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Abstract. In order to consider high-order effects on the actual limit state function, a new response
surface method is proposed for structural reliability analysis by the use of high-order approximation
concept in this study. Hermite polynomials are used to determine the highest orders of input random
variables, and the sampling points for the determination of highest orders are located on Gaussian points
of Gauss-Hermite integration. The cross terms between two random variables, only in case that their
corresponding percent contributions to the total variation of limit state function are significant, will be
added to the response surface function to improve the approximation accuracy. As a result, significant
reduction in computational cost is achieved with this strategy. Due to the addition of cross terms, the
additional sampling points, laid on two-dimensional Gaussian points off axis on the plane of two
significant variables, are required to determine the coefficients of the approximated limit state function.
All available sampling points are employed to construct the final response surface function. Then, Monte
Carlo Simulation is carried out on the final approximation response surface function to estimate the failure
probability. Due to the use of high order polynomial, the proposed method is more accurate than the
traditional second-order or linear response surface method. It also provides much more efficient solutions
than the available high-order response surface method with less loss in accuracy. The efficiency and the
accuracy of the proposed method compared with those of various response surface methods available are
illustrated by five numerical examples.
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1. Introduction

The assessment of failure probability is one of challenges in structural reliability discipline.

Commonly, the failure probability Pf is expressed as

(1)

where x is an input random vector which model the uncertainties in load conditions, material

properties, geometrical dimensions etc,  is the joint probability density function (PDF) of

Pf P g X( ) 0≤{ } … fX x( ) xd
g X( ) 0≤
∫∫= =

fX x( )

*Corresponding author, Professor, E-mail: zhenzhoulu@nwpu.edu.cn
† Ph.D., E-mail: hongshuangli@nuaa.edu.cn

DOI: http://dx.doi.org/10.12989/sem.2010.34.6.779



780 Hong-Shuang Li, Zhen-Zhou Lu and Hong-Wei Qiao

random vector x, and  is the so-called limit state function or performance function. The

integration domain is determined by  which defines the failure domain. Usually the limit

state function  is a nonlinear, implicit and multidimensional function of input random vector x,

so a closed-solution to the multidimensional integration in Eq. (1) rarely exists.

Many techniques have been proposed to estimate the failure probability in the past. According to

their features, they can be mainly classified into three categories: (1) moment method (Rackwitz

2001, Zhao and Ono 1999, Hasofer and Lind 1974, Rackwitz and Fiessler 1978, Wang and Grandhi

1996, Ditleven and Madsen 1996, Zhao and Ono 2001, 2004, Zhao et al. 2003), (2) sampling

method (Melchers 1989, Au and Beck 1999, Hurtado 2007, Melcher 1994, Au and Beck 2001), and

(3) surrogate method (Bucher and Bourgund 1990, Rajashekhar and Ellingwood 1993, Kim and Na

1997, Das and Zhneg 2000, Guan and Melchers 2001, Kaymaz and McMahon 2005, Lee and Kwak

2006, Gavin and Yau 2008, Hurtado and Alvarez 2001, Papadrakakis and Lagaros 2002, Deng et al.

2005, Dong 2006, Kaymaz 2005, Hurtado and Alvarez 2003, Li et al. 2006, Chen 2007). In order

to alleviate the computational effort in structural reliability analysis, it is widely recognized that

approximating methods should be developed to express the relationship of the input parameters

(loading conditions, material properties, etc.) and output quantities (responses in term of

displacements, stress, etc.) of the structure. So surrogate method has been suggested as a common

way to construct these relationships. There are currently several surrogate methods, such as

Response Surface Method (RSM) (Bucher and Bourgund 1990, Rajashekhar and Ellingwood 1993,

Kim and Na 1997, Das and Zhneg 2000, Guan and Melchers 2001, Kaymaz and McMahon 2005,

Lee and Kwak 2006, Gavin and Yau 2008), Artificial Neural Network (ANN) (Hurtado and Alvarez

2001, Papadrakakis and Lagaros 2002, Deng et al. 2005, Dong 2006) more recently, Kriging

Method (KM) (Kaymaz 2005) and Support Vector Machine (SVM) (Hurtado and Alvarez 2003, Li

et al. 2006, Chen 2007) for reliability analysis problems. The central idea of surrogate methods is to

approximate implicit limit state functions, given by a numerical calculation code, with a relatively

simple explicit function, and the failure probability of the explicit function is used to replace that of

actual limit state function. In early studies of surrogate methods, the polynomial-based Response

Surface Method (RSM) fitted by the least square method (LSM) is very popular. The concept of

RSM stemmed from design of experiment (DOE) and was later introduced into reliability

assessment of structural systems (Bucher and Bourgund 1990, Rajashekhar and Ellingwood 1993,

Kim and Na 1997, Das and Zhneg 2000, Guan and Melchers 2001, Kaymaz and McMahon 2005,

Lee and Kwak 2006, Gavin and Yau 2008). Polynomials and the LSM are used to fit the response

surface function (RSF). Once the RSF is completely constructed, the reliability analysis method can

be completed on this explicit RSF. The disadvantages of RSM have been investigated by many

researchers, and they showed that the inflexibility of the RSF (Bucher and Bourgund 1990,

Rajashekhar and Ellingwood 1993, Kim and Na 1997, Das and Zhneg 2000) and the selection of

response surface parameters (RSP) (Guan and Melchers 2001), which are used to define the

locations of experimental points in RSM, have not been solved. The application of RSM in

reliability analysis are not new, but it is still developing.

