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Abstract. The uncertainty often observed in experimental strengths of masonry constituents makes
critical the selection of the appropriate inputs in finite element analysis of complex masonry buildings, as
well as requires modelling the building ultimate load as a random variable. On the other hand, the
utilization of expensive Monte Carlo simulations to estimate collapse load probability distributions may
become computationally impractical when a single analysis of a complex building requires hours of
computer calculations. To reduce the computational cost of Monte Carlo simulations, direct computer
calculations can be replaced with inexpensive Response Surface (RS) models. This work investigates the
use of RS models in Monte Carlo analysis of complex masonry buildings with random input parameters.
The accuracy of the estimated RS models, as well as the good estimations of the collapse load cumulative
distributions obtained via polynomial RS models, show how the proposed approach could be a useful tool
in problems of technical interest.

Keywords: Monte Carlo method; masonry; limit analysis; homogenization; polynomial Response Surface;
Latin Hypercube method; collapse load probability distribution.

1. Introduction

The structural analysis of masonry buildings under seismic actions is generally very complex and

usually requires complicate nonlinear analyses, performed nowadays with finite elements (FE)

methods.

The collapse load of a given building is clearly a function of the geometry, of the external actions,

of the materials properties and finally of the environmental conditions (humidity, temperature). In

the technical literature, many different methods based on FE simulations can be found for the
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evaluation of the ultimate loads of engineering structures (see for instance Milani et al. 2006a,

2006c, 2007a, Olsen 2001, Sloan and Kleeman 1995). A suitable way, which requires a relatively

low computational cost, is the use of limit analysis theorems in combination with finite elements.

Such approach is able to give important information at failure, such as for instance collapse loads,

failure mechanisms and, at least on critical sections, the stress distribution. The hypotheses at the

base of the method are statically applied loads, infinite ductility and associated flow rules for the

constituent materials. These hypotheses yield well for steel structures (see Olsen 2001), but it has

been shown that quite reliable results can be obtained also for concrete (Olsen 1999) and masonry

(Sutcliffe et al. 2001, Milani et al. 2006a) materials that, as well known, exhibit a finite ductility.

Nevertheless, an analysis at collapse for masonry structures remains a very difficult task, both from

a theoretical and numerical point of view, essentially because brickwork is constituted by an

assemblage of bricks between which thin mortar joints are laid. At present, the three approaches

most utilized in practice to tackle engineering problems involving the study of masonry structures

rely on micro-modelling (Bicanic et al. 2003, Lofti and Shing 1994), macro-modeling (Lourenço et

al. 1997) and homogenization (Sejnoha et al. 2008, Milani et al. 2006b). An alternative technically

meaningful methodology is finally represented by the so-called macro-elements approach presented,

for instance, in Magenes and Calvi 1997.

While micro-modeling is limited to small structures (Milani et al. 2007b), since a separate

modeling of bricks and joints is required in the framework of finite elements, in macro-modeling

the heterogeneous material is substituted with a macroscopic homogeneous fictitious one, obtained

essentially from experimental data fitting. Despite the fact that macro-modeling is suitable for large

scale structures, it requires a difficult calibration of its mechanical properties, usually obtained by

means of costly experimental campaigns (Lourenço 1999).

In light of these considerations, homogenization theory seems particularly attractive, since it is

able to reproduce macroscopic masonry behavior at failure requiring only the knowledge of

mechanical properties of the constitutive materials (always available with low cost), once that a

suitable repetitive unitary cell is found.

As a result, in the framework of homogenization and limit analysis, for a fixed building geometry

and for a given set of applied external actions, the building collapse load y resulting from FE

calculations will only depend on the input materials properties (bricks and mortar), as formalized by

the mathematical model

(1)

where vector  collects all the relevant input material parameters (e.g., cohesion,

friction angle, cut-off stress, joints and bricks compressive strength, etc.). Function h(−), even

though highly non-linear, is strictly deterministic, i.e., replicated calculations from running the same

input materials parameters will give the same output collapse load.

The relevant input strength properties  are generally characterized by an

intrinsic statistical variability -often classified as stochastic uncertainty (Helton 1997, Helton and

Burmaster 1996, Paté-Cornell 1996, Winkler 1996, Hoffman and Hammonds 1994, Helton 1994,

Apostolakis 1990, Haan 1989, Parry and Winter 1981)- since strength varies among nominally

identical test specimens, independently of the sample size used.

On the other hand, the material strength properties of single masonry constituents (e.g., mortar,

brick) are usually determined in civil engineering through very few experimental tests and often

show a very large scatter (Brencich and Gambarotta 2005, Vermeltfoort 2006, van der Pluijm 1999).

y h x( )=

x x1 x2 … xm, , ,( )=

x x1 x2 … xm, , ,( )=
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Therefore, the lack of knowledge from insufficient experimentation obviously corresponds to an

epistemic uncertainty in the estimation of distributions parameters.

As a consequence, the selection of appropriate values to use in FE simulations could become a

critical task. For instance, experimental data are quite often so spread, that simply using mean

values could give unsafe results. In addition, the variability in materials strength properties also

induces an uncertainty in the resultant collapse load; clearly, the use of mean values to define the

building resistance could be greatly unsafe. Even the so called characteristic value approach, often

used in building practice, could not be a reliable alternative. In fact, despite such an approach refers

to a small occurrence probability (usually 5%) of a Gaussian distribution to safely define a single

input strength value (the Gaussian distribution being estimated from a very small experimental data

set, e.g., three specimens of masonry compressive strength according to the Italian code), it only

determines a unique ultimate building strength, with no information on the entire probability

distribution and collapse probabilities.

As a consequence, a much more reliable approach would require using a probabilistic analysis to

estimate the probability distribution of the building limit load (assigned the probability distributions

of the input strength properties of single masonry constituents) and then calculating failure

probabilities and safety levels.

However, explicit determination of the collapse load probability distribution needs explicit

knowledge of function h(−), which unfortunately is rarely known in a closed-form.

A possible alternative is to use an approximate probabilistic analysis based on extensive Monte

Carlo (MC) simulations, in which sampling-based techniques are used to study how uncertainty

propagates from random input parameters to the calculated analysis results, by repetitively selecting

values for the random input variables and then calculating the corresponding analysis outputs, see

Fig. 1. The complete set of calculated building collapse loads constitutes an observed sample, which

can be used to estimate the collapse load probability distribution. Since in MC method the input

values are chosen at random from their own domains of definition, the sampled values, as well as

the calculated output, are more likely to occur in regions associated to high probabilities, usually

around the mean of the distribution. Hence, large sample sizes (i.e., many simulations runs) are

needed to assure a reasonable coverage of the range of each input variable (and of the calculated

analysis output), as well as to achieve a sufficient statistical convergence of the estimated output

probability distribution.

