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Abstract. One of the intractable problems in multiresolution structural analysis is the decoupling
computation between scales, which can be realized by the operator-orthogonal wavelets based on the
lifting scheme. The multiresolution finite element space is described and the formulation of
multiresolution finite element models for structural problems is discussed. Various operator-orthogonal
wavelets are constructed by the lifting scheme according to the operators of multiresolution finite element
models. A dynamic multiresolution algorithm using operator-orthogonal wavelets is proposed to solve
structural problems. Numerical examples demonstrate that the lifting scheme is a flexible and efficient tool
to construct operator-orthogonal wavelets for multiresolution structural analysis with high convergence
rate. 
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1. Introduction

In the last several years, finite element method (FEM) has been recognized as a widely popular

method for numerical analysis of differential equations, engineering problems, etc. However,

traditional FEM has many disadvantages, i.e., re-meshing initial elements, low efficiency, ill-

conditioned matrix, etc. The wavelet-based algorithm is a very good method to solve multiscale

problems for its advantages, i.e., multiresolution analysis, orthogonalization, vanishing moments,

etc. The combined method called wavelet finite element method has been studied by many

researchers because wavelet finite element method has many advantages in numerical computation

(Ma et al. 2003, Chen et al. 2004, Xiang et al. 2007). 

Traditional wavelets are constructed by scaled and shifted versions of a single mother wavelet on

a regularly spaced grid over a theoretically infinite or periodic domain. The main disadvantage of

these wavelets is that they can not be constructed on finite domains, i.e., finite meshes commonly

encountered in FEM analysis. Therefore, it is very desirable to build new kinds of wavelets that can

be defined in general domains or on irregular meshes. Second-generation wavelets based on the

lifting scheme (Sweldens 1997) were developed to eliminate the restriction and deficiency of

traditional wavelets appropriately. The second generation wavelets form Riesz bases for L2 space,
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which are local in both space and frequency and have many vanishing polynomial moments without

the translation and dilation invariance of their biorthogonal cousins. The numerical performance of

second generation wavelet has gained much attention by many researchers. Pinho et al. (2004)

discussed a multiresolution analysis for the discretisation of Maxwell equations via second

generation wavelets. Vasilyev and Kevlahan (2000) established adaptive multilevel collocation

method to solve partial differential equations (PDE) over complex geometries using lifted

interpolating wavelets. Davis and Strela (1999) proved that all biorthogonal multiwavelet bases can

be attained by applying a finite sequence of simple lifting steps to a simple initial basis and

generalized lifting scheme to the construction of multiwavelets. Castrillón-Candás and Amaratunga

(2003) developed spatially multiwavelets using the lifting scheme to represent integral operators

sparsely on general geometries. Sudarshan and Amaratunga (2006) presented approximate Gram-

Schmidt orthogonalization method to construct operator-orthogonal wavelets efficiently. Recently,

He et al. (2007) described a construction method of scale-decoupled wavelets by designing suitable

prediction coefficients and update coefficients based on the lifting scheme. 

All the construction methods discussed above are focused on the differential equations; however,

the numerical performance of structural problems has not investigated. The goal in this paper is to

construct various lifted wavelet bases for the structural analysis and verify their numerical

performance.

An outline of the paper is as follows. Section 2 introduces multiresolution finite element space

based on the property of wavelet multiresolution analysis. Section 3 investigates the construction of

multiresolution finite element models for two typical structural problems. Section 4 describes the

lifting scheme to construct operator-orthogonal wavelets and the decoupling condition of

multiresolution algorithm. A dynamic multiresolution algorithm using lifting wavelets is also

presented to solve structural problems. Section 5 demonstrates the numerical performance of the

proposed method and conclusions are drawn in Section 6. 

2. The multiresolution finite element space

2.1 Multiresolution analysis

Multiresolution analysis (MRA) is the basic important aspect of wavelet-based numerical

algorithm, which enables us to handle effectively rapid local-solution variations. A multiresolution

analysis is composed of a set of closed subspaces  with  and satisfies the following

properties (Sweldens 1997):

(1) ,

(2)  is dense in L2,

(3) for each , Vj has a Riesz basis given by scaling functions ,

where j is the level of resolution,  is an integer index set associated with resolution levels,

 is some index set associated with scaling functions of level j, Vj denotes approximation spaces

of level j. For each Vj, there exists a complement of Vj in , namely as Wj. Let the spaces Wj be

spanned by wavelets,  for every , , where  is the

difference set of  and .