In this study a new high-order response surface is proposed, and this new method includes the

following aspects: (1) Gaussian Points and Gauss-Hermite integration; (2) Hermite polynomial; (3)

the probabilistic uncertainty contribution of each variable to limit state function. Once the response

surface function is constructed, the failure probability is evaluated by Monte Carlo Simulation. The

state of art and the problems of the polynomial based RSM are given in section 2. Section 3

analyzes the exiting high-order response surface method. Section 4 describes the procedure to

g x( )

g x( ) 0≤

g x( )
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construct high-order response surface function in detail. The accuracy and the efficiency of the

proposed method are examined by five numerical examples in section 5. Section 6 is the closure of

this paper.

2. Response surface method

In this section, some polynomial-based Response Surface Methods for structural reliability

evaluations are briefly reviewed. In Bucher and Bourgund (1990) suggested an adaptive

interpolation scheme of selecting the sampling points to form a quadratic RSF without cross terms

for structural reliability analysis. In their method, the actual limit state function  is

approximated by

 (2)

where  is the input random vector, a, bi and  are 2n + 1 unknown

coefficients and they should be determined by the design of experiment. In order to determine the

2n + 1 coefficients, 2n + 1 samples have to be calculated to fit the polynomials at least. The first 2n

samples are taken along the coordinate axes of each random variable at  and  in

which h is the so-called Response Surface Parameter (RSP), and one more sample locates at the

mean value vector . After the approximated RSF  is constructed, the

reliability index β and the corresponding design point  can be determined from the explicit RSF

by First Order Reliability Method (Zhao and Ono 1999, Hasofer and Lind 1974, Rackwitz and

Fiessler 1978) (FORM). Once the design point  is obtained, an update on the location of center

sampling point  is achieved by a linear interpolation

 

(3)

This makes the location of new center sampling point closer to the actual limit state .

Around the new center sampling point , a new set of sampling points is selected to construct the

final RSF. Thus, 4n + 3 limit state function calls are required in Bucher and Bourgund’s RSM. In

later work, Rajasheknar and Ellingwood (1993) pointed out that the approximating accuracy of

RSM depends on the characteristics of limit state function and one updating cycle may be

insufficient. Therefore, based on the distance between the design point and the center sampling

point in each cycle they proposed a criterion to judge whether the iteration is convergent or not.

They also tried to generate samples including the probability distribution information of input

random variables. However, it was found that sampling in the tail regions of the random variables

distribution instead of over the entire region does not lead to significant improvement in the

accuracy of RSF or reliability estimates. An improvement to RSM using weighted regression has

been proposed by Kaymaz and McMahon (2005), in their method the sampling points closer to the

limit state  hold larger weights for unknown coefficients evaluation. It should be pointed

out that the value of RSP, which was set to 3 in Bucher and Bourgund’ study and was gradually

reduced in the later iteration in the work of Rajasheknar and Ellingwood, has significant effect on

the estimated failure probability (Guan and Melchers 2001). 

An improvement to Eq. (2) is adding cross terms to RSF

g x( )

g̃ x( ) a bixi
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(4)

Based on Eq. (4), Lee and Kwak (2006) have integrated the RSM with moment method to take

the advantages of the two methods. However, the highest order of Lee and Kwak’s RSM is not

beyond the second order. 

In Kim and Na (1997), first-order polynomial and vector projection technique are used to

construct linear RSF for structural reliability analysis. However, this work also showed that the

failure probability estimated by their RSM also varied with different values of RSP. The research of

this type RSM was further extended by Das and Zheng (2000) through a cumulative manner. 

Due to the facts that high-order polynomial may result in ill-conditional system of equations for

unknown coefficients and exhibit irregular behavior outside of the domain of samples, the utilization

of high-order polynomials in RSM has received relatively little attention (Rajashekhar and

Ellingwood 1993, Gavin and Yau 2008). Recently, a different kind of RSM, which adopts high-

order polynomials as regression bases, has been developed by Gavin and Yau (2008), referred as

high-order response surface method (HORSM). In this method, a polynomial response surface

including high order items is used to approximate the actual limit state function

 (5)

where bij is the coefficient for terms involving only one random variable, ki is the highest order for

ith random variable, cq is the coefficient for mixed terms, t is the total number of mixed terms, and

piq is the order of a random variable in a mixed term. 

Regression using Chebyshev polynomials associated with a statistical analysis is performed one-

by-one to obtain the highest polynomial order of each random variable in RSF. In this stage,

parameter hord is used to bound the domain of sampling points in . After the

highest polynomial orders are determined, all the mixed terms are also fixed through the criteria

proposed by Gavin and Yau. Then the regression coefficients are evaluated from additional

sampling points within the domain of . At last, the failure probability is

evaluated using MCS on the high-order RSF. 

