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Analytical solution of two-layer beam including 
interlayer slip and uplift
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Abstract. A mathematical model and its analytic solution for the analysis of stress-strain state of a
linear elastic two-layer beam is presented. The model considers both slip and uplift at the interface. The
solution is employed in assessing the effects of transverse and shear contact stiffnesses and the thickness
of the interface layer on behaviour of nailed, two-layer timber beams. The analysis shows that the
transverse contact stiffness and the thickness of the interface layer have only a minor influence on the
stress-strain state in the beam and can safely be neglected in a serviceability limit state design.
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1. Introduction 

Layered beams belong to a group of innovative structural elements, usually classified as
composite structures, whose usage increases in all branches including civil engineering. There is a
number of good reasons for such an increase ( as et al. 2004a, Oehlers et al. 1997, Pendhari et al.

2006, Salari et al. 1998). The application of composite beams is widespread in designing both new
structures and in the rehabilitation of existent constructions. 

The basic theories of composite beams were developed in the middle of the last century after a
number of experimental observations had confirmed that the flexible contact between the layers
played an important role in behaviour. An extensive overview of the early experimental work was
presented by Viest (1960). The first mathematical theories of flexibly connected layers of composite
beams were developed independently in Sweden (Granholm 1949), Russia (Pleshkov 1952),
Switzerland (Stüssi 1947) and in the United States of America (Newmark 1951). Most of
subsequent theories consider linear elastic behaviour and small displacements (Suzuki and Chang
1979, Girhammar and Gopu 1993, Nie and Cai 2003, Ranzi et al. 2003, Sun and Bursi 2005,
Schnabl et al. 2006, 2007a, Xu and Wu 2007). A number of theories also consider some non-
linearity, as, e.g., Rassam and Goodman (1970), Thompson et al. (1975), Hirst and Yeo (1980),
Betti and Gjelsvik (1996), Wang (1998), Salari et al. (1998, 2001), Fabbrocino et al. (1999, 2000),
Gattesco (1999), Van der Linden (1999), Manfredi et al. (1999), Milner and Tan (2001), Nguyen et
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al. (2001), Rahimi and Hutchinson (2001), Seracino et al. (2001), Rasheed and Pervaiz (2002),
Ayoub (2005), who considered material non-linearities, and Wheat and Calixo (1994), as et al.

(2004b), Girhammar and Pan (2007), Ranzi and Bradford (2007), who took into account both
material and geometric non-linearities, yet in a rather simplified manner. as et al. (2004a) seems to
be the first to introduce a fully consistent materially and geometrically non-linear model of
composite engineering beams. 

The majority of the analysis procedures take into consideration solely an interlayer slip between
the layers neglecting uplift. The mathematical models that consider both slip and uplift in the
contact were proposed only by Adekola (1968), Robinson and Naraine (1988) and Gara et al.

(2006). Their mathematical models consider geometrically and materially linear behaviour (Adekola
1968, Robinson and Naraine 1988), or a bilinear constitutive law of materials (Gara et al. 2006). 

This paper discusses the effect of slip and uplift at the contact interface on mechanical behaviour
of two-layer elastic beams considering the geometrically linear planar beam theory. In particular, we
investigate a combined effect of slip and uplift on the stress and strain state. The linear shear force-
slip and transverse force-uplift relationships are considered for shear connectors. The contact of
layers where slip and uplift actually occur, is modelled with an additional fictitious layer of small
thickness. 

Finally, an engineering analysis of behaviour of a nailed, two-layer, timber, simply supported
beam is presented, in which the given distribution of forces in connectors as a function of shear and
transverse stiffnesses as well as the thickness of the connecting layer is believed to be of a
particular interest to designers. 

2. Mathematical model of a two-layer composite beam 

For the sake of simplicity of the derivation, only a two-layer beam is considered (Fig. 1). The
equations of a multi-layer beam can be derived similarly. 

We assume that each layer suffers small deformations, so that the geometrically linear beam
model is sufficient (Fig. 2). The material is assumed to be linear elastic. 

During deformation, the layers slip over each other and may separate. If layers are very stiff
compared to connectors, or if they are not connected, both slip and uplift occur at the contact. If
one layer is much softer than the other or if both layers are nearly as stiff as the connectors, slip
and uplift are small and can thus be attributed to a thin connecting layer. 

