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Abstract. In classical higher-order discontinuous boundary element formulation for two-dimensional
elastostatics, interpolation functions for different boundary variables (i.e., boundary displacements and
tractions) are assumed to be the same. However, there is a derivational relationship between these
variables. This paper presents a boundary element formulation, called Mixed Boundary Element
Formulation, for two dimensional elastostatic problems in which above mentioned relationship is taking
into account. The formulations are performed by using discontinuous first and second-order mixed
boundary elements. Based on the formulations presented in this study, two computer softwares are
developed and verified through some example problems. The results show that the present formulation is
credible.

Keywords: boundary element method; discontinuous mixed boundary element; two dimensional
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1. Introduction

As is well known, the boundary element method (BEM) in elasticity is based on displacement

boundary integral equation formulations of boundary value problems. The BEM has been applied

quite successfully to two dimensional elastostatic problems (Brebbia and Dominguez 1989, Banerjee

1994). 

The BEM employing discontinuous higher-order elements where the nodes are all placed

internally offers the advantage of high accuracy for two dimensional elastostatic problems (Dyka

and Millwater 1989, Zhang and Zhang 2003). Also, the discontinuous boundary elements have

advantages of effectively tackling the corner nodes effect, discontinuous traction etc. (Zhang and

Zhang 2003).

In classical higher-order discontinuous boundary element formulation for two-dimensional

elastostatics, interpolation functions for different boundary variables (i.e., boundary displacements

and tractions) are assumed to be the same. However, there is a derivational relationship between

these variables. This paper presents a boundary element formulation, called Mixed Boundary
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Element Formulation, for two dimensional elastostatic problems in which above mentioned

relationship is taking into account. In the formulation first-order and second-order mixed boundary

elements are used.

In the first-order discontinuous mixed boundary element formulation, the boundary of the two

dimensional domain is divided into several linear boundary elements having two nodes. It is

assumed that, variation of the displacement is linear whereas the traction is constant over the

elements. This assumption is based on the fact that the traction on a boundary is space derivative of

the displacement of that boundary. Similarly, in the second-order discontinuous mixed boundary

element formulation, the boundary of the two dimensional domain is divided into several quadratic

elements having three nodes, variation of the displacement is taken as quadratic and the traction is

assumed to be linear over the elements. Thus, without reducing the accuracy of the solution is

aimed to reduce the total number of unknowns and the computing time of the solution. 

In contrast to other discretization methods, the Boundary Element Methods involve the nearly

singular integrals. Nearly singular integrals are occurred when the source point is close to the field

point. Evaluation of the nearly singular integrals is not a simple task. There are several techniques

available in literature to evaluate the nearly singular integrals (Liu et al. 1993, Sladek and Sladek

1998, Sladek et al. 2001).

In this paper, depending on the order of the formulation, the nearly singular integrals are

evaluated by semi-analytical or numerical techniques which are both discussed in the third section

in detail. 

Based on the formulation, two computer softwares, namely, BEMLC and BEMQL (for

discontinuous first and second-order mixed boundary element formulation respectively) are

developed for solving two-dimensional problems in elastostatics. The softwares have been verified

through the analysis of sample problems.

The classical boundary element formulation for two-dimensional elastostatics is well established

in literature (Brebbia and Dominguez 1989, Banerjee 1994, Manolis and Beskos 1987, Mengi et al.

1994). For the sake of completeness, some basic equations of the formulation are presented below.

2. Boundary element equation for two dimensional elastostatics

In the absence of body forces, the boundary element equation for two-dimensional elastic domain

can be written as 

(1)

Here, A and P are source (fixed) and field (integration) points respectively (see Fig. 1), ui and ti
are displacement and traction components of the points A and P respectively. c�i is a constant

depending on the location of A. G�i and H�i represent first and second fundamental solutions. In

writing Eq. (1), the indicial notation is used, and it is assumed that the indices appearing in this

equation have the range from 1 to 2. Repeated index implies summation over the range of that

index. 

Boundary element equation, Eq. (1), can be rewritten in matrix form as

c�iui A( ) G�i A P,( )ti P( ) Sd
S

∫ H�i A P,( )ui P( ) Sd
S

∫–=
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(2)

In Eq. (2), c is a matrix which is 

I, if A is an interior point

     c = 0, if A is outside of the domain V

½ I, if A is on the boundary S

where I is identity matrix. It may be noted that the last expression above does not hold when A is a

corner point (Brebbia and Dominguez 1989). The fundamental solutions G and H of elastostatics

have been presented in literature by taking the auxiliary system as infinite (Mengi et al. 1994). The

unknown displacement and traction components (boundary quantities) on the boundary S can be

determined by solving the boundary element equation together with boundary conditions.