3. Analysis of the available HORSM

From above description, it can be concluded that two principal factors determine the final accuracy

and efficiency of RSM, one is the type of RSM, linear, quadratic or high-order, the other is the

positions of sampling points. We now examine the Gavin and Yau’s HORSM from the view of these

two factors. Compared with linear or quadratic RSM, the HORSM has shown a better approximating

ability for highly nonlinear limit state function, but it is also accompanied by significant increase of

computational cost. Furthermore, two response surface parameters hord and hreg controlled the

sampling positions are needed to be selected, which may have certain effects on the determination of

highest polynomial orders and the accuracy of final failure probability estimation. 

An example with explicit limit state function (Guan and Melchers 2001) is considered to

investigate the Gavin and Yau’s HORSM
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(6)

where x1, x2 and x3 are standard normal variables. The results computed by Gavin and Yau’s

HORSM are shown in Table 1. 

The reference failure probability of this problem is 3.04 × 10-4 with 109 Monte Carlo simulations.

In order to examine the effects of parameter hord, the value of parameter hreg is set to 3 in this stage.

Though there are no cross terms in this example, 13 cross terms are still found for each values of

hord by HORSM, which results in additional sampling computation for the determination of

unknown coefficients of cross terms. The total number of function calls is 91. It is not efficient for

a problem involved 3 input random variables. The same phenomenon is observed when hord takes 3

and hreg changes.

4. The proposed algorithm

To over the shortcomings of current HORSM, a new HORSM is proposed in this study. Hermite

polynomials are used to replace the Chebyshev polynomials in the new HORSM because the weight

functions of Hermite polynomials match the normal probability density functions, which benefit for

generating samples in construction of RSF. New strategies are designed to generate samples and

determine the highest orders of polynomials and cross terms. 

The aim of this study is to improve the efficiency of HORSM by reducing unnecessary additional

sampling points. To reduce unnecessary additional sampling points, it is desirable to classify the

significant and insignificant random variables because the cross terms between insignificant

variables provide little contribution to the total variation of output even though the actual limit state

function includes them. Only the cross terms between two significant variables are taken into

account in next step approximation. So the high-order RSF in this study can be expressed as

 

(7)

where sign represents the set of significant variables. 
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Table 1 The results by Gavin and Yau’s HORSM

hord k1 k2 k3 Pf (×10-4)
Function calls for 

determining ki

  Total function 
calls

 1.0  4  2  1  2.94  49  91

 2.0  4  2  1  2.94  49  91

 3.0  4  2  1  2.94  49  91

 4.0  4  2  1  2.94  49  91

 5.0  4  2  1  2.94  49  91

 6.0  4  2  1  2.94  49  91

 7.0  4  2  1  2.94  49  91
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4.1 Overall procedure

The major steps of the proposed method are detailed as following:

1. Use the sampling method described in section 4.2 to generate the sampling points for all input

random variables.

2. Determine the highest order of each random variable based on a regression model using

Hermite polynomials. 

3. Determine the significant variables which have important contribution to the total variation of

the limit state function.

4. Locate additional sampling points on two-dimensional Gaussian integration (also named as

Gaussian Points) points of two significant variables while the other variables are set to their

mean values. 

5. All sampling points generated in Step 1 and Step 4 are used to form system of equations, then

the coefficients of polynomials are evaluated by LSM.

6. Finally, MCS is carried out on the ultimately determined high-order RSF to estimate the failure

probability.

4.2 Sampling method

Sampling methods have been investigated by many researchers, and several practical techniques

have been established for structural reliability analysis, such as Bucher and Bourgund’s proposal

(Bucher and Bourgund 1990, Rajashekhar and Ellingwood 1993, Guan and Melchers 2001, Kaymaz

and McMahon 2005), factorial design scheme (Gavin and Yau 2008) and vector projection (Kim

and Na 1997, Das and Zhneg 2000), etc. The sampling method considering the probabilistic

distribution information of random variables was also studied in the literature (Rajashekhar and

Ellingwood 1993). In this paper, we use Gaussian points and variable transformation to develop a

new sampling method for HORSM in structural reliability analysis. 

For the sake of convenient discussion, we firstly assume that all input random variables are

mutually independent. The central sampling point is located at  in the standard

normal space usually denoted by u-space corresponding to the mean vector  in

the original variable space usually denoted by x-space. For a non-normal variable, it can be treated as

a normal variable by marginal transformation (Ditleven and Madsen 1996)

(8)

The sampling points firstly are generated in u-space. The jth component of the generated sampling

point is set to the Gaussian points uij ( , m is the number of Gaussian points of one-

dimensional integration) for ith input random variables while the rest components are set to

 in u-space. So a sampling points uij in u-space is given by Eq. (9)

, (9)

In practice, m is always taken an odd integer. In case all input random variables obey normal

distribution, the m Gaussian points are symmetrical about coordinate origin in u-space, hence the

total number of sampling points according to Eq. (9) is . For case with non-normal

distributed variables, the total number of sampling points according to Eq. (9) is  due to

.

u
µ

u
µ
1

u
µ
2
… u

µn
, , ,( )=

µ µ1 µ2 … µn, , ,( )=

u Φ
1–

FX x( )( )=

j 1 … m, ,=

u
µk

k 1 2 … n  k i≠, , , ,=( )

uij u
µ
1

u
µ
2
… u

µi 1–
uij u

µi 1+
… u

µn
, , , , , , ,( )= i 1 … n  j, , , 1 … m, ,= =

m 1–( )n 1+

m n×

u
µ

u
µ
1

u
µ
2
… u

µn
, , ,( ) 0 0 … 0, , ,( )≠=



A new high-order response surface method for structural reliability analysis 785

Clearly, the sampling points are located on coordinate axis for normally distributed variables, and

this sampling method can be viewed as an improvement of Bucher and Bourgund’s proposal (Guan

and Melchers 2001). After the sampling points are selected, they are transformed from u-space to x-

space by inverse marginal transformation when the input variables are mutually independent

(Ditleven and Madsen 1996)

(10)
, 

where  is the inverse cumulative distribution of input random variable Xi. A two-dimensional

example for normally distributed variables with m = 5 is shown in Fig. 1. 

