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Profiled sheets - the optimum vs the oft used 
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1. Introduction 

Shape, as a primary design variable, warrants consideration in structural optimization. The mode

of the transmission of force is a function of configuration. The technical success of optimization

depends on how efficiently the load flow is accomplished. Decision-making that leads to final

geometry represents the highest level of structural engineering. 

Shape optimization of structures is an ever-growing area of research that has attracted the

attention of several researchers. Shape searching problem formulation and solution techniques have

been detailed in numerous articles (Beveridge and Schechter 1970, Gallagher and Zienkiewicz 1977,

Richard Courant and Frite John 1989). The optimization of curved structures, such as arches and

shells under mechanism constraints have been extensively studies (Rozvany 1992). Parametric

surfaces such as Bezier surfaces considering stress deviation or fundamental frequency, have been

employed to optimize shells (Ramm 1993). Reanalysis techniques expediting design process without

compromising accuracy for boundary element systems have been detailed by Leu (1999). The

efficacy of fuzzy optimum design has been demonstrated by Kang et al. (1999). 

Ohsaki and Hayashi (2000) presented the shape optimization of round ribbed shells, wherein the

number of ribs should be defined in advance by employing fairness metrics. The flexural and shear

behaviors of profiled double skin composite elements have been studied (Hossain and Wright,

2004). Finite element (FE) modelling of the shear behavior of walls with particular emphasis on the

simulation of steel-concrete interface has been attempted by Hossain and Wright (2005). Analytical

and experimental investigations on profiled steel sheets to develop self-supporting roofing element

have been conducted (Islam et al. 2005). Mezzomo et al. (2009) presented studies on the

mechanical behavior of trapezoidal roofing sheets employing GA (Genetic Algorithm). 

Profiled sheets are used extensively in roofing, cladding, sheet piling and containments. Profile

development is increasing rapidly owing to advancement in materials and construction technology.

The resistance to longitudinal bending is proportional to the depth and thickness and depends

greatly on the profile itself. 

The problem of finding the best form for profiled sheets has been formulated, and the objective

function to be maximized has been shown to be a functional. A solution to the problem has been
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sought by the calculus of variations. Comparison of the best profile obtained with the traditional

sine wave form most widely used, for structural efficacy, suggests that the popularity of sine wave

form is not unwarranted. 

2. Form finding -problem formulation 

The strength of the profiled sheet in longitudinal bending is proportional to the depth of

corrugation, thickness and on the profile itself. More often than not profiles are repetitive and most

popular being of the sine wave form (Steel Designer’s Manual 1985). Hence it may be assumed that

if a quarter of the best form is determined, the most optimum profile is known.

 If ‘p’ is the pitch of the corrugations and ‘d’ the depth and ‘t’ the thickness of the sheet and if y

= f(x) a continuous function that defines the sheet profile (Fig. 1), for quarter pitch we can write I

the inertia of the section about x-axis as, 

 

The problem of finding the best form is now reduced to extremising ‘I’. 

3. Solution by Calculus of Variations 

The inertia of the profile section about the axis of bending is as follows;

 is a functional, and an extremum can be obtained by satisfaction of the famous

Euler-Lagrange Equation. 
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where

We approximate F as, 

 

And since F is independent of x, satisfaction of the Euler-Lagrange Equation is reduced to the

following condition (Shames and Clive 1995). 

where, C1 is a constant. 

From this condition we obtain 

Separating variables and integrating yields 

This can be reduced to 

and from boundary conditions, x = 0 when y = 0 and x = p/4 when y = d/2 we get

or

4. Comparison with the popular sine wave profile 

The best profile as obtained from the calculus of variations is , and the popular sine

wave follows y = .  Fig. 2 shows the profiles. 
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It can be derived that the length and inertia for a sine wave per quarter pitch are as follows: 

And for the profile 

If for instance d = 20 mm, t = 1 mm and p = 80 mm, the section modulus and length for sine

wave per pitch are 461.685 mm3 and 92.33 mm and the corresponding values for the best profile

obtained are 450 mm3 and 92.936 mm. The strength in terms of section modulus/unit length are

5 mm3/mm and 4.842 mm3/mm for sine wave and the best profile, respectively. The strength/unit

length of the most widely used sine wave form is in agreement with the best profile suggested by

the calculus of variations. The popularity of the sine wave form, hence, is justified. 
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