3. Numerical solution of boundary element equation 

The boundary element equation can be solved numerically by discretizing the boundary S into

small discontinuous boundary elements (see Fig. 2) and using some shape functions for the

approximation of the distribution of boundary quantities over the elements.

3.1 Discontinuous first-order mixed boundary element formulation

In the discontinuous first-order mixed boundary element formulation, it is assumed that the

variations of the displacements are linear and stresses are constant over the element. 

For the numerical solution, the boundary is discretized into N discontinuous linear boundary

elements and two nodal points are placed within the elements (see Fig. 3). 

When the boundary element equation, Eq. (2), is written at the kth node of the mth boundary

element ( , k = 1, 2), in view of discontinuous first-order mixed element formulation, one gets 

cu A( ) G A P,( )t P( ) Sd
S

∫ H A P,( )u P( ) Sd
S

∫–=

⎩
⎪
⎨
⎪
⎧

Pm

k

Fig. 1 A two dimensional elastic domain
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(3)

It should be noted that, in the discontinuous element approach, the node  is not a corner point.

Thus, in writing Eq. (3), c = ½ I is used.

According to the discontinuous first-order mixed element formulation, coordinates of a point on

the boundary element and its displacement and traction components can be defined as 

(4)

(5)

(6)

1

2
---Iu Pm

k( ) G Pm

k
P,( )t P( ) Sd H Pm

k
P,( )u P( ) Sd

S
n

∫
n 1=

N

∑–
S
n

∫
n 1=

N

∑=

Pm

k

xi φk ξ( )xi

k

k 1=

2

∑=

ui φk ξ( )ui

k

k 1=

2

∑=

ti ψk ξ( )ti
k

k 1=

2

∑=

Fig. 2 Boundary element discretization of the body

Fig. 3 A typical discontinuous linear boundary element
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where  and  (k = 1, 2) denote the global coordinates, displacements and stresses of the nodal

points respectively, ξ is the natural coordinate of the point, φks (k = 1, 2) are the linear shape

functions which are given in the natural coordinates by

, , (7)

where ξ1 and ξ2 are the natural coordinates of first and second nodal points respectively, and the

stress interpolation functions ψks are selected as

,  (8)

Thus, the stress values over the element are taken as constant and equal to the stress values at the

first nodal point of that element.

Using Eqs. (5) and (6), Eq. (3) can be rewritten as 

(9)

where  and  denote the traction and displacement vectors at sth nodal point of the nth

element, respectively. It should be noted that, the integration parameter dS in Eq. (3) is transformed

as

(10)

where J is the Jacobian. Since the linear element assumption, here, the Jacobian is constant and

equals to half of the element length. The shape function matrices (φs, ψs) in Eq. (9) are

;  (11)

If the following definitions are made

, (12)

Eq. (9) can be rewritten as

(13)

When Eq. (13) is written for the source points  (k = 1, 2) of the mth element and combined,

the following expression is obtained

(14)

where the matrix and vectors are

xi

k
ui

k, ti
k

φ1 ξ( )
ξ2 ξ–

ξ2 ξ1–

---------------⎝ ⎠
⎛ ⎞ , φ2 ξ( )

ξ ξ1–

ξ2 ξ1–

---------------⎝ ⎠
⎛ ⎞

== 1– ξ1 0< < 0 ξ2 1< <

ψ1 1= ψ2 0=

1

2
---Iu Pm

k( ) JG Pm

k
P,( )ψs ξd

1–

1

∫ t Pn

s( ) JH Pm

k
P,( )ϕs ξd

1–

1

∫ u Pn

s( )
s 1=

2

∑
n 1=

N

∑–
s 1=

2

∑
n 1=

N

∑=

t Pn

s( ) u Pn

s( )

Sd J ξd
x1 ξ( )d

ξd
---------------

2 x2 ξ( )d

ξd
---------------

2

+ ξd= =

ϕs

φs 0

0 φs

= ψs

ψs 0

0 ψs

= s 1 2,=( )

Gks

mn
JG Pm

k
P,( )ψs ξd

1–

1

∫= Hks

mn
JH Pm

k
P,( )ϕs ξd

1–

1

∫=

1

2
---Iu Pm

k( ) Gks

mn
t Pn

s( ) Hks

mn
u Pn

s( )
s 1=

2

∑
n 1=

N

∑–
s 1=

2

∑
n 1=

N

∑=

Pm

k

c
m
u
m

G
mn

t
n

H
mn

u
n

n 1=

N

∑–
n 1=

N

∑=
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(15)

After the Eq. (14) is written for all boundary elements (m = 1, …, N) and combined, the system

equations of BEM can be obtained in matrix form 

 (16)

where

(17)

with δmn is Kronecker’s delta. The elements G
mn and H

mn may be computed numerically by using

Gaussian Quadrature Formula.