Considering that, despite computational improvements, a single FE limit analysis of a complex

building could take many hours of calculations (see Yu and Tin-Loi 2006), the large sample sizes

used by extensive MC simulations become prohibitive for practical applications.

To alleviate the overall computational cost, a possibility is to replace the MC method with

improved sampling-based techniques, which guarantee the same statistical convergence with smaller

sample sizes. As an example, in importance (or stratified) sampling the sample space is properly

divided into non-overlapping sub-regions of pre-assigned probability, to assure a better coverage of

input domain while allowing as lower sample sizes as possible, although the correct identification of

sub-regions may result a complex task (Glynn and Iglehart 1989, Melchers 1990, Goyal et al. 1992,

Shahabuddin 1994, Heidelberger 1995, Owen and Zhou 2000, Nicola et al. 2001). An approach

which may be viewed as a compromise procedure between simple random sampling with large

samples and importance sampling is Latin Hypercube (LH) method, which adopts a random

sampling for each input variable over sub-regions of equal probability. Due to its advantages, in the

last decades the LH method has received an increasing attention in many different research areas
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and applications, where the use of large samples is not computationally practicable (Helton and

Davis 2003, Hradil et al. 2001, McKay et al. 1979). However, even though the LH method can help

in reducing the total number of simulation runs required, in some applications the overall simulation

time could still remain unacceptably high.

A completely different approach which can drastically reduce the total computation time is to

adopt the so-called response surface (RS) technique to construct a surrogate model (or metamodel),

that can be used as inexpensive mathematical approximation of the actual, yet time-consuming,

computer simulation (Giunta and Watson 1998, Jin et al. 2001, Simpson et al. 2001, 2002, Swiler et

al. 2006). More precisely, function h(−) introduced in Eq. (1), formalizing the actual FE input/

output relationship of a FE limit analysis, is replaced by an approximation (−), which is calibrated

on few observed outputs, resulting from running computer calculations on a small set of optimally

selected design inputs, see Fig. 1.

Assumed that the overall approximation error is sufficiently small and technically acceptable, the

decisive advantage of RS techniques is that the sample sizes required for an accurate calibration are

significantly lower (e.g., two order of magnitude) than those used in extensive MC simulations.

Once the RS model has been calibrated, it can be used as a proxy of direct computer calculations

in extensive MC simulations, which are used to generate large sets analysis outputs to estimate the

output probability distribution.

ĥ

Fig. 1 Schematic representation of extensive Monte Carlo simulations (via direct computer calculations or via
RS model) used to estimate the collapse load probability distribution. Construction and validation of
the polynomial RS model is also shown
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Different RS models exist, which differ in respect to their relative accuracy and complexity. Even

though many studies have investigated what combination of design scheme and RS technique would

give the best accuracy, no general rules were found for all engineering problems (Giunta and

Watson 1998, Jin et al. 2001, Simpson et al. 2001, 2002, Swiler et al. 2006). On the other hand,

other aspects than accuracy were indicated as equally important: robustness (accuracy and stability

through different types of problems), efficiency (computational effort required in metamodel

calibration), transparency (existence of explicit relationships between inputs and outputs) and

conceptual simplicity (easiness of implementation). As an example, the classical polynomial RS

approximation, which was indicated as the optimal choice due to its great simplicity and possible

fairly good accuracy (Jin et al. 2001), has been used (Neves et al. 2006, Pendola et al. 2000) for

several technical applications in the framework of mildly nonlinear problems, demonstrating its

robustness and accuracy. On the other hand, in problems with a high nonlinear behavior the

response surface approximation based on nonparametric regression may be particularly effective

(Storlie and Helton 2008a, b, Storlie et al. 2009).

With the aim of investigating the potentiality of polynomial RS models in replacing actual

computer simulations in the homogenized limit analysis of complex masonry buildings with random

input parameters, this work will attempt:

• to investigate the accuracy and efficiency of polynomial RS models as inexpensive replacement

of direct computer simulations;

• to study the correlation between RS accuracy and design scheme, by referring to the MC and

the LH techniques for generating input points for RS fitting;

• to evaluate the accuracy of the estimated output probability distribution when polynomial RS

models are used in place of direct computer calculations in extensive MC simulations.

The utilization of limit analysis in combination with RS approximation seems particularly

adequate, since the response of limit analysis is smooth with respect to variation of material

parameters. Obviously, the extension of this statement to experimentally observed data is, in

principle, not possible because of the practical impossibility to perform extensive experimental MC

tests on real scale masonry structures.

In the present work, numerical simulations concerning three examples of relevant technical

interest (i.e., a masonry compressive behavior, an in- and out-of-plane loaded masonry wall and a

shear panel) are presented.

At a first attempt, a quadratic polynomial RS model is constructed on a small set of observed

analysis outputs, resulting from running computer simulations on a small set of input points (at most

20 or 30), generated by either the MC method or the LH technique.

The estimated polynomial RS model is then used in place of direct computer calculations in

extensive MC simulations with large sample sizes, used to assess the collapse load probability

distribution. 

A comparison between the probability distribution estimated via RS model and the one obtained

by direct computer calculations is presented. 

The same large MC samples are also used as validation points to compare the fitting performance

of RS models constructed from MC or LH design points.

The presented results show how the use of polynomial RS with MC simulations can drastically

reduce the overall computation time, providing acceptable levels of accuracy and assuring also quite

good estimates of the collapse load probability distribution.
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2. Probabilistic analysis with homogenized limit analysis and polynomial RS models

2.1 Masonry homogenized failure surfaces

Failure loads of complex 3D masonry structures can be obtained with a relatively low

computational cost by means of a recently presented FE limit analysis approach (Milani et al.

2006b), in which masonry failure surface is obtained through a micro-mechanical model which

bases on homogenization theory applied in the rigid-plastic case. 

Fig. 2 Proposed micro-mechanical model (a) elementary cell, (b) subdivision in layers along thickness and
subdivision of each layer in sub-domains, (c) imposition of internal equilibrium, equilibrium on
interfaces and anti-periodicity
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A detailed description of the equilibrated micro-mechanical model adopted is reported in (Milani

et al. 2006a, b, c, 2007a) and the reader is referred there for an exhaustive discussion. In this

section, only the basic idea of the model proposed is recalled in order to show how FE

homogenized limit analysis Monte Carlo simulations have been performed at a structural level.

