence of the number of summed

terms in the initial assumed functions (n) on the preciseness of the numerical results obtained from

the present method. It is found that increasing n improves monotonically the accuracy of the results.

It is further seen, the single-term theory not only may result in producing the natural frequency

values with a poor approximation, but also it may predict the corresponding mode shapes

improperly.
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