The solution of Eq. (16), together with the prescribed boundary conditions, determines

numerically the unknown boundary quantities. Having determined unknown boundary quantities, if

desired, the interior displacements and stresses can be computed numerically using the boundary

quantities (Mengi et al. 1994).

Calculation of singular integrals 

The matrices  and  which appear on the diagonals of the system matrices  and  in

Eq. (16) are written as

(18)

where k denotes the number of the source point, and s indicates the shape function’s number

(k, s = 1, 2).

In these equations, source nodal point  and field point P are on the same element Sm. We note

that Eqs. (18) are defined in the sense of Cauchy principle value, that is, Sm in Eqs. (18) does not

include the source point . Even so, since the points  and P are on the same element, in the

case of k = s the distance r between them might become very small, which makes the integrals in

Eqs. (18) nearly singular (see Fig. 4).

For the first fundamental solution case, the singular integral is divided into two integral which

contain ln(1/r) and (1/r) singularities. Hence, the first fundamental solution is written as

(19)

where x�(ξ) and xi(ξ) (�, i = 1, 2) denote the coordinates of field point;  and ai indicate the

G
mn G11

mn
 G12

mn

G21

mn
 G22

mn

= , H
mn H11

mn
 H12

mn

H21

mn
 H22

mn

=

u
n u Pn

1( ) 

u Pn

2( ) 
= , t

n t Pn

1( ) 

t Pn

2( ) 
, c

m
=

1

2
---I 0

0 
1

2
---I

=

H̃ũ G̃t̃=

G̃ G
mn( ); H̃ H

mn 1

2
---Iδmn+⎝ ⎠

⎛ ⎞ ; ũ u
n( ); t̃ t

n( )= = = = m n, 1 2 … N, , ,=( )

Gks

mm
Hks

mm
G̃ H̃

Gks

mm
G Pm

k
P,( )ψs S; Hks

mm
d

S
m

∫ H Pm

k
P,( )ϕs Sd

S
m

∫= =

Pm

k

Pm

k
Pm

k

G�i

kk
A BJψkln 1/r( )δ�i ξd

1–

1

∫ Jψk

x� ξ( ) a�–

r
----------------------⎝ ⎠
⎛ ⎞ xi ξ( ) ai–

r
---------------------⎝ ⎠
⎛ ⎞ ξd

1–

1

∫+=

a�
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coordinates of the source point, A and B are material constants defined as follows

; (20)

In the computation of , the integral with singularity (1/r) in Eq. (19) is calculated numerically

by using Gaussian Quadrature. For the calculation of the integral with singularity ln(1/r), the

distance r (see Fig. 4) is redefined as

(21)

where ξ1 denotes the natural coordinate of the first source point (see Fig. 4). Hence, the integral

with singularity ln(1/r) is calculated analytically by using following equation

(22)

On the other hand, due to the second shape function ψ2 is equal to zero,  becomes zero.

The elements of matrix , which include the second fundamental solution, can be obtained by

means of the condition of rigid body movement as in Eq. (23) (Brebbia and Dominguez 1989).

(for m ≠ n and k ≠ s)  (23)

3.2 Discontinuous second-order mixed boundary element formulation

In discontinuous second-order mixed boundary element formulation we assume that the variation

of the displacements and stresses over the element are quadratic and linear, respectively.

For the numerical solution, the boundary is discretized into N discontinuous quadratic boundary

elements and three nodal points are placed within the elements (see Fig. 5). 

