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Abstract. This paper studies fracture initiation direction of two parallel non-coplanar cracks of equal
length. Using the dislocation pile-up modelling, singular integral equations for two parallel cracks
subjected to mixed-mode loading are derived and the crack-tip field including singular and non-singular
terms is obtained. The kinking angle is determined by using the maximum hoop stress criterion, or the
σθ -criterion. Results are presented for simple uniaxial tension and biaxial loading. The biaxiality ratio has
a noticeable influence on crack growth direction. For the case of biaxial tension, when neglecting the T-
stress the crack branching angle is overestimated for small crack inclination angles relative to the largest
applied principal stress direction, and underestimated for large crack inclination angles.
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1. Introduction

A lot of experimental evidence showed that in addition to singular stresses near a crack tip,

nonsingular stresses near the crack tip play a significant role in determining the path of crack

growth in brittle materials and in dominating shape and size of small scale yielding around a crack

tip in elastic-plastic materials. The singular stresses of the crack-tip field, denoted as K-field, are

usually characterized by stress intensity factor K, while the nonsingular stresses are characterized by

the constant-term stress parallel to the crack plane, which is referred to as T-stress (Williams 1957).

Most practical situations of our concern are opening cracks. For such cracks, two parameters K and

T basically dominate the crack-tip field, denoted as K-T-field, and so a bi-parameter fracture
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criterion has been suggested (Betegon et al. 1996).

For a single crack embedded in an infinite elastic medium, the sign and magnitude of T-stress can

influence the stability of the advance of a crack (Cotterrell and Rice 1980, Melin 2002), as well as

fracture initiation directions (Williams 1972, Sladek et al. 1997). Evidently, the K-T-field provides

more rich information on the elastic behavior of the crack tip than solely using the singular K-field.

For example, based on the K-T-field, a large T-stress can induce a crack to be bifurcated

symmetrically (Ayatollahi et al. 2002), other than expanding along its original crack plane. Similar

to stress intensity factors at the crack tip, many useful results of the T-stress have been obtained.

Fett et al. (2006) developed the Cotterell-Rice procedure to give approximately Green’s functions

for the T-stress at the kinked tip. Using the fundamental Westergaard functions, Li and Xu (2007)

derived a simple expression for approximately evaluating the T-stress at the kinked tip for various

cases including opening or closed kinked crack. For other crack configurations such as cruciform

cracks (Li 2006), periodic cracks (Chen et al. 2009), penny-shaped cracks (Wang 2004) or elliptical

cracks (Molla-Abbasi and Schutte 2008), the T-stress has been determined analytically respectively.

For a crack in compression, the effect of the T-stress on fracture initiation angle and on the yielding

stress is very notable, and this topic has been addressed in a recent paper (Li et al. 2009).

As we know, multiple cracks are often observed in engineering structures (Wang et al. 1996) and

geological structures (Wu and Pollard 1995, Germanovich and Astakhov 2004), and the interaction

of multiple cracks plays a dominant role on crack growth. For example, the presence of a large

number of cracks seems not to be understood as the congregation of independent cracks unless they

are sufficiently far (Kamaya and Totsuka 2002). Therefore, when cracks are very close, they are

more prone to coalesce or deviate (Lunn et al. 2008). Such interaction may significantly affect the

integrality of a cracked structure. Different from previous studies (relative to two and multiple

cracks) where the influences of the singular field on crack propagation were mainly dealt with, this

paper analyzes the influence of the T-stress on crack kinking angle and further sheds light on

coalescence or deviation of two cracks. As a representative example, the interaction of the T-stress

of two parallel cracks of equal length on crack growth direction is analyzed here.

This paper is organized as follows. In Section 2, a fundamental solution for an edge dislocation is

given and then singular integral equations are obtained by superposition of the fundamental

solution. Furthermore, an analytical approach for evaluating the T-stress at the crack tips of two

parallel cracks is described in Section 3. Using the maximum hoop stress criterion, Section 4 is

devoted to discussion on the effects of the T-stress on the crack kinking angle, with emphasis on the

cases of uniaxial and biaxial tension. Obtained results turn out that the T-stress plays a significant

role in determining the growth direction of cracks.

2. Governing equations

2.1 Fundamental solution

A crack-tip field contains singular and nonsingular stresses, and it can be expressed as

, (1)

where KI and KII are mode I and II stress intensity factors, T is T-stress,  and  are two
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specified angular distribution functions solely dependent on  is the Kronecker symbol, and the

last term  denotes infinitesimal quantity when r tends to the crack tip, r and θ being local

polar coordinates with the origin at the crack tip (Fig. 1). It is worth noting that there are many

methods for determining a crack-tip field, in particular the singular elastic field in the immediate

vicinity of the crack tip. Here we employ an approach, the dislocation pile-up modelling, to obtain

both the singular field and T-stress. Then from obtained results the influence of the T-stress on crack

growth is examined. To this end, we first model a crack as the pile-up of infinitesimal continuously

distributed dislocations with Burgers vectors  in the region between x and ,

where

(2)

Here u and v stand for the displacement components along the x- and y-axes, respectively, 

and  represent the jump of the tangential and normal displacements across the crack surface,

respectively.