It should be noted that if the input variables are dependent, there is a slight difference in

sampling. For the problem with a complete joint PDF, the inverse Rosenblatt transformation

(Rosenblatt 1952) can be used to solve the transformation from uij to xij needed for evaluating the

limit state function value. However, the joint PDF required in Rosenblatt transformation are seldom

available for the engineering problems with limited statistical data. Usually, the PDFs of each

random variable, denoted by , and the correlated matrix ρ are known for

engineering problems. For this incomplete probabilistic information case (Der Kiureghian and Liu

1986, Liu and Der Kiureghian 1986), the inverse Nataf transformation can be employed to obtain

the transformation from uij to xij. More details about Nataf transformation can be found in (Der

Kiureghian and Liu 1986, Liu and Der Kiureghian 1986).

4.3 The determination of highest polynomial orders

In order to eliminate the effects of the different physical meaning and dimensions of the basic

random variables on the RSF, data scaling shown in Eq. (11) is needed before approximation

, (11)

xij FXi

1–
Φ uij( )( ),= i 1 … n  j, , , 1 … m, ,= =

xij µ1 … µi 1– xij µi 1+ … µn, , , , , ,( )= i 1 … n, ,=

FXi

1–
·( )

fi xi( ) i 1 … n, ,=( )

xij′
xij µi–

σi

---------------= i 1 … n  j, , , 1 … m, ,= =

 Fig. 1 Sampling points for the determination of highest order in two-dimensional case
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The data scaling can reduce rounding error of computers and eliminate the ill-conditioned

problems. 

In the proposed method, the highest order for each random variables is determined in the case of

neglecting the cross terms. The limit state function is first approximated (Zhao and Ono 2001,

Rahman and Xu 2004) by  shown in Eq. (12)

(12)

where  is the evaluation performed at the mean vector of all input random

variables, and  represents that xi is the only random

variable with the other variables set equal to their mean values. The sampling points in ith

coordinate axis and the Hermite polynomials are employed to construct the response surface 

for gi

(13)

where  are the regression coefficients,  is ith order Hermite

polynomials. The first five order Hermite polynomials are given by

(14)

In practice, the order of Hermite polynomial is suggested not to beyond 5. If the coefficient ai of

 is less than a threshold value, then the effect of this term can be neglected. Thus, the highest

term also can be determined easily. The determination of this threshold value is a trade-off between

approximate accuracy and computational effort. If it is too small, more Hermite polynomials may be

included in the final RSF and then the computational effort would increases. If it is too large, some

polynomials would be missed and may lead to loss in approximate accuracy. Based on our

experience, we suggest taking 10−4 as the threshold value in this paper. This procedure is performed

on each variable one-by-one for determining of the valid highest order ki in Eq. (7). 

The method preserves the advantage reported by Gavin and Yau, i.e., one-dimensional

approximation instead of a multi-dimensional approximation is employed due to much more

computational efficiency, especially in cases involving a large number of random variables (Gavin

and Yau 2008). 

4.4 The determination of cross terms

It should be pointed out that the inclusion of cross terms without control will increase the

computational cost and may even lead to an inaccurate estimate if the condition number of the

normal equations becomes large. Once the valid highest order for each random variable are

determined, three criterions should be abided to keep the number of unknown coefficients of cross

terms as small as possible when adding cross terms into the response surface. The first one is that

only the cross terms between two significant variables are taken into account in the next

approximation. The significant variables and insignificant ones are identified through the

contribution of the corresponding random variables to the total variation, which is presented in the
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following context. The other two criterions are developed in Gavin and Yau (2008), i.e., (1) the

power pi of a variable in a mixed term should not be larger than the highest order of the variable

alone, i.e., ; (2) the sum of orders of variables in a mixed term should not be larger than the

highest order, .

The next step is to classify the significant variables and insignificant ones by their contributions to

the variation of the limit state function. Based on the approximation in Eq. (12), the variance of

 can be calculated by

(15)

where  is the standard deviation of the univariable function gi and it can be evaluated by the

Gassian-Hermite integral formulas shown in Eq. (17) (Zhao and Ono 2000)

(16)

(17)

where wj is the weights of Gauss-Hermite integration and xij is the corresponding values in x-space

of the Gaussian point in u-space, respectively. Because the sampling points in first stage locate on

Gaussian points, there is no need to perform additional function calls to accomplish the computation

in Eqs. (15)-(17). The percent contribution of each random variable to the variation of limit state

function g(x) can be evaluated by

(18)

Then the significance of each input variables can be measured by Pi. 

Actually, the significant variables should contribute the main variation of the limit state function,

such as 95%, which can guide the selection of them. In brief, we first sort Pi from large to small.