In Fig. 2(a), a masonry wall Ω constituted by a periodic arrangement of bricks and mortar

disposed in running bond texture is reported. Following the general procedure proposed in (Suquet

1983), homogenization techniques combined with limit analysis can be used for the evaluation of

masonry homogenized strength domain Shom for combined in- and out-of-plane loads. In the

framework of the lower bound limit analysis theorem (i.e., assuming associated flow rules for the

constituent materials and imposing equilibrium equations and admissibility conditions), it can be

shown that the frontier  of Shom is obtained solving the following linear programming problem

(see also Fig. 2)

(2)

In Eq. (2)  the following symbols have been used:

- N and M, which represent macroscopic in-plane (membrane forces) and out-of-plane (bending

moments and torsion) tensors;

- σ, which is the projection of the local stress tensor along directions y1 and y2, see Fig. 2; 

- n, the outward unit vector orthogonal to  surface, Fig. 2(a);

- , which is the internal boundary of the elementary cell, Fig. 2(a);

- , representing the jump of micro-stresses across any discontinuity surface of normal nint,

Fig. 2(c);

- Sm and Sb, denoting respectively the strength domains of mortar and bricks;

- Y, which is the cross section of the 3D elementary cell with  (see Fig. 2),  is its area, V

is the elementary cell volume, h represents the wall thickness and  is the position

of a point in the local frame of reference.

As shown in Fig. 2(b), in the model the unit cell is subdivided into a fixed number of layers along

its thickness. For each layer out-of-plane components  ( ) of the micro-stress tensor σ

are set to zero (i.e., a typical plane stress condition for each layer is adopted), so that only in-plane

components  ( ) are considered active. Furthermore,  ( ) are kept constant

along the thickness  of each layer, i.e., in each layer . For each layer, each fourth

of the representative volume element is sub-divided into nine geometrical elementary entities (sub-

domains), so that the entire elementary cell is sub-divided into 36 sub-domains (see Milani et al.

∂
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2006b and Fig. 2(b) for further details).

For each sub-domain k and layer iL, polynomial distributions of degree (m) in the variables

 are a priori assumed for the stress components. Since stresses are polynomial expressions,

the generic ijth component can be written as follows

(3)

Where, ,  represents the kth sub-domain of layer 

and  is a vector representing the

unknown stress parameters of sub-domain k of layer iL.

The imposition of equilibrium inside each sub-domain, the continuity of the stress vector on

interfaces and the anti-periodicity of σn permit a strong reduction in the number of independent

stress parameters (see Milani et al. 2006b for further details), allowing to write the stress vector

 of layer iL inside each sub-domain as  where  is the vector of

linearly independent unknown stress parameters of layer iL, k is a sub-domain and  is a 3 × ns

matrix, which depends only on the geometry of the sub-domain (ns is the length of vector ).

Once that an equilibrated polynomial field in each layer is obtained (here fourth-order

polynomials are used), the proposed in- and out-of-plane model requires a subdivision of the wall

thickness into nL layers (Fig. 2(b)), with a constant thickness . This allows to derive the

following simple non-linear optimization problem

(4)

In Eq. (4) λ represents the so-called load multiplier,  denotes the non-linear strength domain

of the constituent material (mortar or brick) corresponding to the kth sub-domain and iLth layer. As

a rule, λ is an ultimate moment, an ultimate membrane action or a combination of moments and

membrane actions. In order to recover  surface point by point, a fixed direction nΣ in the six
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( ) is chosen. For each nΣ, a failure load λ at a cell level is computed. The
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Ñ σ̃
k i

L
,( ) Vd

k i
L

,
∫=

M̃ y3σ̃
k i

L
,( ) Vd

k i
L

,
∫=
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Ñ Nxx  Nxy  Nyy[ ]=

M̃ Mxx  Mxy  Myy[ ]=



Homogenized limit analysis of masonry structures with random input properties 425

of the failure surface is collected. In this manner, repeating the procedure for a suitable number of

different directions, several points of  can be calculated. With the hypotheses assumed in

(Milani et al. 2006b)  results convex. Therefore, a final Delaunay tessellation permits to find

a lower bound linear approximation of . 

A linearization with 80 planes of such failure surface is implemented in the FE limit analysis code

described in the following section, for performing the upper bound homogenized limit analyses

presented in this paper.

Of course, the failure surface obtained with the homogenization procedure presented above

depends on both mechanical properties assumed for joints and bricks; therefore, also the collapse

load of the structures considered in Example 2 and 3 of this paper indirectly depends on both bricks

and mortar mechanical properties. Finally, it is worth noting that, in principle, also fracture energy

of constituent materials should be ideally considered as a random variable (see van der Pluijm

1999), although in limit analysis fracture energy effect is disregarded. 

2.2 3D kinematic FE limit analysis

The upper bound approach developed in this paper is fully described in (Milani et al. 2007a) and

the reader is referred there for a detailed description of the numerical model. Here, only the bases of

the procedure proposed are reported. The formulation uses three noded triangular elements with

linear interpolation of the velocity field inside each element, so that three velocity unknowns per

node i, say ,  and  (respectively 2 in-plane velocities and 1 out-of-plane velocity, see

Fig. 3(a)) are introduced for each element E, meaning that the velocity field is linear inside an

element.

A possible jump of velocities on interfaces between adjoining elements is supposed to occur, with

linear interpolation of the jump along the interface. The introduction of a jump of displacements is

useful to obtain reliable collapse loads for friction materials (see Sloan and Kleeman 1995). In this

framework, for each interface between coplanar adjacent elements, four additional unknowns are

∂S
hom

∂S
hom

∂S
hom

wxx

i
wyy

i
wzz

i

Fig. 3 (a) Triangular plate and shell element used for the upper bound FE limit analysis, (b) discontinuity of
the in-plane velocity field
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introduced ( ), representing the normal ( ) and tangential ( )

jumps of velocities (with respect to the discontinuity direction) evaluated on nodes  and 

of the interface (see Fig. 3(b)). For any pair of nodes on the interface between two adjacent and

coplanar triangles R and K, the tangential and normal velocity jumps can be written in terms of the

Cartesian nodal velocities of elements R-K (see Fig. 3 for details), so that a system of four linear

equations in the form  can be written, being wR and wK the 9 × 1

vectors that collect velocities of elements R and K respectively and   matrices which

depend only on the interface orientation ΩI (Fig. 3). 

Since velocities interpolation is kept linear inside each triangular element, only three equality

constrains representing the plastic flow in continuum (obeying an associated flow rule) are

introduced for each element in the form , where  is the plastic strain rate

vector of element E,  is the plastic multiplier,  is the homogenized (non) linear failure

surface of masonry in the six dimensional space of membrane  and bending

 actions, i.e., .

For each element, plastic flow in continuum may be written in the form ,

where  is the vector of element velocities and  is a  vector of plastic multiplier rates,

one for each plane of the linearized failure surface. 

Denoting with  the element E out-of-plane nodal velocities and with

 the side normal rotation rates, it is possible to show that  and  are

linked by the compatibility equation (Fig. 4) , where  is a 3 × 3 matrix that

depends only on the geometry of element E.

The total internal power dissipated Pin is constituted by the power dissipated in continuum, ,

and the power dissipated on interfaces, . It is interesting to note that out-of-plane plastic

dissipation occurs only along each interface I between two adjacent triangles R and K or on a

boundary side B of an element Q (see Fig. 4). Therefore  can be evaluated for each triangle E of

area AE taking into account only in-plane actions. 