C
ê

C
ê

Fig. 1 Cross-section of a typical two-layer beam 
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For this reason, slip and uplift are in the present paper defined in a generalized way as an
‘average slip’ and an ‘average uplift’ over a thin connecting layer of a softer material rather than
slip and the uplift over an actual contact surface (Fig. 3). Hence, the interaction between layers ‘a’
and ‘b’ is realized through the connecting layer of thickness e, thus being more a computational
than a geometric property, yet depending on actual characteristics of layers and connectors. The
thickness e and other material parameters of the connecting layer must be obtained in a specially
designed experiment using the method of the inverse analysis (see e.g., Koc and Štok 2004). Once
identified in experiment, the generalized slip (uplift) is used in a force-slip (uplift) relationship. The
shear force-slip and the transverse force-uplift relationships are here assumed to be linear, which is
a reasonable assumption when displacements are small. The introduction of such a generalized type
of slip and uplift seems to be physically sound and adds an additional material parameter, e, to the
mathematical model. 

Bernoulli’s hypothesis of planar cross-sections is assumed for each layer. Shear strains are
neglected, which is a reasonable assumption for long beams (Schnabl et al. 2007b). Each layer is
assumed to behave like a planar beam, but is constrained to be connected to the other layer by the
connecting layer. The static equilibrium of the composite beam is thus governed by the system of

Fig. 2 Undeformed and deformed configurations of a composite beam 

Fig. 3 Geometrical meaning of slip (∆) and uplift (d)
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kinematic, equilibrium and constitutive equations for each layer supplemented by their natural and
essential boundary conditions, and the conditions of the connection. It is assumed that the tangential
surface traction at the interface is proportional to slip, while the transverse surface traction is
proportional to uplift. In what follows we first present an overview of the governing equations of
the model of the two-layer beam. Further details of the derivation are given in, e.g., Adekola
(1968), Gara et al. (2006) and Robinson and Naraine (1988). 

Kinematic equations 

(1)

Equilibrium equations 

(2)

Constitutive equations 

    (3)

Constraining conditions 

(4) 

(5) 

(6) 

(7) 

(8) 

In the above equations, indices ‘a’ and ‘b’ mark that the function belong to layer ‘a’ or ‘b’
(Fig. 5). Kinematic Eq. (1) of each layer link basic kinematic quantities  and
deformation quantities ( ). Equilibrium Eqs. (2) of each layer represent relationships
between the internal static quantities ( ) and loading over the layers
( ). Loading in Eq. (2) consists of the external loading on the composite
beam  and contact forces  at the interface  

(9)
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The meaning of the axial contact traction pt and the vertical contact traction pn in Eq. (9) is
depicted in Fig. 4.  and  are moment tractions. The constants , , in Eq. (3)
denote the coefficients of the cross-sectional tangent matrix:  is the axial tangent
cross-sectional stiffness of layer i,  describe the coupling of axial and bending
strains of the beam, and  is the bending cross-sectional stiffness of layer i, where i =
a, b. Constraining conditions (4)-(8) consist of two separate sets of equations. The first set
comprises Eqs. (4)-(6) representing kinematic conditions of constraint. 

The meaning of the quantities introduced in Eqs. (4)-(6) can be clearly recognized from Fig. 5. 
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Fig. 4 Meaning of unknowns of Eq. (2)

Fig. 5 Geometrical meaning of kinematical unknowns of Eqs. (4)-(6)
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There are two new kinematic quantities, slip, ∆, and uplift, d, introduced and related to shear
surface traction pt and transverse surface traction pn by Eqs. (7) and (8). There the coefficients K

and C represent the linearized contact stiffnesses in the axial and transverse direction, respectively. 
The system of Eqs. (1)-(8) consists of 21 equations which must be solved for 21 unknowns ua, wa

ϕa,  and pn. A systematic elimination of
unknowns from Eqs. (1)-(8) gives a single ordinary differential equation of seventh order with
constant coefficients for slip 

(10)

Its characteristic equation is (Deo and Ragmavendra 1994) 

(11)

An extensive parametric analysis has revealed that the above polynomial has 3 real and 2
conjugate complex zeros for the range of material parameters in structural engineering. The real
zeros are denoted , while the complex ones are denoted , ,

, , where i = . 
Thus, the general solution of the differential Eq. (10) is (Deo and Ragmavenda 1994) 

  (12)

The integration constants, C1, C2, C3, C4, C5, C6 and C7, are obtained from the boundary
conditions at x = 0 for slip, uplift, the first two derivatives of slip and the first three derivatives of
uplift (Fig. 5):
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Coefficients Dij introduced above are the components of the cross-sectional compliance matrix 

(20)

Zero external moment traction over the beam and the relations 

(21)

obtained by inverting Eq. (3) were employed in deriving Eqs. (14), (15), (18) and (19). When
needed the derivatives Na' , Nb' , Qa' , Qb' , Ma'  and Mb'  are derived from the equilibrium Eq. (2)

(22)

The boundary conditions associated with the above equations consist of static and kinematic
conditions at the two ends of the beam as follows. 