Secondly the first few contributions of the input random variables in this sequence are added

together until the total contribution of them is larger than 95%. Then the corresponding random

variables are viewed as significant variables. 

4.5 Final response surface approximation and assessment of failure probability

After the valid highest orders of each random variable and the valid cross terms have been

determined, the type of response surface function is also fixed. If the cross terms are included in the

final response surface function, additional sampling points are needed to form system of equations

for estimating the unknown coefficients. The random method, which selects randomly sampling

points over the defined domains of random variables, is often adapted to select the additional

sampling points in some real applications. However, a major disadvantage of the random method is

that it does not guarantee that the sampling points can cover the entire definition domains

uniformly.

In this study, the additional sampling points are located on the Gaussian points off axis in two-

dimensional plane (significant variables) while the rest of the random variables are set to their mean
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values. An example is shown in Fig. 2. The sampling points lie along axes denoted by circles have

been used to obtain the RSF without cross terms in section 4.2, while the solid points are the

additional samples for the determination of cross terms. 

When m samples are selected for a random variable along the axis, the highest possible order of

the corresponding polynomial is . According to the three criterions for selecting cross terms, if

the powers of two significant variables simultaneously reached at the highest possible value, i.e.,

, the total number of cross terms of them is  which is less than , the

number of additional sampling points. It can be concluded that the number of additional samples

generated at Gaussian points is absolutely sufficient for the least square estimators. A summary

about the maximum possible numbers of the cross terms and those of the additional sampling points

corresponding to different m is listed in Table 2. In practice, a part of Gaussian points which are off

axis, not whole, is randomly selected as the additional sampling points. 

Combining all samples generated for the determination of the highest orders of variables and the

cross terms, a well-conditional system matrix for regression is conducted to determine the unknown

coefficients by LSM, and the final RSF can be obtained.

At the last step, the failure probability is evaluated by Monte Carlo Simulation on the final

explicit RSF. Since the limit state function is approximated by the explicit expression, the

computation cost of Monte Carlo Simulation to obtain an accurate failure probability estimator can

be acceptable. 

m 1–

m 1– m 2–( ) m 1–( )/2 m 1–( )
2

 Fig. 2 Additional sampling points

Table 2 The maximum possible numbers of cross terms and those of the additional 
sampling points

 m
 The maximum possible number 

of cross terms
 The number of additional 

sampling points

 3  1  4

 5  6  16

 7  15  36
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5. Numerical examples

The proposed method is validated and demonstrated by five numerical examples. The first three

examples are explicit mathematical functions, while the first example has no cross terms but the

following two have. The last two examples have implicit limit state functions, which need to call

finite element software for deterministic structural analysis. In the given examples, comparisons are

made between the proposed HORSM and the various RSMs or Monte Carlo Simulation.

5.1 Example 1

The first example comes from Guan and Melchers (2001) with an explicit function

(19)

in which all random variables have standard normal distributions and are mutually independent. 

This problem was investigated by Guan and Melchers in detail, and it is shown that the failure

probability evaluations vary from 0.78 × 10−4 to 4.01 × 10−4 for different response parameters (Guan

and Melchers 2001). The failure probability of this limit state function is also evaluated by the

proposed HORSM described in section 3. Table 3 and Table 4 show the results for different m.

From Table 3, it is observed that in case m = 5 or 7, the highest orders of each variables identified

by the proposed method are exactly equal to the real values. The percent contributions of each

variable to the total variation are also listed in Table 3. It is shown that random variable x1 whose

contribution is less than 1% can be considered as an insignificant variable. The other two variables

are considered as significant variables. According to the criterions for adding cross terms, one cross

term, i.e., , is needed to be taken into account. But in the final response surface function, the

coefficients of  are 2.44 × 10−16 for m = 3, 1.28 × 10−15 for m = 5 and 9.89 × 10−17 for m = 7. It

is obvious that the effect of cross term can be neglected in the final result. So the limit state

function is approximated exactly with the proposed method though a cross term has been added to

the response surface. 

The exact solution using MCS with 109 simulations is 3.04 × 10−4. When m = 5 or 7, the same

results are obtained by MCS. When m = 3, the approximated response surface is 

g x( )
x1

4

40
------ 2x2

2
x3 3+ + +=

x2x3

x2x3

 

  

Table 3 Determination of highest order and evaluation of percent contribution of each variable

 m k1 k2 k3 P1 (%) P2 (%) P3 (%)

 3  2  2  1  0. 12  88.78  11.10

 5  4  2  1  0. 16  88.30  11.04

 7  4  2  1  0. 16  88.30  11.04

Table 4 Failure probabilities for example 1

 m  Pf (×10-4) Function calls for determining ki  Total function calls

 3  3.00  7  9

 5  3.21  13  15

 7  3.21  19  21



790 Hong-Shuang Li, Zhen-Zhou Lu and Hong-Wei Qiao

(20)

Based on Eq. (20), a comparable result, 3.00 × 10−4, is obtained by MCS with 106 simulations. 

The number of original limit state function calls is the same as the sample size. As seen from

Table 4, Only 15 function calls are needed to approximate exactly the limit state function, but 91

function calls are required by the HORSM proposed by Gavin and Yau. So the new HORSM

proposed in this study is more efficient than the old one.