Let us assume that a linear approximation (with m hyper-planes) of masonry failure surface in the

form  is at disposal solving, as already discussed in the previous Section, a number

of linear programming problems (4). Here,  is a m × 6 matrix of coefficients of each hyper-plane

and  is a m × 1 vector of the right hand sides of the linear approximation.

As the homogenized (linearized) failure surface is constituted by m hyper-planes of equation
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Fig. 4 Rotation along an interface between adjacent triangles or in correspondence of a boundary side
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, with , an estimation of  can

be easily obtained as  with curvature rate tensor equal to zero, being  the plastic

multiplier rate of the triangle E associated to the qth hyper-plane of the linearized failure surface.

On the other hand, for an interface I between adjoining elements of length Γ and orientation ΩI, a

rotation operator is applied to the linearized homogenized admissible domain frontier in order to

obtain with a limited computational effort m equations (one for each hyper-plane) in the form

 representing  in the  interface

frame of reference, defined in Fig. 3.

In this way, the power dissipated  along an interface I can be easily estimated as reported in

(Krabbenhoft et al. 2005) and the reader is referred there for a detailed discussion of the kinematic

hypotheses adopted for the evaluation of .

After some assemblage operations (see for instance Olsen 2001, Sloan and Kleeman 1995,

Krabbenhoft et al. 2005), the following linear programming problem is obtained, where the

objective function is the total internal power dissipated 

(5)

In Eq. (5)  the following symbols are used:

- U is the vector of global unknowns and collects the vector of assembled nodal velocities (w), the

vector of assembled element plastic multiplier rates ( ), the vector of assembled jump of

velocities on interfaces ( ), the vector of assembled interface plastic multiplier rates

( ) and the vector of interface and boundary out-of-plane rotation rates .

- Aeq is the overall constraints matrix and collects normalization conditions, velocity boundary

conditions, relations between velocity jumps on interfaces and elements velocities, constraints

for plastic flow in velocity discontinuities and constraints for plastic flow in continuum.

- nE and nI are the total number of elements and interfaces, respectively.

- P0 is the vector of (equivalent nodal) permanent loads.

2.3 Polynomial Response Surface (RS) modelling

Given the vector xi of analysis inputs for the ith computer simulation, a quadratic polynomial RS

model has the form 

(6)

where m is the total number of input variables (i.e., random material properties),  is the value of

the qth input variable for the ith computer run and cq are (unknown) coefficients.

Given n independent observed analyses outputs yi, , the estimation problem can be

formulated in compact matrix notation as
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(7)

where y is the vector of observed outputs, X is the so called design matrix, while the unique least-

squares estimator of the unknown coefficients is 

(8)

A RS model is fitted on a set ,  of observed analysis outputs, derived from

computer calculations on a set of optimally selected values  for the relevant input variables.

Different design of experiments strategies can be used to sample the input variables for RS fitting

(Giunta et al. 2003). 

Several studies in the literature, in trying to discover what design of experiment would provide the

best accuracy, found that no method has been recognized as the best one (Simpson et al. 2001,

2002) and one should always refer to the specific problem under study (Simpson et al. 2002, Swiler

et al. 2006), although according to Simpson et al. (2001) the basic requirement for an experimental

design in deterministic computer analyses is space filling.

In the present work, the input design points are generated by two different sampling schemes:

classical MC method and the LH technique, the latter being considered for its relative simplicity

with respect to other existing techniques, and because it provides a better space filling compared to

the MC method. 

2.4 Experimental design: Monte Carlo and Latin Hypercube method

In the classical MC method, the input design random variables are selected at random from their

domains of definition, hence the sampled values have more probability to occur in regions with

higher probabilities (e.g., close to the mean value of the distribution).

To assure a more uniform sampling from the interval of each random variable the LH technique

has been proposed as an improvement to the classical MC method (Helton and Davis 2003, McKay

et al. 1979). In the LH method, to obtain a sample of size nc by m input random variables

, we first divide the definition domain of each variable in nc disjoint intervals of

equal probability, according to the corresponding probability distribution of each variable. Then, we

extract a sample value from each interval, leading to a set of nc sampled values for each variable.

Compared to the classical MC method, the LH design assures that each of the input random

variables has all portions of its range represented, thus providing a more uniform sampling of the

input design space. Finally, the nc samples for vector x are obtained by combining all values

previously sampled according to nc random permutations. Special techniques are used to impose

desired correlations among several variables, see Refs. (Helton and Davis 2003, Florian 1992,

Huntington and Lyrintzis 1998).

2.5 Validation of fitted RS model 

To quantify the prediction accuracy of an estimated RS model we calculate at n specified

validation points the difference between the true analysis output yi from a direct computer

simulation and the value  predicted by the polynomial RS model. Following some existing

references (Simpson et al. 2002, Swiler et al. 2006, Ramu et al. 2007), we refer to the Root Mean

Square Error (RMSE)
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(9)

to the Mean Absolute Error (MAE) 

(10)

and to the Maximum Absolute Relative Error (MARE) 

(11)

Note that while RMSE and MAE provide an average measure of the overall and local prediction

accuracy, respectively, MARE quantifies the absolute worst relative prediction error.

In order to capture the trend of the prediction error as a function of the observed output values yi,

in addition to the errors introduced above we also consider the percentage relative error 

(12)

For each fitted RS model a value of RMSE, MAE and MARE error metrics is obtained, as well

as a set of percentage relative errors, which depend on the particular set of MC and LH calibration

points used to construct the RS model, and also on the particular set of validation points considered.

In fact, due to the random sampling technique adopted to generate calibration points, different MC

or LH small replicated samples lead, in general, to different polynomial RS models (even with the

same degree). On the other hand, the authors experienced that the use of MC and LH sampling

performs better with respect to the use of a simple regular input grid, as a consequence of the over

fitting polynomial approximation, see Giunta and Watson (1998). Hence, replicated samples are

used to account for the variability in RS model generation, as well as in the considered set of

validation points (see Iman 1981, Helton et al. 2005). More precisely, 10 replicated RS model from

MC and LH calibration points and three independent large MC samples as validation points are

considered.

3. Numerical simulations

Three examples of practical interest are examined to illustrate the use of polynomial RS models as

a computationally inexpensive alternative to direct computer calculations in extensive MC

simulations, used to estimate the collapse load probability distribution of masonry buildings having

random material properties.

A common procedure is adopted in all examples. As a first step, a polynomial RS model is fitted

on a small set of nc observed collapse load values , obtained from  input values sampled by

either the MC method or the LH technique, see Fig. 1. As suggested in Jin et al. (2001), the

number nc of calibration points can be correlated to the number of input random variables; in our

examples, nc equals 20 for two input variables problems (Examples 1 and 2), 30 for three input

variables problems (Example 3). Where needed, the independence among input random variables
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for LH samples is imposed by the procedure described in Huntington and Lyrintzis (1998).