Vj L
2
R( )∈ j Z∈

Vj Vj 1+⊂
∪j J∈ Vj

j J∈ φj k, k K j( )∈{ }
J Z∈

K j( )
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2.2 Multiresolution finite element space

In the multiresolution finite element space, scaling functions are identical to the interpolating

functions used in the finite element method. The wavelet functions are chosen to be detail functions

in the complementary space of the interpolating functions. A multiresolution decomposition of a

finite element space Vj at different levels of resolution is spatial hierarchy:

The definition of multiresolution analysis implies that for every scaling function  and wavelet

, there exist a group of filter coefficients  and another filter

coefficients  such that 

(1)

(2)

Eq. (1) and Eq. (2) is referred to as the refinement equations for second generation wavelets.

Consequently, the refinement equation between the scaling functions at different levels is 

(3)

where  holds in the multiresolution analysis (Sweldens 1997). Eq. (3) implies that for

a given function , it can be decomposed by MRA into its projection on a coarse

approximation space V0 along with the projections at multiple levels of wavelet spaces, the

refinement relation can be given as 

(4)

where  and  are the projection coefficients of  in the space V0 and Wj respectively.

Eq. (4) is the theoretical foundation of multiscale computation. 

In the following, we describe the refinement equations of the scaling functions in the

multiresolution finite element space, which are derived by a set of equations consisting of several

sample point values of scaling functions and wavelets in the similar form as Eq. (3)

(5)

where  and  are the sample point values of scaling functions and wavelets at level

. The refinement relation of a linear interpolating function in Lagrange multiresolution finite

element space can be derived by Eq. (5) in the form

(6)

which is shown in Fig. 1. If we extend the multiresolution analysis to generalized multiresolution

finite element space with higher-order interpolating functions, we can derive many new higher-order

wavelets. As a typical example, the refinement equations for quadratic interpolating functions
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(Castrillón-Candás and Amaratunga 2003) are 

(7)

(8)

Fig. 2 illustrates the refinement relation for the quadratic interpolation function, the left figure

illustrates the piecewise interpolating functions at the end point of two elements and the right figure

shows the interpolating functions at the center of a element. On the analogy of Eq. (5), we can

derive the refinement relation for cubic interpolation functions in the form

(9)

(10)

(11)

Figs. 3(a)-(c) illustrates the refinement relation for the two interpolation functions, which locate at

the center and the end of elements. 
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Fig. 1 The refinement relation for a linear interpolation function

Fig. 2 The refinement relation for quadratic interpolating functions 
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3. The formulation of multiresolution finite element models

In this section we derive the operators of mulresolution finite element models from two typical

structural problems including rod and Timoshenko beam problems. More general operators of

mutiresolution finite element models, such as two- or three-dimensional finite element models, can

be derived similarly and new kinds of operator-orthogonal wavelets can be constructed accordingly. 

3.1 Multiresolution rod finite element model

The total potential energy for the finite element models of rods or bars can be expressed as (Wang

2002)

(12)

where EA is compressive stiffness,  is axial displacement function,  is distributed loading,

element length is , Pi is lump load and xi is acting position. The finite element

approximation of u can be interpolated as 

Πe EA
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Fig. 3 The refinement relation for cubic interpolating functions 
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 (13)

where 

Applying the principle of minimum of total potential energy, , we can obtain the finite

element equation for axial deformation

(14)

Consider finite element models of bars in Lagrange multiresolution finite element space in

Eq. (12), the stiffness matrix and the distributed and lump on the multiscale space takes the form 

(15)

where k1, k2 are nodal number of scaling functions, m1, m2 are nodal number of wavelet functions,

 is the nodal finite element matrix at level j formed by the scaling functions,  is

the interaction matrix between the scaling functions and wavelets at level j,  is the detail matrix

formed by the wavelets at level j. It is noted that given the condition , the

multiresolution stiffness matrix will be block-diagonal and sparse, which means that the decoupling

multiresolution wavelet computation of structural problems. The elemental distribute loading

column vector is 

(16)

and the lump loading column vector is

(17)

From Eq. (15), we can define the operator for the finite element models of rods or bars at level j

as

,  (18)

Considering uniform tension problems of a bar, there is a similar operator by substituting the

constant EA. If the operator-orthogonality of rod and bar problems is satisfied, i.e., the operators are

zero-valued, the multilevel stiffness matrix will be highly sparse with respect to the principal

diagonal. Therefore, the decoupled characteristics of operator-orthogonal wavelets can reduce the

computation cost effectively. 
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3.2 Multiresolution Timoshenko beam finite element model