In the next step, we change the standard deviations of input random variables from 1.0 to 0.8

which changes Pf from 3.04 × 10−4 to 2.1 × 10−5. The proposed HORSM identifies the true limit

state function for m = 5 and 7, while for m = 3, the response surface function is

(21)

which yields a failure probability of 2.0 × 10−5. 

5.2 Example 2

The second example which limit state function is shown in Eq. (22) is well known in FORM,

because it is not convergent when Hasofer-Lind and Rackwitz-Fiessler algorithm (Hasofer and Lind

1974, Rackwitz and Fiessler 1978) is used. Originally introduced by Wang and Grandhi (1996), the

failure probability estimation was investigated by Kaymaz and McMahon (2005) using a response

surface method based on weighted regression. The limit state function is

(22)

where x1 and x2 obey normal distributions with mean values  and standard

deviation . 

It behaves highly nonlinearity around design point as shown in Fig. 3. The results calculated by

various methods are summarized in Table 5 and Fig. 3. When m = 5 in this example, the number of

additional samples is selected twice as much as the number of the cross terms for the proposed

HORSM. Since the contributions of x1 and x2 are all relatively large, they are both considered as

g̃ x( ) 0.075x1

2
2x2

2
x3 3+ + +=

g̃ x( ) 0.048x1

2
2x2

2
x3 3+ + +=

g x( ) x1

3
x1

2
x2 x2

3
18–+ +=

µ1 10.0= µ2, 9.9=

σ1 σ2 5.0= =

Fig. 3 True limit state and comparison of sampling points for Example 2
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significant variables. After the highest orders are determined, three cross terms, i.e.,  and

, are added to the final response surface, however only one cross term  has significant

effect on the output because the regression coefficients of the other two cross terms are close to

zero. The proposed HORSM perfectly identifies the exact form of the limit state function in this

problem, so it provides an exact estimate of the failure probability. Gavin and Yau’s method also

gives the exact result for the present problem, but its computational cost is much higher than that of

the proposed method shown in Table 5. The result of Kaymaz and McMahon’ method has some

discrepancy with the exact result. 

Fig. 3 shows the sampling points involved in Gavin and Yau’s and the proposed HORSM. They

have almost the same range of sampling, but the proposed method produces more representative

samples. Referenced to Gavin and Yau’s HORSM with 54 function call, the proposed method with

only 15 function calls yields the exact solution.

5.3 Example 3

This example is taken from Gavin and Yau (2008) to compare the performance of the proposed

HORSM and Gavin and Yau’s method further. The limit state function is defined as

(23)

where all input random variables follow standard normal distribution and are mutually independent.

Gavin and Yau’s original paper contains a typographical error because the estimated failure

probability of this limit state function is 3.2833 × 10−2, obtained by a MCS with 106 samples in

NESSUS (2005), but not 9.5 × 10−5 asserted in their work. 

A comparison of results is shown in Table 6 and Fig. 4. The proposed method is quite efficient

and more accurate for the determination of the highest orders of variables with 9 sampling points,

x1

2
x2 x2

2
x1,

x1x2 x1

2
x2

g x( ) 0.16 x1 1–( )
3

x2– 4 0.04cos x1x2( )–+=

Table 5 Comparison of results for example 2

 Method k1 k2 P1 (%) P2 (%)  Pf (×10-3)
 Function calls 

for 
determining ki

 Function 
calls

 The proposed method (m = 5)  3  3  33.98  66.02  6.880  9  15

 Gavin and Yan’s method  3  3  --  --  6.880  34  54

 Kaymaz and McMahon’s method  2  2  --  --  5.396†  --  15

 NESUSS-MCS  --  --  --  --  6.880  --  106

†Kaymaz and McMahon 2005

Table 6 Comparison of results for example 3

 Method k1 k2 P1 (%) P2 (%)  Pf (×10−2)
 Function calls 
for determining 

ki

  Total 
function 

calls

 The proposed method (m = 5)  3  1  60.57  39.43  3.3661  9  13

 Gavin and Yan’s method  3  2  --  --  3.2466  25  43

 NESUSS-MCS  --  --  --  --  3.2833  --  106
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while 25 function calls are required for Gavin and Yau’s method. It can be found that the

contributions of x1 and x2 are all relatively large, they are both considered as significant variables.

Thus, two cross terms, i.e.,  and , are included in the final RSF. However, the coefficient

of  is so close to zero that the effect of  can be neglected. The true limit state function is

approximated as

 (24)

It produces an acceptable estimate value of 3.3661 × 10−2 for the failure probability estimation.

While Gavin and Yau’s method identifies three cross terms that lead to an increase in the

computational effort. As shown in Table 6, the total function calls of Gavin and Yau’s method is

thrice that of the proposed method in this study, but it achieves little increase on the accuracy of

failure probability. So the proposed HORSM is significantly more efficient than the existing one. 