As a second step, the fitted RS model is used in place of direct computer simulations in extensive

MC simulations with large sample sizes (1000 or 3000). The size of large MC samples was chosen

as a necessary compromise between the high computational cost of all numerical simulations and

the required accuracy in the estimate of the collapse load probability distribution, as well as

considering 5% as a sufficient value for the failure probability in technical applications. On the

Table 1 Mean and standard deviation of the random input parameters used in the presented numerical
examples. All the random input variables  xi are assumed as independent and normally distributed

Example 1 Example 2 Example 3

Unit 
compressive 

strengtha

[N/mm2]

Mortar 
compressive 

strengtha

[N/mm2]

Cohesionb

[N/mm2]

Tangent 
of friction 

angleb

[−]

Cohesionb

[N/mm2]

Tangent of 
friction 
angleb

[−]

Auxiliary 
variable

[−]

Mortar
tensile

strengthc

[N/mm2]

x1 = fcu x2 = fcm x1 = c x2 = tan(Φ) x1 = c x2 = tan(Φ) x3 = a ft =

Mean 
value 19.91 14.72 0.1457 0.75 0.142 0.752 0.5 0.0948

Standard 
deviation 2.845 0.566 0.034 0.045 0.036 0.047 0.036 0.0258

aEstimated from experimental data reported in (Brencich and Gambarotta 2005)
bEstimated from experimental data reported in (van der Pluijm 1999) 

cMean and standard deviation for variable  ft are derived as in Appendix B, see Eq. (24)

Table 2 Theoretical mean and standard deviation (bold numbers) of the random input parameters (see Table 1)
compared with those calculated on the three large MC samples 

Example 1 Example 2 Example 3

Unit 
compressive 

strength
[N/mm2]

Mortar 
compres-

sive strength
[N/mm2]

Cohesion
[N/mm2]

Tangent of 
friction 
angle
[−]

Cohesion
[N/mm2]

Tangent of 
friction 
angle
[−]

Mortar 
tensile

strength
[N/mm2]

MC 
sample x1 = fcu x2 = fcm x1 = c x2 = tan(Φ) x1 = c x2 = tan(Φ) ft =

Mean value 19.91 14.72 0.1457 0.75 0.142 0.752 0.0948

MC1 19.93 14.73 0.143 0.753 0.143 0.751 0.0954
MC2 19.93 14.72 0.143 0.752 0.140 0.754 0.0935
MC3 19.88 14.73 0.142 0.751 0.142 0.754 0.0948

Standard deviation 2.845 0.566 0.034 0.045 0.036 0.045 0.0258

MC1 2.902 0.568 0.036 0.048 0.036 0.048 0.0259
MC2 2.788 0.562 0.037 0.046 0.034 0.049 0.0246
MC3 2.919 0.569 0.036 0.048 0.035 0.047 0.0254

a
c

tan Φ( )
----------------

a
c

tan Φ( )
----------------
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other hand, considering the large variability of input material properties due to usually scarce

experimental tests, higher sample size would unnecessarily increase the overall computational cost,

without improving the accuracy of the tail estimates of the collapse load probability distribution.

A summary of the theoretical mean and standard deviation for all input variables is given in

Table 1; the good agreement with the mean and standard deviation calculated on each large MC

sample, reported in Table 2, confirms the correctness of the sizes adopted for large MC samples. 

In the third step, the n collapse load values yi,  resulting from large MC simulations

are used to compute the empirical cumulative distribution (Mood et al. 1974) 

(13)

(where  for  and zero elsewhere is an indicator function) which is an estimator of the

collapse load probability distribution . Note that  depends on the particular MC outputs yi
considered, hence it is affected by a statistical uncertainty. Replicated MC simulations are then used

to estimate a mean empirical cumulative distribution (Helton and Davis 2003) 

(14)

while a measure of the error in the estimate of  is given by the standard deviation (Helton and

Davis 2003) 

(15)

nr being the number of replicates (in our examples, nr = 3). Despite a value nr = 3 provides only a

rough estimate of σP, which however still remains of technical interest, larger values of nr should be

used to increase the accuracy of the estimated standard deviation. 

Confidence-interval curves for  can also be obtained. Specifically, the  confidence

interval is , where  is the  quantile of the t-distribution with  degrees

of freedom (e.g.,  for  and , see (Helton and Davis 2003, Mood et

al. 1974).

Following the scheme of Fig. 1, direct computer calculations on the same large MC samples are

also performed, in order to compare the collapse load empirical distribution obtained via direct

simulations with the one calculated via fitted RS models.

As a final step, a comparison of the prediction accuracy of the RS models constructed on MC and

LH calibration points is also examined in terms of the error measures introduced in Section 2.5. As

done in Jin et al. (2001), the same three replicated large MC sets previously used to estimate the

output probability distribution are used as validation points. To account for variability in RS model

fitting, mean and variance of all error measures are calculated on 10 independently replicated MC-

RS and LH-RS polynomials. Note that while the mean of the errors indicates the average accuracy

of a RS model, the variance illustrates the variability (i.e., robustness) of the prediction accuracy

(Jin et al. 2001).

3.1 Example 1: Masonry compressive behavior

As preliminary example, the well known equation provided by Eurocode 6 (1996) (see also
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Brencich and Gambarotta 2005, Lourenço and Pina-Henriques 2006) for the evaluation of masonry

compressive strength is considered 

(16)

where fck is the masonry compressive strength, fcu is the unit compressive strength and fcm is mortar

compressive strength, while K is a constant which depends on the type of units and the type of

masonry (in this example ). We assume that fcu and fcm are independent Gaussian random

variables, with mean and standard deviation (listed in Table 1) estimated from some experimental

data reported by (Brencich and Gambarotta 2005) for eccentrically compressed masonry triplets. It

is worth noting that Gaussian distributions obviously have infinite tails, which seems actually not

physically reasonable (e.g., negative strength values are not permitted). However, they have been

considered acceptable from an engineering point of view, since the occurrence probability of

negative strength values is very close to zero, see Table 1.

It is worth noting that Eq. (16) relates masonry compressive strength fck with corresponding values

of bricks and mortar, underlining that a complex interaction exists between constituent materials at

failure. There are, indeed, physical limits inherit in the use of Eq. (16), consisting in the fact that

compressive fracture energy is assumed as a non random parameter. It is well known, in fact, that

masonry compressive failure is related to crushing, which is obviously a fragile phenomenon.

However, the example at hand is here treated for its simplicity, since it provides an explicit formula

for function h(−), which allows a comparison between the true output probability distribution

obtained by direct mathematical calculations (see Appendix A) and that estimated by MC

simulations via fitted polynomial RS model.