Static boundary conditions
• left end, x = 0 

(23)

• right end, x = L 
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Kinematic boundary conditions
• left end, x = 0 

(25)

•  
right end, x = L 

(26)

In Eqs. (23)-(26)  and   mark the given values of the boundary displacements,
and  and   the given values of the forces at the ends x = 0 and x = L of layers a
and b. 

The exact solution was fully elaborated with Mathematica (Wolfram Research 2005). Once the
analytical expression for slip as a function of x is obtained, the remaining unknowns are easily
derived from Eqs. (1)-(8). The boundary values of unknowns and unknown integration constants are
determined from the prescribed boundary conditions. Aftere these unknowns have been determined,
the remaining unknown functions follow from Eqs. (1)-(8). 

3. Two-layer timber composite beam: a parametric study 

The objective of this section is to assess the effects of a contact transverse stiffness and the contact
layer thickness on the stress-strain state of a nailed, two-layer timber beam. A simply supported timber
beam of length L = 280 cm is studied. The beam has been recently experimentally and numerically
analysed by Planinc et al. (2008). Deflections of the axis of the beam, slips at the contact and the
following material characteristics of timber and the connection were measured in the experiment: 

• compressive strength parallel to the grain, 
• tensile strength parallel to the grain, 
• shear stiffness and load bearing capacity of connectors, 
• tensile drag characteristics of connectors. 

The composite cross-section is presented in Fig. 6. In accordance with the Eurocode 5 (2004)
classification, timber has been classified in strength class C24. The nails 4/100 were arranged in two
parallel rows and uniformly distributed along the contact interface (Fig. 6). 

Experiments showed that the shear resistance of one nail is RT = 0.77 kN and its tensile drag
resistance RN = 0.61 kN. The short cantilevers at the supports (Fig. 6) have been neglected in
mathematical modelling. Constant distances (9 cm) between the nails along the beam axis have
been assumed. 

The beam was subjected to self load and an external point load at the middle of the beam span.
Measurements were performed for three stages of the point load (Eurocode 5 2004): 
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• characteristic load (P = 7.624 kN), 
• design load (P = 11.055 kN) and 
• ultimate load (P = 16.123 kN)

As our mathematical model considers linear elastic material model, its results could be realistic
for the lowest load level only. The parameters of the constitutive law of timber were determined in
a series of compressive and tensile tests on standard timber speciments. Only the linear part of the
non-linear stress-strain response was used, yielding the value of modulus of elasticity to be E =
1500 kN/cm2 and the maximum extensional elastic strain D = 0.52%. 

The constitutive model of the nail shear resistance was also found non-linear and had to be
linearized. Although the nails are discrete, the distributed connection with constant strength and
stiffness properties has been employed in the model for comformity with our theoretical model of
the beam. The related slip modulus was obtained by dividing the experimentally determined
modulus of the nail by the distance between the nails and multiplied by the number of nails in the
considered section yielding K = 2.448 kN/cm. Similarly, the constitutive law of the contact in the
transverse direction was also found non-linear. After its linearization, and assuming equal behaviour
in tension and compression, we obtain C = 8.93 kN/cm. 

3.1 Effect of transverse stiffness of connecting layer 

In the first step of our parametric analysis, we examine the influence of the transverse stiffness on the
static and kinematic quantities in the nailed, two-layer timber beam. The range of the values of the
transverse stiffness is presented in Table 1. The thickness of the connecting layer is taken to be e = 0 cm. 

Fig. 6 Cross-section of composite timber beam and the arrangement of connectors 

Table 1 Selected values of the transverse contact stiffness

Parameter  Selected values [kN/cm] 