In this case, coordinates of a point on the boundary element and its displacement and traction

components can be defined in terms of the nodal values as

A
1

8πµ 1 ν–( )
--------------------------= B 3 4ν–=

G�i

11

r J ξ ξ1+=

BJψ
1
ln 1/r( )δ

�i ξd
1–

1

∫ BJδ
�i 2 1 ξ

1
–( )ln 1

J 1 ξ1–( )
--------------------⎝ ⎠
⎛ ⎞ 1 ξ

1
+( )ln 1

J 1 ξ1+( )
---------------------⎝ ⎠
⎛ ⎞

+ +=

G
�i

22

Hkk

mm

Hkk

mm
Hks

mn

s 1=

2

∑
n 1=

N

∑–=

Fig. 4 Singular element
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(24)

(25)

(26)

Here, φks (k = 1-3) are the quadratic shape functions which are given in the natural coordinates by

(27)

where ξ1 ( ) and ξ3 ( ) are the natural coordinates of first and third nodal points,

respectively, and the stress interpolation functions ψks are selected as

(28)

Thus, the variations of the stress values over the element are assumed to be linear in terms of first

and third nodal values.

Using Eqs. (25) and (26), Eq. (3) can be rewritten as

(29)

where all the terms are defined as the same as Section 3.1. When the formulation steps similar in

Section 3.1 are followed, similar system equation is obtained and solved for unknown boundary

quantities. It should be noted that, in this case, the singular integrals existing in the first

fundamental solution are calculated numerically by using Gaussian Quadrature (Becker 1992).

xi φk ξ( )xi

k

k 1=

3

∑=

ui φk ξ( )ui

k

k 1=

3

∑=

ti ψk ξ( )ti
k

k 1=

3

∑=

φ
1

ξ( )
ξ ξ ξ3–( )

ξ1 ξ1 ξ3–( )
-------------------------, φ

2
ξ( ) 1

ξ ξ3 ξ1 ξ–+( )
ξ1ξ3

-------------------------------, φ
3

ξ( )–=
ξ ξ ξ1–( )

ξ3 ξ3 ξ1–( )
-------------------------= =

1– ξ1 0< < 0 ξ3 1< <

ψ1 ξ( )
ξ3 ξ–

ξ
3

ξ
1

–

---------------⎝ ⎠
⎛ ⎞ ; ψ2 0; ψ3 ξ( )

ξ ξ1–

ξ
3

ξ
1

–

---------------⎝ ⎠
⎛ ⎞

= = =

1

2
---Iu Pm

k( ) J ξ( )G Pm

k
P,( )ψs ξd

1–

1

∫ t Pn

s( ) J ξ( )H Pm

k
P,( )ϕs ξd

1–

1

∫ u Pn

s( )
s 1=

3

∑
n 1=

N

∑–
s 1=

3

∑
n 1=

N

∑=

Fig. 5 A typical discontinuous quadratic boundary element
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4. Numerical examples

In this section, some numerical examples are solved for the verification of the present formulation.

To this end, based on the abovementioned formulation, two computer softwares have been

developed, namely, BEMLC (for the discontinuous first-order mixed boundary element formulation)

and BEMQL (for the discontinuous second-order mixed boundary element formulation).

Three examples are solved by using the softwares to demonstrate the suitability and accuracy of the

present formulation comparing with the results obtained by analytically and using constant,

discontinuous pure linear and discontinuous pure quadratic boundary element formulations in the

literature.

In the analysis, the nodal locations of the discontinuous first-order mixed boundary elements are

selected as ξ1 = −1/2 and ξ2 = 1/2 and the integrals are performed by using ten-point Gaussian

Quadrature rule. The nodal locations of the discontinuous second-order mixed boundary elements

are selected as ξ1 = −2/3, ξ2 = 0, ξ3 = 2/3 and the integrals are fulfilled by using six-point Gaussian

Quadrature rule.

4.1 Circular disk problem

This example considers a circular disk of radius a subjected to a uniaxial compressional force p as

shown in Fig. 6(a). Except the points C and D where the force p is applied, the boundary of the

disk is free of tractions. Symmetry conditions reduce the problem to the one shown in Fig. 6(b),

where along the horizontal line AB the vertical displacement and horizontal traction vanish

(u2 = t1 = 0 along AB). Here, the stress component τ22 along the horizontal line AB is investigated.

This plane stress problem is solved by using the software BEMLC and BEMQL. The analysis is

carried out in nondimensional space. The nondimensional variables are defined as

 (30)

where d = 2a is the diameter of the disk and µ is the shear modulus. In the analysis, Poisson’s ratio

and non-dimensional force are taken as ν = 0.25 and = 1. Using symmetries, only one half of the

disk is modeled using 40 and 15 elements for horizontal line AB and the circular line BCA,

respectively as shown in Fig. 7. The vertical applied load acting at the point C is uniformly

distributed over the element 48 of length 0.104 (see Fig. 7), which results in a traction value

(31)

for that element.