For the present example, small MC and LH samples of size 20 are used to construct RS models;

as an example, Fig. 5(a) shows the fitted RS model with the corresponding LH calibration points. 

Fig. 6 and Fig. 7 show the mean and variance of the fitting errors calculated on 10 replicated MC-

RS and LH-RS models, evaluated for each of the three MC samples of size 3000 used as validation

points (mean and variance values for the other examples are also shown).

As can be seen, according to the error values, both MC-RS and LH-RS models seem to provide a

comparable overall fitting performance. In fact, while for the RMSE the LH-RS models show a less

mean error, but a greater variance with respect to MC-RS models, for MAE and MARE both MC-

fck Kfcu
0.7

fcm
0.3

=

K 0.55=

Fig. 5 Polynomial RS model with the 20 LH calibration points for (a) Example 1, (b) Example 2 
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Fig. 6 Overall comparison of the mean of the fitting errors (RMSE, MAE, MARE) calculated on 10
replicated polynomial RS models constructed from MC and LH design points

Fig. 7 Overall comparison of the variance of the fitting errors (RMSE, MAE, MARE) calculated on 10
replicated polynomial RS models constructed from MC and LH design points

Fig. 8 Comparison of the empirical cumulative distribution from three replicated Monte Carlo samples of size
3000 with the mean empirical cumulative distribution and the 95% confidence-interval curves. The
theoretical cumulative distribution is also shown (dashed line). Data refer to Example 1
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RS and LH-RS models give comparable mean fitting errors, with LH-RS models showing instead a

lower variance for MARE.

The three large MC samples of size 3000 previously taken as validation points to check RS fitting

performance are also used to estimate the collapse load probability distribution, via direct computer

simulations and via the estimated RS models. For what concerns the variability in the output

probability distribution obtained from MC simulations, Fig. 8 compares (in logarithmic scale) the

empirical cumulative distributions derived from the three MC simulations of size 3000 and the true

distribution obtained as in Appendix A (the mean curve and the 0.95 confidence-interval curves are

also shown). As the figure reveals, the empirical cumulative distribution  is in quite good

agreement with the true distribution , for sufficiently low probabilities (at least equal to or

greater than 1%), while some scatter is observed for very low probabilities.

Finally, Fig. 9 (bottom) shows an overall comparison among output probability distributions: that

P̂ y( )
P y( )

Fig. 9 Comparison of the empirical distribution functions obtained in large Monte Carlo simulations via direct
computer simulations and via polynomial RS models. The theoretical cumulative distribution is also
shown (dashed line). The average relative percentage error calculated on 10 replicated RS models is
also shown. Data refer to Example 1
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derived from computer simulations and that obtained from MC-RS and LH-RS polynomial RS

models (the true cumulative probability density function derived in Appendix A is also added as a

dashed line). Furthermore, in Fig. 9 the mean percentage relative error erri(%) calculated on 10

replicated RS models is also reported. As can be seen, the cumulative distribution obtained via

polynomial RS models is in general good agreement with the distribution obtained with direct

computer simulations, except for the lower tails of the distribution, where we have larger errors.

Furthermore, the mean erri(%), which is used to detect the local fitting performance as a function of

yi values, shows that LH-RS models, compared to MC-RS ones, seem to provide lower prediction

errors, especially for very low fck values. As it is possible to notice, for both RS models the

maximum percentage error obtained is less than 2%, indicating the good performance of polynomial

RS models, at least for this example. 

As can be noted in Fig. 9, all the cumulative distributions obtained from RS models tend to be

lower than the cumulative distributions provided by direct computer simulations. This effect can be

correlated to the accuracy of RS models, which tends to be higher in the central region of the output

probability distribution, while the prediction accuracy gets worse in the tails of the distribution (“tail

reversal” effect, see Ramu et al. 2007); for instance, while for large fck values we have negative

percentage errors (i.e., the RS model predicts lower value than the actual), in the left tail of the

distribution we have positive errors (i.e., the RS model underestimates the actual analysis output).

These negative errors can be attributed to the least-squares method used for fitting the polynomial

RS model on calibration points, which minimizes the errors squared, rather than the absolute

relative errors, assigning greater weights to the highest absolute output values. On the other hand,

the largest errors occur only for very low fck values, for very small occurrence probabilities; in any

case, the prediction errors become acceptable for probabilities at least greater than 5%.

3.2 Example 2: A real homogenized limit analysis problem

Let us consider two perpendicular masonry walls of dimensions cm, cm,

cm, cm and with perfect interlocking, as shown in Fig. 10. Such walls are

subjected to a constant vertical load due to typical dead and live loads assumed equal to 

N/mm and an increasing horizontal load depending on a load multiplier , simulating an

equivalent static seismic action. Several homogenized limit analyses FE simulations are performed

on the structure by means of the triangular discretization shown in Fig. 10(b). Masonry is supposed

constituted by Italian common bricks of dimensions 250 mm × 120 mm × 55 mm disposed in

running bond texture, with joints thickness equal to 10 mm.

We assume for joints a Mohr-Coulomb failure criterion with cohesion c and friction angle 

both modeled as independent normally distributed random variables, with mean and standard

deviation (listed in Table 1) deduced from some experimental data reported in (van der Pluijm

1999).

At the opposite of Example 1, for this example no information is available on the input/output

relationship h(−), which makes impossible the explicit computation of the collapse load output

probability distribution , estimated instead by extensive MC simulations.

As in the previous example, a polynomial RS model is constructed form either MC and LH

sample sets of  points; more precisely, for each input pair , a 3D homogenized

limit analysis is performed, so obtaining a set of nc collapse loads yi, used to construct a polynomial

RS model. As an example, Fig. 5(b) shows the fitted RS model with the LH calibration points.

L1 500= L2 300=

H 300= t 30=

P0 120=

y λ=

tan Φ( )

P y( )

nc 20= ci tan Φ( ),( )
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The estimated RS model is then used as a proxy of direct computer finite element calculations in

extensive MC simulations with 3000 sample points, used to assess the collapse load probability

distribution. It is worth noting that each of the 3000 MC simulations required 37 h 27 min to be

performed on an Intel Pentium 3 GHz PC equipped with 1GB RAM, whereas the construction of

the polynomial RS model and the evaluation of the predicted output required only 12 min.

In Fig. 11 we show the variability in the collapse load empirical cumulative distribution obtained

Fig. 10 Perpendicular masonry walls subjected to horizontal action used in Example 2 (a) geometry and (b)
mesh used. A typical deformed shape at collapse obtained by means of the limit analysis FE
procedure adopted is also reported (PN is the in-plane plastic dissipation evaluated at node N and  is
the node of maximum dissipation)

N

Fig. 11 Comparison of the empirical cumulative distribution from three replicated Monte Carlo samples of
size 3000 with the mean empirical cumulative distribution and the 95% confidence-interval curves.
Data refer to Example 2



Homogenized limit analysis of masonry structures with random input properties 437

from the three 3000 MC computer simulations via direct computer calculations, compared with the

mean probability distribution and the 95% confidence-interval curves. Compared to the previous

example, a lower variability is observed. On the other hand, in Fig. 12, the probability distributions

provided by direct computer simulations and via the estimated RS models are represented, as well

the mean percentage prediction errors erri(%) for the RS models are depicted. As it is possible to

notice from Fig. 12, reported in logarithmic scale along the y-axis in order to amplify the

phenomenon, the RS models are able to give reliable results approximately for probability greater

that 1%, thus demonstrating that the proposed approach can be used for practical applications.