C 100 000 8.93 (experiment) 1 0.1∞
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Fig. 7 Influence of the transverse contact stiffness on slip, uplift, axial and shear forces and bending moment
in layers ‘a’ and ‘b’
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Fig. 7(a) presents the variation of slip along the contact surface for various values of the
transverse contact stiffness. The influence of the transverse contact stiffness on slip is rather small.
Its effect increases only in the central part of the beam when the value of the transverse contact
stiffness is small. Fig. 7(b) depicts the variation of uplift along the contact. It can be clearly seen
that the present model predicts that the upper layer penetrates into the lower one. As expected the
largest penetration takes place just at the point of application of the load. The variation of bending
moments in both the upper and the lower layer is displayed in Figs. 7(c) and 7(d). The maximum
value of the bending moment in the lower layer decreases somewhat with the reduction of the
transverse contact stiffness, while the shape of the graph tends to adapt from triangular to parabolic.
Fig. 7(d) depicts changing of the bending moment in the upper layer. Here, both the quantitative
and qualitative differences are notable. Observe an intensive, peak-like increase in the bending
moment at the point of application of the load for a small transverse contact stiffness. Figs. 7(e) and
7(f) present the graphs of the variation of the axial load. Here the efect of transverse contact
stiffness is small. In contrast, the effect of the transverse contact stiffness on the magnitude and
variation of shear forces in longitudinal direction is important, as shown in Figs. 7(g) and 7(h). In
particular, the value of the shear force in the central section of the upper layer differs a lot for the
range of low transverse contact stiffnesses. 

3.2 Effect of thickness of connecting layer 

The analysis was carried out for three thicknesses: 0 cm, 0.5 cm, 1 cm. The subplots of Fig. 8
show the slip variation over the length of the contact as a function of the layer thickness and the

Fig. 8 Slip variation along the contact for various thicknesses of the connecting layer and for different
transverse contact stiffnesses
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Fig. 9 The variation of the deflection of the lower layer for various connecting layer thicknesses and for
different transverse contact stiffnesses

Fig. 10 The variation of the axial force in the upper layer for various connecting layer thicknesses and for
different transverse contact stiffnesses
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transverse contact stiffness. 
It is clear that the thickness of the connecting layer has practically no influence on slip. 
The set of graphs in Fig. 9 presents the variation of the vertical deflection of the lower layer as a

function of the thickness of the connecting layer for different transverse contact stiffnesses. Again,
the effect is negligible. 

Fig. 10 presents the variation of the axial force in the upper layer. It is clear that the effect of the
thickness of the connecting layer on the axial force is negligible as well. 

We may conclude that the effect of the thickness of the connecting layer on the strain and stress
state of the nailed, two-layer timber beam can safely be neglected. 

Fig. 11 The variation of nail forces for different transverse contact stiffnesses 
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3.3 The effect of transverse contact stiffness on nail forces 

Fig. 11 shows the graphs of variation of the tractions, pn(x) and pt(x), at the beam contact surface,
for the actual and the stiff transverse connection. There the hatched part of the graphs indicates how
the force in the nail was computed from the surface forces. Fig. 11 also presents the values of
forces in selected nails. They are given relative to the ultimate bearing capacity of the nail,
separately for the transverse and for the shear direction, and presented in bar-like graphs. As
expected the shear force in the nails is essentially independent on the transverse contact stiffness. In
contrast, the effect of the transverse contact stiffness on the axial force in the nails is enormous at
the point of the load application and is a lot larger in the case of the flexible connection. 

Fig. 12 Variation of nail forces for different connecting layer thicknesses 
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3.4 The effect of the thickness of connecting layer on nail forces 

The analysis of forces in the selected nails has also been made for different values of the
connecting layer thicknesses. Fig. 12 displays the results for two thicknesses: 0 and 2 cm. The axial
forces in the nails are not sensitive to the thickness. Shear forces in the nails do differ somewhat,
however; roughly a 15% drop of the shear force is observed at the ends of the beam for the 2 cm
thick connecting layer. 

4. Conclusions 

An analytical solution of the deformation of a nailed, two-layer timber beam considering both slip
and uplift has been presented. It is assumed that the timber layers are connected with each other by
a thin elastic layer of a fictitious material with a small, but finite thickness. Such a generalization
may sometimes improve the response of the model significantly. A similar thickness-like parameter
has been introduced in a different way by as et al. (2004b). 

The analytic solution makes us possible to carry out an extensive analysis of the effects of the
transverse and the shear contact stiffnesses, and of the thickness of the connecting layer on the
stress and strain state of two-layer beams. It has been established that: 
• The transverse contact stiffness between the layers has some influence on the tangential contact

surface traction, and largely dictates uplift at the contact interface at the point of the load
application. It is somewhat surprising, however, that the transverse stiffness has only a minor
influence on the rest of the equilibrium, deformation and kinematic quantities of structural
engineer’s interest. Consequently, the delamination can be neglected in engineering design if small
displacements are assumed. 
• The thickness of the connecting layer is also found to be a negligible parameter that does not

contribute to the accuracy of the strain-stress state of two-layer timber beams. Thus, it can be
neglected in the engineering analysis. 
• The axial force in the nails close to the point of the load application of an external force could

be very large for highly transversely flexible connections. 
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