The distribution of the stress component τ22 along the horizontal line AB obtained BEMLC and

BEMQL is compared with the results obtained by constant BEM (BEMCC) (Mengi et al. 1994),

discontinuous pure linear BEM (BEMLL) (Severcan 2004), discontinuous pure quadratic BEM

(BEMQQ) (Severcan 2004) and the exact one in Fig. 8, where the non-dimensional  is defined by

(32)

x i

xi

d
---; u i

ui

d
----; t i

ti

µ
---= = = i 1 2,=( )

p
p

µd
------; µ

µ

µ
--- 1= ; d

d

d
--- 1= = = =

p

t 2
1

0.104
-------------– 9.62–= =

τ 22

τ 22

τ
22

d

p
---------=
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The exact distribution is computed by using

(33)

which is given in (Timoshenko and Goodier 1970). The Fig. 8 shows that discontinuous mixed

BEM solutions compare very well with the exact, BEMLL and BEMQQ solutions. In this example,

the BEMCC solution highly differs from the others especially at the end points of the region.

In Table 1, the type of the interpolation functions, the total numbers of boundary elements,

boundary quantities and boundary unknowns used for alternative solution techniques are presented.

It can be clearly seen from the table that, the use of BEMLC instead of BEMLL reduces the total

number of unknown boundary quantities from 220 to 180, which means a drastic decline in the

computing time, without reducing the accuracy of the solution. Similarly, the use of BEMQL

τ22

2p

πd
------ 1

4d
4

d
2

4x1

2
+( )

2
-------------------------–=

Fig. 6 Circular disk subjected to a uniaxial compressional force p

Fig. 7 Network used in circular disk problem
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instead of BEMQQ reduces the number of unknown boundary quantities significantly. 

4.2 Rigid strip on a half space

A rigid strip of width 2b welded to the top surface of a half space is considered (see, Fig. 9). The

half space is made of an isotropic elastic material. The rigid strip is under the influence of a vertical

uniform line load P along x3 axis. The parts (B) of the top surface outside the strip foundation are

free of tractions. Here, the vertical stress distribution underneath the foundation is investigated. 

This plane strain problem is solved by using the software BEMLC and BEMQL. The network

used in BEM analysis is shown in Fig. 10. The upper boundary is truncated at the points C and D.

The region CA, AB and BD are subdivided into 80, 40 and 80 subsegments respectively. Total

number of elements is 200. The following non-dimensional variables and parameters are used in the

analysis

 

 (34)

x i

xi

b
---; u

i

ui

b
----; t i

ti

µ
---= = = i 1 2,=( )

p
p

µb
------; µ

µ

µ
--- 1= ; τ 22

τ22b

p
---------;= b

b

b
--- 1= = = =

Fig. 8 The distribution of the stress component τ22 along the horizontal line AB

Table 1 Comparison of some parameters used in Circular Disk Problem 

Software
Interpolation function for:

Total number of 
boundary elements

Total number of 
boundary 
quantities

Total number of 
boundary 
unknownsDisplacement Traction

BEMCC Constant Constant 55 220 110

BEMLC Linear Constant 55 330 180

BEMLL Linear Linear 55 440 220

BEMQL Quadratic Linear 55 550 290

BEMQQ Quadratic Quadratic 55 660 330
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In the computations, Poisson’s ratio is taken as ν = 0.25. 

Our object in this problem is to obtain the vertical stress distribution underneath the foundation by

discontinuous mixed BEM (BEMLC and BEMQL) and compare it with the results obtained by the

BEMCC (Mengi et al. 1994), BEMLL (Severcan 2004), BEMQQ (Severcan 2004) and with the

exact one given in (Saada 1974) as

(35)

The boundary conditions for the top surface of the half space are as follows

 on A (the region underneath the foundation)

 (36)
 on B

The distribution of stress component τ22 along the line AB obtained by discontinuous mixed BEM

τ22

P

π b
2

x1

2
–

----------------------–=

u
1

0= ; u
2

1=

t 1 0; t2 0==

Fig. 9 Rigid strip on a half space

Fig. 10 Network used in rigid strip problem
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is presented and compared with the exact one and with the results obtained by BEMCC, BEMLL

and BEMQQ solutions in Fig. 11. 

The type of the interpolation functions, the total numbers of boundary elements, boundary

quantities and boundary unknowns used for alternative solution techniques in this problem are

presented in Table 2. Again, it can be seen from the table that, the use of BEMLC and BEMQL

instead of BEMLL and BEMQQ reduces the number of unknown boundary quantities significantly. 