As already noted for Example 1, the probability distributions from RS models tend to be lower

than those from direct MC simulations. This discrepancy for low collapse load values is easily

justifiable by considering that, when collapse load tends to zero (i.e., when cohesion and friction

angle of mortar joints are very low), a least-squares approximation used to calibrate the RS model

tends to assign negligible optimization weights for low values of the collapse load (at least if such

Fig. 12 Comparison of the empirical distribution functions obtained in large Monte Carlo simulations via
direct computer simulations and via polynomial RS models. The theoretical cumulative distribution is
also shown (dashed line). The average relative percentage error calculated on 10 replicated RS models
is also shown. Data refer to Example 2
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weights are compared to those relative to high values of y). On the other hand, the prediction error

becomes small (i.e., below 10%) for cumulated probabilities equal or greater of 1%, which seems

acceptable in practical applications.

Finally, a comparison of the mean and variance of the error measures calculated on 10 replicated

RS models are shown in Fig. 6 and Fig. 7. For this example, it seems quite clear how the overall

prediction accuracy of LH-RS models is almost systematically better than that of MC-RS models. In

particular, LH-RS models show both an overall better accuracy (in terms of RMSE and MAE) and a

best local fitting performance, quantified by MARE. In addition, LH-RS models show a better

accuracy for low y values, corresponding to the left-end tail of the collapse load distribution, as

confirmed by the slightly lower mean percentage error observed for low y values (see top of

Fig. 12).

3.3 Example 3: Shear masonry wall with mortar cohesion c, friction tan(Φ) and tensile

strength ft assumed as random variables

Let the shear wall of Fig. 13 be considered, with dimensions L = 600 cm (length), H = 300 cm

(height), t = 45 cm (thickness) and vertical load equal to 45 N/mm, corresponding to a low average

compressive stress equal to 0.10 MPa. For the sake of simplicity, the wall is assumed build in

stretcher bond with common Italian bricks of dimensions 250 mm × 120 mm × 55 mm infinitely

resistant and joints reduced to interfaces with cohesive frictional behavior and limited tensile

strength ft, see Fig. 14.

In order to model both mortar tensile strength ft, cohesion c and friction angle tan(Φ) as

independent random variables, the following model is assumed. While for the variability of

cohesion c and tan(Φ) we simply adopt two independent Gaussian distributions, with mean and

standard deviation (see Table 1) estimated from some experimental data reported in (van der Pluijm

1999) (see Table 1), to represent the variability of ft, the typical limitation  must be

included, see Fig. 14.

Since for each sampled pair  the maximum allowable ft value must be always equal or

ft c/tan Φ( )≤

ci tan Φ( ),( )

Fig. 13 (a) Shear wall tested and mesh used for the limit analysis FE simulations of Example 3, (b) Typical
deformed shape at collapse obtained with the limit analysis FE model (PN is the in-plane plastic
dissipation evaluated at node N and  is the node of maximum dissipation)N
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lower than the limit tensile strength , to define the variable ft we introduce the

following relationship

(17)

where a is an auxiliary random variable following a normal distribution with mean and standard

deviation reported in Table 1. When a sufficiently small standard deviation is used, as that of

Table 1, possible inadmissibility of ft is avoided from a technical point of view, i.e., a very limited

number (<3-5) of points sampled do not respect the restriction , a compromise which

seems technically acceptable. Points which do not respect the constrain  are discarded

from the simulations. Furthermore, the mean and standard deviation of variable a are conveniently

calibrated, so to obtain distribution parameters for ft (see Appendix B) close to typical experimental

data available in the literature, see Table 1. 

As in the previous example, no information is available on the actual  input/output

relationship, meaning that the true cumulative distribution  can be only approximated by

extensive MC simulations. To this scope, the use of polynomial RS models as inexpensive

replacement of direct computer calculations is investigated.

As described in Section 2, a quadratic polynomial RS model is constructed based on nc = 30

calibration points generated by either the MC method or the LH technique. For each MC or LH

input points , a 3D homogenized limit analysis is performed, so obtaining a set of nc

collapse loads yi, used to fit the polynomial RS model. The fitted RS models are finally used in

place of direct computer simulations in extensive MC simulations, to assess the output probability

distribution.

Three large scale MC simulations with 1000 points are carried out both with direct computer

simulations and via the estimated RS models, to compute a large set of outputs values yi necessary

for estimating the collapse load probability distribution. A mesh with 400 triangular three-noded

elements is used for the simulations, as shown in Fig. 13. It is worth noting that each of the 1000

points MC simulations required approximately 12 hours to be performed on a Intel Pentium 3 GHz

ft lim,

i
ci/tan Φi( )=

ft a
c

tan Φ( )
----------------⋅=

ft c/tan Φ( )≤
ft c/tan Φ( )≤

λ c tan Φ( ) ft, ,( )
P y( )

ci tan Φi( ) ft
i, ,( )

Fig. 14 Joints limit state domain obtained assuming two different sets i and j of random input parameters,
Example 3
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PC equipped with 1GB RAM, immensely higher that the time required by the RS technique (20

minutes).

The variability in the cumulative distribution obtained from MC simulations with direct computer

simulations is shown in Fig. 15. In this case, the scatter in the empirical distribution tends to greatly

reduce for cumulated probabilities equal or greater than 2%.

The same three large MC samples are also used to assess the relative prediction accuracy of MC

and LH polynomial RS models, by comparing the error metrics introduced in Section 2.5. We refer

to Fig. 6 and Fig. 7 for the comparison of the mean and variance of the prediction errors, calculated

on the 10 independent RS replicated models. 

Contrarily to the previous examples, the present prediction errors seem to show opposite trends on

the error estimators. While the mean of RMSE exhibits a slightly better accuracy for RS-MC

models, the MAE says the opposite, while for MARE we have comparables errors. An exhaustive

explanation of this apparent discrepancy is not an easy task. What is worth noting is that, while

RMSE, MAE and MARE metrics provide a “global” performance of the LH-RS sampling, the

relative percentage error gives a “local” estimation of the approximation performance. Indeed, the

relative percentage errors reported in Fig. 16 shows a fairly better accuracy of LH polynomial RS

models in the region of low collapse load values (compare, for instance errors provided by MC and

LH for collapse loads lower that 30 kN/m), which is the range of engineering interest. 