5.4 Example 4

This example is a truss structure (Kim and Na 1997, Lee and Kwak 2006) that has an implicit

limit state function evaluated by finite element method. This structure has 23 members, as shown in

Fig. 5. The statistical parameters of input random variables are summarized in Table 7, in which E

represents Young’s modulus and A is the cross sectional area. The limit state function is defined as

the displacement at the center point (point C in Fig. 5) of the truss structure not beyond 11.0 cm

 (25)

The proposed HORSM is applied to this problem. There are significant diversity in the ranges of

input variables, so the data scaling method in Eq. (11) is adapted. Table 8 gives the results of the

highest order identification for m = 3 and m = 5. Table 9 shows the estimated contribution of each

variable to the total variation of the limit state function, and the failure probabilities estimated by

several methods are listed in Table 10. From Table 9, it can be seen that the total contribution of

random variable  and  is less than 4%, so they are ranked as insignificant variables and

x1x2 x1

2
x2

x1x2 x1x2

g̃ x( ) 0.16x1

3
0.4812x1

2
– 0.48x1 1.0091x2– 0.0017x1

2
x2– 3.8084+ +=

g x( ) 11.0 D x( )–=

x2 x4 x5, , x10

 Fig. 4 Comparison of approximated limit state and sampling points for Example 3
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the cross terms involving them are not taken into account in computational process. Integrated the

computational results in Tables 8 and 10, 9 cross terms are considered for the case of m = 3, and 30

cross terms for the case of m = 5. The size of additional samples is selected as the same of the

number of cross terms. For this problem, the reference solution can be found in Lee and Kwak’s

study (2006), i.e., = 8.33 × 10−3 listed in Table 10 (Lee and Kwak 2006). The results calculated

by the proposed method show a good agreement with the reference one. Lee and Kwak’s (2006)

Pf

 Fig. 5 Truss structure

Table 7 The statistical parameters of input random variables

Random variable Description Distribution type Mean Standard deviation

x1 E of horizontal member Log-normal 2100000(kg/cm2) 210000

x2 A of horizontal member Log-normal 20(cm2) 2

x3 E of diagonal member Log-normal 210000(kg/cm2) 21000

x4 A of diagonal member Log-normal 10(cm2) 1

x5 Load F1 Type-I-Largest 5000(kg) 750

x6 Load F2 Type-I-Largest 5000(kg) 750

x7 Load F3 Type-I-Largest 5000(kg) 750

x8 Load F4 Type-I-Largest 5000(kg) 750

x9 Load F5 Type-I-Largest 5000(kg) 750

x10 Load F6 Type-I-Largest 5000(kg) 750

Table 8 Determination of highest order of each variable in Example 4

Method k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

The proposed method (m = 3) 2 2 2 2 1 1 1 1 1 1

The proposed method (m = 5) 4 4 4 4 1 1 1 1 1 1

Table 9 Evaluation of percent contribution of each variable in Example 4 (%)

Method P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

The proposed method (m = 3) 37.08 1.26 37.08 1.26 0.46 3.65 7.55 7.55 3.65 0.46

The proposed method (m = 5) 37.05 1.26 37.05 1.26 0.46 3.66 7.60 7.60 3.66 0.46
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and Kim and Na’s (1997) methods also produce comparable estimations for this problem, but they

show larger deviation from the exact one than that of the proposed HORSM. The total number of

function calls for the proposed method with m = 3 is 30, and the total number of function calls of

Lee and Kwak’s method is 45. The Bucher and Bourgund’s quadratic response surface with

convergent strategy (Guan and Melchers 2001) (RSP takes 3) is also applied to this problem, and

the proposed HORSM exhibits more accurate and efficient than this convergent quadratic response

surface.

5.5 Example 5

In order to demonstrate the accuracy and efficiency of the proposed method further, a three-bay

five-storey frame structure, as shown in Fig. 6, with an implicit limit state function is employed as

the last example in this paper. This reliability problem has been studied by Liu and Der Kiureghian

(1991), Bucher and Bourgand (1990) and Guan and Melchers (2001), which involved correlated

Table 10 Comparison of failure probabilities for Example 4

Method m  Pf (×10−3) Function calls for determining ki Total function calls

The proposed method (m = 3) 3 8.39 21 30

The proposed method (m = 5) 5 8.28 41 71

Lee and Kwak’s method -- 8.80‡ -- 45

Kim and Na’s method -- 7.47†‡ -- --

Bucher and Bourgund’s RSM 
(convergent)

-- 9.52 -- 89

MCS -- 8.33‡ -- 105

‡Lee and Kwak 2006
†‡Kim and Na 1997

 Fig. 6 Three bay five storey frame structure
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random variables. 

There are 21 input random variables: (a) three lateral loadings denoted by , (b) two

moduli of elasticity denoted by E4 and E5, (c) eight moments of inertia denoted by Ij
, and (d) eight cross-sectional areas denoted by . The

statistical parameters and the structural data are summarized in Table 11 and Table 12, respectively.