Consider the influence of shear deformation, the total potential energy functional of Timoshenko

beam element  is given 

(19)

where EI is bending rigidity, G shear modulus, A cross-sectional area, ks the shear deformation

coefficient, q(x) the distributed force, Pi lump forces, Ml lump bending moment, w and θ are the

transverse deflection and rotation respectively, xi and xl are acting position. The transverse deflection

and rotation w(x) and θ(x) can be interpolated by two Lagrange basis functions,  and , in

the form

, (20)

According to the principle of minimum of total potential energy, , we can obtain element

solving equations in the multiresolution finite element space in the following 

(21)

where  can be denoted by two Lagrange scaling functions and have the similar form as

Eq. (15) respectively, the elemental distributed loading column vector is

(22)

the lump loading column vector 

(23)

and the lump bending column vector 

(24)

The operators of multiresolution Timoshenko beam models can be derived as
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(28)

To ensure the operators zero-valued, we will construct two operator-orthogonal wavelets based on

the lifting scheme. 

4. Dynamic multiresolution algorithm

4.1 The lifting scheme

 

The lifting scheme presented by Sweldens (1997) constructs a new compact wavelet  by

adding the neighboring scaling function to a primitive wavelet , which is chosen to be a simple

scaling function  from a finer level

,  (29)

where  is the lifting coefficients. The lifting scheme gives us more degrees of freedom to

custom design operator-orthogonal wavelets by selecting appropriate lifting coefficients .

According to the operator-orthogonal condition in various structural problems, the lifting

coefficients  can be determined by computing a basis for the null space of the local interaction

matrix Qj in the form 

(30)

where  are all the scaling functions on a given domain Ωj,  are the subset of scaling

functions that are all interior in the domain Ωj. It can be inferred that the number of the solution of

Eq. (30) determines the number of lifted wavelets. The principle of constructing lifted wavelets is to

choose proper lifted coefficients from Eq. (30) such that the lifted wavelets are compactly support

and the lifting coefficient vectors are linearly independent. 

4.2 Decoupling condition

The vanishing moment of the wavelets is a very important property to ensure the operator-

orthgonality between the scaling functions and wavelets, which is also the condition of decouping

computation across the scales in the multiresolution finite element space. The vanishing moment

concept is defined as follows: if a wavelets ϕ is piecewise polynomial and satisfies (Mallat 1998)

,  (31)

the wavelet have order-n vanishing moments. Based on the concept of vanishing moments, the

operator-orthogonality between the scaling functions and wavelets is discussed as follows. If a

a4 ϕj m,

2
φj k,

2,( ) EI
dϕj m,

2

xd
------------⎝ ⎠
⎛ ⎞

T
dφj k,

2

xd
---------- GAKs ϕj m,

2( )
T
φj k,

2
+ xd

a

b

∫=

ϕj m,

ϕj m,

old

φj 1+ m,

ϕj m, ϕj m,

old
sj k m, , φj k,

k

∑– φj 1+ m, sj k m, , φj k,

k

∑–= = j and m∀∀

sj k m, ,

sj k m, ,

sj k m, ,

Qj
sj k m, ,–

1
a φj k*, φj k,,( )  a φj k*, φj 1+ k,,( )[ ] sj k m, ,–

1
0= =

φ
j k*,

φj k,

x
α
ϕ xd

Ω
∫ 0= α 0 1 … n 1–, , ,=



New decoupled wavelet bases for multiresolution structural analysis 183

wavelet is continuous piecewise polynomial and is zero-valued at the integration boundary of its

support, the derivative of the wavelet will have one vanishing moment. In addition, each vanishing

moment in the wavelet will result in an additional vanishing moment in the derivative of the

wavelet. The derivation equations are illustrated as

(32)

(33)

(34)

This property is referred to as the inheritance of vanishing moment property (D’Heedene and

Amaratunga 2005). 

4.3 Dynamic multiresolution algorithm

Firstly, we describe the error estimation for operator-orthogonal wavelet solution. Let e be the

error estimate of operator-orthogonal wavelet solution, i.e., the operator-orthogonal wavelet solution

 at level  with respect to solution uj at level j in  space, then the error estimator e is

given (Chen 1995)

(35)

Since the exact solution can not always be found, we adopt a practical and effective error estimate

method. Consider  and uj in the neighbor approximate space,  and j, the relative error

estimator is

(36)

The relative error estimator also can indicate the convergence rate of the algorithms. As the scale

become larger, it can be ensured that the error estimator satisfies any threshold value.

In the following, we proposed a dynamic multiresolution algorithm using lifted wavelets to the

solution of engineering problems:

1) Given a threshold value τ, construct the coarse-mesh using a given order, n, of interpolating

functions in the approximate space Vj, solve the coarse-mesh problems, . Compute

relative error estimator ε0. 