4. Critical remarks

As emphasized by the results presented in the preceding Section, the use of RS technique as a

proxy of direct computer simulations in extensive MC simulations provides a significant reduction

in the overall computation time, while assuring at the same time a sufficient level of accuracy. 

Fig. 15 Comparison of the empirical cumulative distribution from three replicated Monte Carlo samples of
size 1000 with the mean empirical cumulative distribution and the 95% confidence-interval curves.
Data refer to Example 3
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For what concerns RS prediction accuracy, in general LH-RS models seem to provide a better

accuracy than MC-RS models. More precisely, while the overall prediction accuracy quantified by

RMSE seems comparable, the local fitting performance quantified by MARE and, in particular, by

erri(%) seems better for LH-RS models, especially for low y values, which is particularly important

when accurate estimates of the left-end tail of the collapse load probability distribution (associated

to low probability levels) are requested.

A second aspect which has been emphasized by our analysis is the uncertainty which affects the

output probability distribution  estimated in extensive MC simulations with direct computer

simulations. In particular, the uncertainty in output probability distribution is evident in the

distribution tails, where MC samples of the output variable y are scarcely populated, although for

probabilities larger than 1% the estimation error becomes very small.

Of greater interest, instead, is the evaluation of the prediction performance of fitted RS models

with respect to results provided by direct computer calculations in extensive MC simulations. Due

P y( )

Fig. 16 Comparison of the empirical distribution functions obtained in large Monte Carlo simulations via
direct computer simulations and via polynomial RS models. The theoretical cumulative distribution is
also shown (dashed line). The average relative percentage error calculated on 10 replicated RS models
is also shown. Data refer to Example 3
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to the least-square method used to fit polynomial RS models, positive percentage relative errors

have been observed for low output values, which determines a decrease in the performance of RS

models in cumulative distribution assessment. More specifically, when considering the extensive

MC simulations the probability distributions obtained through RS models tend to be lower than

those calculated from direct computer simulations. On the other hand, for cumulated probabilities at

least equal or greater than 5%, the prediction error becomes acceptable for practical applications,

indicating that the RS models give sufficiently accurate estimations of the collapse load probability

distribution for the range of practical interest, providing at the same time a drastic reduction in the

overall computational time.

To conclude, it is worth noting how further improvements on the prediction capability of fitted RS

models might be achieved by using other approximating models (Simpson et al. 2001 and, e.g.,

non-parametric regression Storlie and Helton 2008a, b, Storlie et al. 2009) different from simple

polynomial regression, even though at the expense of an increase in metamodel complexity.

5. Conclusions

A methodology based polynomial RS models has been used as an alternative to direct computer

calculations in extensive MC simulations, used to assess the collapse load probability distribution of

masonry structures having random input parameters.

The correlation between RS accuracy and sampling technique used to generate small sets of input

calibration points is tested by comparing the MC with the LH method, which is sought to provide

more effective input variable coverage. The relative prediction accuracy of MC and LH polynomial

RS models is quantified by calculating appropriate fitting errors at additional validation points.

The fitted RS models have been used in extensive MC simulations in place of actual computer

calculations, to estimate the collapse load probability distribution.

The procedure has been tested on three different examples of technical interest and several

comparisons of the estimated collapse load distributions obtained with direct expensive MC

simulations have been reported.

It can be concluded that:

• in the framework of stochastic homogenized limit analysis, the polynomial RS models have

shown to give accurate estimations in a technically meaningful region of the output domains

inspected, while providing a drastic reduction in the overall computation time, compared to that

required by direct computer calculations;

• the approach with polynomial RS models only needs MC and LH simulations with few points

(<30), instead of expensive (>1000 points) MC simulations performed via direct calculations;

• The presented analyses have shown that RS model may represent a valuable tool for a fast

estimation of collapse load distribution of real scale masonry buildings, where large MC

computer simulations need a prohibitive computational time (>40 hours), thus being not feasible

in engineering practice. A validation of this statement is obviously needed case by case. On the

other hand, a work in progress activity by the authors is to analyze the performance of the

approach proposed generalizing the problem to multiple uncertain inputs (more that 3). 
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Notations

a : auxiliary Gaussian random variable
c : cohesion
fck : masonry compressive strength
fcu : units compressive strength
fcm : mortar compressive strength
ft : mortar tensile strength

: limit mortar tensile strength
: true input/output relationship

 : approximation of 
LH-RS : polynomial RS model constructed from Latin Hypercube points
MC-RS : polynomial RS model constructed from Monte Carlo points
MAE : Mean Absolute Error
MARE : Maximum Absolute Relative Error
n : number of large Monte Carlo simulations (1000 or 3000)
nc : number of calibration points (20 or 30)
p(y) : probability density function
P(y) : cumulative probability distribution

 : empirical cumulative distribution
: mean empirical cumulative distribution

RMSE : Root Mean Square Error
 : mean and standard deviation of random input variable xi

: random analysis inputs (material parameters)
 : kth set of input calibration points for RS construction 

y : analysis output (collapse load)
yi : ith analysis output from direct computer simulation

: ith analysis output estimated from polynomial RS model
 : kth output value used in RS calibration 

λ : load multiplier
σP : standard deviation of empirical distributions sample
tan(Φ) : tangent of friction angle

ft lim, c/tan Φ( )=

h –( )
ĥ –( ) h –( )

P̂ y( )
P y( )

x i σi,
x x1 x2 … xm, , ,( )=

xc k,

yp i,

yc k, h xc k,( )=
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Appendix A – Theoretical output probability distribution for Example 1

The true probability distribution of the collapse load  which is a function of two random vari-
ables x1 and x2 can be calculated as (Mood et al. 1974)

(18)

where  is the joint probability distribution function of  and x2. By referring to Example
1, where function h(−) is given by Eq. (16), we have

(19)

and therefore the derivative appearing in Eq. (18) becomes

(20)

Assuming now x1 and x2 as independent Gaussian variables (with mean  and standard deviation σ1, σ2,
respectively), after some simplifications we obtain

(21)

where x1 is given by Eq. (19), while

(22)

Appendix B – Mean and standard deviation for cut-off stress in Example 3

This Appendix shows how to compute the mean and standard deviation of variable ft, introduced in
Example 3 and defined by Eq. (17). First, the probability density function for the limit tensile strength

 is computed similarly to Appendix A

(23)

where C is defined in Eq. (22), while  and  are the mean and standard deviations of variables
 and , respectively. Once the probability density function  has been calculated

according to Eq. (23), we can compute the mean value and standard deviation of , which are equal to
[N/mm2] and [N/mm2], respectively.

Now, since  and  are assumed as independent random variables, the mean value and standard
deviation for ft are simply (Goodman 1960)

(24)

where symbols , σ3 indicate the mean and the standard deviation of variable  (see Table 1).
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