All lateral loadings are assumed to be correlated by ρ = 0.95, and two moduli of elasticity are

correlated by ρ = 0.9. The cross-sectional areas and moment of inertias of each beam column

elements are highly correlated by ρ = 0.95, and other correlations between cross-sectional areas and

Pi i 1 2 3, ,=( )

j 6 7 … 13, , ,=( ) Ak k 14 15 … 21, , ,=( )

Table 11 Frame element properties

Element Moduli of elasticity Moments of inertia Cross-sectional area

B1 E4 I10 A18

B2 E4 I11 A19

B3 E4 I12 A20

B4 E4 I13 A21

C1 E5 I6 A14

C2 E5 I7 A15

C3 E5 I8 A16

C4 E5 I9 A17

Table 12 Statistical parameters of frame structure

Random variable Distribution type Mean Standard deviation

P1 Gumbel max 133.454 40.04

P2 Gumbel max 88.97 35.59

P3 Gumbel max 71.175 28.47

E4 Normal 2.173752×107 1.9152×106

E5 Normal 2.379636×107 1.9152×106

I6 Normal 0.813443×10-2 1.08344×10-3

I7 Normal 1.150936×10-2 1.298048×10-3

I8 Normal 2.137452×10-2 2.59609×10-3

I9 Normal 2.596095×10-2 3.028778×10-3

I10 Normal 1.081706×10-2 2.596095×10-3

I11 Normal 1.410545×10-2 3.46146×10-3

I12 Normal 2.327852×10-2 5.624873×10-3

I13 Normal 2.596095×10-2 6.490238×10-3

A14 Normal 0.312564 0.055815

A15 Normal 0.3721 0.07442

A16 Normal 0.50606 0.093025

A17 Normal 0.55815 0.11163

A18 Normal 0.253028 0.093025

A19 Normal 0.29116825 0.1023275

A20 Normal 0.37303 0.1209325

A21 Normal 0.4186 0.1395375
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moment of inertias are correlated as

 
(26)

 
All other random variables are assumed to be uncorrelated. 

The limit state function is defined as the top floor horizontal displacement u
x
 not exceeding

0.061 m

(27)

The deterministic analysis of the frame structure is computed using ANSYS Parametric Design

Language (APDL) (2007), so it is very easy to rewrite ADPL file for repeating the deterministic

structural analysis. 

Since only marginal probability density functions and their correlation matrix of the input

variables are available, the Nataf transformation is suitable for this problem. The proposed HORSM

identified the same significant variables for three values of m, that is,  and .

Table 13 shows the percent contributions of five significant variables. These five significant

variables contribute about 96% uncertainty in the variation of limit state function, so they can

reflect the main uncertainty source.

Nataf transformation based Monte Carlo Simulation (NBMCS) (Chang et al. 1993) is employed to

yield a reference estimate of failure probability with a sampling size N = 5 × 105. The failure

probabilities from the proposed HORSM are compared with these of NBMCS and Bucher and

Bourgund’s RSM in Table 14. The Bucher and Bourgund’s RSM in the fifth row of Table 14 is

updated only once, which requires fewer computations of the limit state function than the proposed

HORSM. In fact, if Bucher and Bourgund’s response surface is updated until the convergence

(Guan and Melchers 2001) is reached, the function calls is 221 and the failure probability is

3.95 × 10−4. Table 14 clearly indicates that the proposed HORSM with m = 7 yields the most

ρAiAj
ρIiIj

ρIiAj
0.13= = =

g x( ) 0.061 u
x

–=

P1 E4 I8 I11, , , I12

Table 13 Evaluation of percent contribution of significant variable in Example 5 (%)

Method 

The proposed method (m = 3) 83.48 4.41 1.13 3.76 3.15

The proposed method (m = 5) 83.41 4.41 1.13 3.79 3.17

The proposed method (m = 7) 83.42 4.41 1.13 3.79 3.17

Table 14 Comparison of failure probabilities for Example 5

Method m  Pf (×10−4) Function calls for determining ki Total function calls

The proposed method (m = 3) 3 2.65 43 63

The proposed method (m = 5) 5 3.80 85 129

The proposed method (m = 7) 7 4.68 127 171

Bucher and Bourgund’s RSM -- 5.00‡‡ -- 87

Bucher and Bourgund’s RSM 
(convergent)

-- 3.95 -- 221

NBMCS -- 4.67 -- 5×105

‡‡Bucher and Bourguna 1990

PP
1

PE
4

PI
8

PI
11

PI
12
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accurate estimate than other methods and the other values of m can also yield a comparable

estimate to the convergent Bucher and Bourgund’s response surface with a small number of

samples. 

6. Conclusions

This study devotes to improve the accuracy and the efficiency of response surface method for

structural reliability analysis. A new high-order response surface method (HORSM) is proposed for

this purpose. The proposed method employs Hermite polynomials and the one-dimensional

Gaussian points as sampling points to determine the highest order of each variables. This method

needs only (m−1)n + 1 or  function calls for the determination of highest orders (n is the

number of random variables, and m, which is an odd number, is the sampling size for one

variables). Then, the significant random variables, which have important contributions to the output

variation, are screened out by a method designed using Gauss-Hermite integration. Only the cross

terms between two significant random variables are considered in the final RSF. Additional

sampling points are located at two-dimensional Gaussian points. Combining two parts of sampling

points, a least square method based on Hermite polynomials is performed to obtain the unknown

coefficients of high-order RSF. Finally, a Monte Carlo Simulation is carried out on the high-order

response surface to estimate the failure probability. As demonstrated by the numerical examples, the

proposed method shows more efficient than Gavin and Yau’s HORSM. Since the proposed HORSM

can capture the nonlinearity of the true limit state function and has no iteration compared with other

second-order or linear RSM available now, it is therefore more accurate and efficient. 

The proposed method could be further improved by an iterative strategy and including the cross

items between three or above significant variables. However, it would involve some other problems

such as the increase in computational cost, multiple design points etc, which needs further

investigations. 
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