2) Compare ε0 with the threshold value τ, if , stop and give the answer.

3) For each interpolating function, construct new operator-orthogonal wavelets by the lifting

scheme. Compute the operator-orthogonal wavelet solution and the relative error estimator εj
according to Eq. (36). 

4) If , stop and give the answer. 

5) Add lifted wavelets of the wavelet space  into initial multiresolution finite element space,

and GOTO 3. 
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5. Numerical examples

As the common problems in structural mechanics, rod, bar and Timoshenko beam problems are

computed by dynamic multiresolution algorithm using operator-orthogonal wavelets in the following

numerical examples. The flexibility and accuracy of the operator-orthogonal wavelet solution are

discussed in detail. 

Example 1 Fig. 4 shows an axial rod subjected to distributed loading 

, rod length L = 1 and physical parameter EA = 1. 

It can be easily verified that the linear scaling functions are naturally orthogonal to the initial

linear wavelets with respect to the operator of rod problem, so we select quadratic interpolation

scaling functions to derive the lifted wavelets. Based on three basic principles, the appropriate

coefficient vectors are chosen and new lifted wavelets can be constructed, correspondingly. Fig. 5

shows two lifted wavelets with only one vanishing moment and Fig. 6 shows two lifted wavelets

with two vanishing moments. According to the necessary and sufficient condition for the complete

wavelet space, we must choose two lifted wavelet bases on the support of one element. Given the

threshold value τ = 0.05, the problem is solved by the lifting scheme. Fig. 7 indicates the details of

operator-orthogonal wavelet solution in each scale. Fig. 8 illustrates the sparsity pattern of the

derived multiresolution stiffness matrix. The dotted lines separate the interaction and detail matrices

at each scale. It can be seen that the multiresolution stiffness matrix is block-diagonal because of

the decoupling of scaling function and lifted wavelets. Table 1 gives the error estimator and relative

q x( ) 200[ –=

40000 x 0.5–( )2]e 100 x 0.5–( )
2

–

Fig. 4 An axial rod subjected to distributed loading q x( ) 200[ 40000 x 0.5–( )
2

]e 100 x 0.5–( )
2

––=

Fig. 5 Lifted wavelets for rod element with one vanishing moment
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error estimation in each scale for the operator-orthogonal wavelet solution. The number of scaling

functions and lifted wavelets, also called degrees of freedom (DOFs), on each scale is also listed. It

can be observed that the dynamic multiresolution algorithm using operator-orthogonal wavelets

converges fast by adding new lifted wavelets. 

Fig. 6 Lifted wavelets for rod element with two vanishing moments

Fig. 7 The details of operator-orthogonal wavelet
solution for axial bar

Fig. 8 Sparsity pattern of multiresolution stiffness
matrix

Table 1 The operator-orthogonal wavelet solution of displacement for axial rod

Space Error estimation Relative error DOFs

V0(j = 0) - - 3

W0(j = 0) 0.18353 0.69032 2

W1(j = 1) 0.11283 0.11283 4

W2(j = 2) 0.09354 0.09354 8

W3(j = 3) 0.04833 0.04834 16
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Fig. 9 The variable loading  for torsional rodq x( )
θ
2

e
θ

1–( )
2

-------------------- 4e
2θx

e
θx

– e
θ x 1+( )

–( )=

Fig. 10 Lifted wavelets operator-orthogonal with cubic interpolation functions
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Example 2 A torsional bar is subjected to variable loading, which is fixed at both ends. Let bar

length L = 1, physical parameter , the loading function  shown in Fig. 9 is selected

corresponding to the solution , let θ = 5.

In order to approximate the exact solution in fast convergence rate, we choose cubic interpolation

scaling functions to derive the lifted wavelets. Based on three basic principles, the appropriate

coefficient vectors are chosen and new lifted wavelets can be constructed, correspondingly.

Figs. 10(a)-(c) shows three lifted wavelets with two vanishing moment and Figs. 10(d)-(f) shows

three lifted wavelets with three vanishing moments. More lifted wavelets can also be constructed by

assembling the scaling functions and wavelets. According to the necessary and sufficient condition

for the complete wavelet space, we must choose three lifted wavelet bases on the support of one

element. 

Given the threshold value τ = 0.01, the problem is solved by the lifting scheme. Fig. 11 shows the

details of operator-orthogonal wavelet solution in each scale. Fig. 12 plots the multiresolution

stiffness matrix and shows that multiresolution stiffness matrix is block-diagonal and highly sparse.