4.3 Infinite plate with a circular hole

In this example, considering that a plate of horizontal length L1 = 20 m. and vertical length L2 =

containing a circular hole of radius a = 1 m and subjected to a uniaxial tensile stress σ0 as seen in

Fig. 12.

Because of symmetry conditions, only a quarter of the plate is considered and modeled as shown

in Fig. 13. Due to the vertical length L2 = , there is no element at the boundary EF as seen in

Fig. 13. Note that small elements are placed in the region of expected rapid variation of stresses

around the hole. Here, the tangential stress σθ along the vertical line GA is investigated.

This plane stress problem is analyzed by using the softwares BEMLC and BEMQL. In the

analysis, Poisson’s ratio, Elasticity module and tensile stress are taken as ν = 0.3, E = 1 N/m2,

σ0 = 1 N/m2, respectively.

∞

∞

Fig. 11 The distribution of the stress component τ22 along the contact boundary AB

Table 2 Comparison of some parameters used in Rigid Strip On a Half Space

Software

Interpolation function for: Total number of 
boundary
elements

Total number of 
boundary 
quantities

Total number of 
boundary 
unknownsDisplacement Traction

BEMCC Constant Constant 200 800 400

BEMLC Linear Constant 200 1200 720

BEMLL Linear Linear 200 1600 800

BEMQL Quadratic Linear 200 2000 1120

BEMQQ Quadratic Quadratic 200 2400 1200
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The distribution of tangential stress σθ along the vertical line GA around circular hole in an

infinite plate obtained BEMLC and BEMQL is compared with the results obtained by the BEMCC

(Mengi et al. 1994), BEMLL (Severcan 2004), BEMQQ (Severcan 2004) and the analytical solution

in Fig. 14. The analytical solution for the tangential stress around a hole in an infinite plate is

computed by using

Fig. 12 Infinite plate with a circular hole subjected to a uniaxial tensile stress

Fig. 13 Network used in circular hole problem
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(37)

which is given in (Timoshenko and Goodier 1970). Here, a is the radius of the circular hole and r is

the distance from the centre of the hole. The Fig. 14. shows that discontinuous mixed BEM solution

compares very well with the exact one, however, in the light of the results numerous run over

various mesh, although, discontinuous mixed BEM solutions are unexpectedly unusual around the

hole and at the end points of the region in which stress varies rapidly, on the other hand, BEMLC

and BEMQL solutions are slightly better approached to the exact one compared with the BEMCC,

BEMLL and BEMQQ solutions. 

Here, we compare the type of the interpolation functions, the total numbers of boundary elements,

boundary quantities and boundary unknowns used for alternative solution techniques once again in

Table 3, to highlight the advantages of the use of BEMLC and BEMQL instead of BEMLL and

BEMQQ. 

5. Conclusions

In this study, two discontinuous mixed boundary element formulations for 2D elastostatic

problems are presented. The formulations are performed by using discontinuous first-order and

σθ
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a
2

r
2
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a
4
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⎛ ⎞

=

Fig. 14 The distribution of tangential stress σθ along the vertical line GA

Table 3 Comparison of some parameters used in Infinite Plate with a Circular Hole

Software

Interpolation function for: Total number of 
boundary 
elements

Total number of 
boundary 
quantities

Total number of 
boundary 
unknownsDisplacement Traction

BEMCC Constant Constant 120 480 240

BEMLC Linear Constant 120 720 406

BEMLL Linear Linear 120 960 480

BEMQL Quadratic Linear 120 1200 646

BEMQQ Quadratic Quadratic 120 1440 720
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second-order mixed boundary elements. Based on these formulations, general purpose computer

softwares (BEMLC and BEMQL) are developed and they are applied to 2D elastostatic problems.

The formulations and the computer softwares developed in this study are assessed by applying

them to three example problems. The results are compared with those obtained by exact ones and

the results obtained by constant BEM, discontinuous pure linear and discontinuous pure quadratic

BEM solutions. The comparisons indicated that, the use of the mixed boundary element formulation

diminishes the number of boundary unknowns without any reduction in the accuracy of the solution.

This advantage will probably be more important in the elastostatic analysis of the problem having a

complex geometry required an intensive meshing on the boundary. Hence, the formulations and the

softwares developed in this study could be used with a good confidence in the elastostatic analysis

of 2D problems.
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