Table 2 illustrates the error estimator and relative error estimation in each scale for the operator-

orthogonal wavelet solution. It can be seen that the problem can be solved by adding new lifted

wavelets with high convergent rate. 

GJ 1= q x( )

u x( ) 1

GJ
-------

e
θx

1–

e
θ

1–
-------------- 1

e
θx

1–

e
θ

1–
--------------–⎝ ⎠

⎛ ⎞=

Fig. 11 The details of operator-orthogonal wavelet
solution for torsional rod

Fig. 12 Sparsity pattern of multiresolution stiffness
matrix

Table 2 The operator-orthogonal wavelet solution of rotation for torsional rod

Space Error estimation Relative error DOFs

V0(j = 0) - - 4

W0(j = 0) 0.07169 0.27004 3

W1(j = 1) 0.02358 0.13082 6

W2(j = 2) 0.00565 0.02271 12

W3(j = 3) 0.00064 0.00258 24
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Example 3 Fig. 13 shows a rectangle cross-section cantilever beam subjected to distributed

loading. The physical parameters and loading are: elastic modulus E = 3.2 × 1011 N/m2, shear

modulus G = 8 × 1010N/m2, width B = 0.625 m, height H = 1 m, shear correction coefficient ks= 5/6,

length L = 10 m, distributed loading  and q0 = 10
6 N, respectively.

The multiresolution Timoshenko beam model is constructed to solve this problem. To avoid shear

locking phenomenon in the solution of Timoshenko beam problem, we select consistent

interpolation functions to derive the operator-orthogonal wavelets: transverse deflection and rotation

are interpolated by quadratic and linear polynomials, respectively. In order to satisfy the four

operators in the Timoshenko beam problem, we must solve a set of operators. For the scaling

functions of transverse deflection, we can ensure the lifted wavelets in Fig. 5 and Fig. 6 can be

operator-orthogonal to the scaling functions. For the scaling functions of rotation, we can not find

the lifted wavelets that are operator-orthogonal to the scaling functions because two operators can

not satisfied simultaneously. However, since the scaling functions are naturally operator-orthogonal

to the wavelets, we can construct a sparse multiscale stiffness matrix. 

Given the threshold value τ = 0.005 for the transverse deflection, the problem is solved by the

operator-orthogonal wavelets. Figs. 14(a)-(b) shows the transverse deflection and rotation details of

operator-orthogonal wavelet solution in each scale. Fig. 15 illustrates the sparsity pattern of the

multiresolution stiffness matrix and multiresolution stiffness matrix is highly sparse. Tables 3 and 4

illustrate the error estimator and relative error estimation in each scale for the operator-orthogonal

q x( ) q0sin πx/L( )=

Fig. 13 A simply supported Timoshenko beam

Fig. 14 The transverse deflection and rotation details of operator-orthogonal wavelet solution for Timoshenko
beam
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wavelet solution. The DOFs of transverse deflection and rotation on each scale are also given. It can

be inferred that the exact solution of the Timoshenko beam problem can be approximated to any

given threshold value by adding new lifted wavelets. 

6. Conclusions

The operator-orthogonal wavelets are constructed based on the lifting scheme in the

multiresolution finite element space and proved to be excellent decoupling bases in the structural

Fig. 15 Sparsity pattern of multiresolution stiffness matrix

Table 3 The operator-orthogonal wavelet solution of transverse deflection for Timoshenko beam

Space Error estimation (10-3) Relative error DOFs

V0(j = 0) - - 5

W0(j = 0) 1.0019 0.16471 4

W1(j = 1) 0.2406 0.03805 8

W2(j = 2) 0.0596 0.00933 16

W3(j = 3) 0.0149 0.00232 32

Table 4 The operator-orthogonal wavelet solution of rotation for Timoshenko beam

Space Error estimation (10-3) Relative error DOFs

V0(j = 0) - - 3

W0(j = 0) 5.8052 0.75000 2

W1(j = 1) 0.5444 0.07033 4

W2(j = 2) 0.1459 0.01885 8

W3(j = 3) 0.0371 0.00479 16
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analysis. A dynamic multiresolution algorithm using lifted wavelets is developed to approximate the

exact solution of structural problems in efficient manner. The lifting scheme provide an effective

and flexible tool to custom design lifted wavelets to different kinds of structural problems. The

further research is to develop Hermite and multi-dimensional lifting wavelets based on the lifting

scheme to solve various engineering problems. It is promising that a great number of two- or three-

dimensional lifting wavelets will solve general structural problems by using dynamic multiresolution

algorithm accurately and efficiently. This work is currently under way.
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