A basic premise of this method is knowledge of the fundamental solution induced by an edge

dislocation. Recalling this solution for a single straight edge dislocation with Burgers vector (bx, by)

at the origin in an infinite elastic medium for plane strain, the induced elastic field is (Lardner

1974)

(3)

(4)

(5)

where µ and ν are the shear modulus and Poisson’s ratio, respectively, and

θ δmj,
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Fig. 1 Two parallel cracks of equal length 2a and spaced by 2h in an infinite elastic plane
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, (6)

, (7)

, (8)

2.2 Governing equations for two parallel cracks

In the present study, we consider two parallel non-coplanar cracks of equal length 2a and spaced

by 2h. Cartesian coordinate system oxy is chosen such that two cracks are situated symmetrically in

the upper and lower half-planes, respectively, as shown in Fig. 1. Under the action of biaxial tension

at infinity, we denote σ0 and λσ0 as two principal stresses, where σ0 is applied in an angle β with

respect to the crack plane, and consequently we have

, , (9)

This problem can be transformed to two subproblems, one corresponding to a uniform field in the

absence of the cracks, and the other corresponding to the disturbed field arising from the presence

of two cracks where the loading at the crack surfaces equals to the negative of the counterpart for

the former case, which guarantees the crack surfaces to be traction-free when the uniform field of

the former case is superposed.

For the latter case, the stress field at point  is composed of two parts. One

part originates from the upper crack as the pile-up of infinitesimal distributed dislocations situated at

position , i.e.

(10)

(11)

where , , and the other part

is caused by the lower crack . Hence, applying the expressions (3)-(5), the induced

elastic field is
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a–

a

∫=

σyy

2( ) µ

2π 1 ν–( )
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where  and  are the jump of the derivatives of the tangential and normal

displacements across the lower crack, respectively.

Therefore, adding the stress fields marked with superscripts (1) and (2) to the uniform elastic

field, one gets the total stress field at  as follows

(15)

(16)

(17)

Accordingly, in order for the crack surfaces to be traction-free, substituting (10) and (11) in

conjunction with (13) and (14) into (16) and (17) yields a system of singular integral equations with

Cauchy kernel

(18)

(19)

over . Similarly, for the other crack lying the lower half-plane, two singular integral

equations similar to Eqs. (18) and (19) may be deduced. All of these equations are coupled.

For the purpose of numerical computation, we denote normalized variables as follows

, (20)

and as usual the dislocation density functions can be assumed to take the following forms
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(25)

(26)

for . To obtain a unique solution of the system of equations, it is necessary to supplement

necessary constraint conditions. Physically, the displacements must fulfill single-value conditions at

the crack tips, i.e.

, (27)

or

, (28)

3. T-stress at the crack tips

Once  and  are determined numerically, all the quantities of interest may

be obtained. This can be done by expressing the stress fields as follows
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as expected. However, ahead of the upper crack, e.g., for x0 > 1 we can write

(34)

where 

Taking into account the fact that the nonsingular stress  are continuous with respect to

variable x0 and  for , we get

, (35)

and then obtain

(36)

where . Remembering (21), the above result can be represented as
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Using (37), the elastic T-stress at the crack tip  can be evaluated by

(39)

In order to describe quantitatively the dependence of the T-stress, we must solve (23)-(26)

together with (28). Here we invoke the Lobatto-Chebyshev collocation method (Theocaris and

Ioakimidis 1977), and a detailed procedure is omitted here. By defining the normalized stress

intensity factors and the normalized T-stress as

, , (40)
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symmetry of the problem, it is readily found that all kI and t values are the same at four tips.

However for kII we have .

Next we examine the influence of the T-stress on the crack kinking angle. In existing fracture

criteria, the simplest one is the maximum hoop stress criterion (Erdogan and Sih 1963). Using this
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Table 1 Values of kI, kII, and t at the tip A(a, h) when 

h/a kI kI(*) kII t

1.0000 1.0000 0.0000 −1.0000

5 0.9858 0.9855 −0.0014 −0.9817

2.5 0.9505 0.9508 −0.0094 −0.9429

1.25 0.8722 0.8727 −0.0431 −0.9001

1 0.8431 0.8319 −0.0611 −0.9061

0.8 0.8166 0.8037 −0.0803 −0.9267

0.5 0.7734 0.7569 −0.1165 −1.0001

0.2 0.7215 0.6962 −0.1633 −1.2089

0.1 0.7000 0.6651 −0.1839 −1.4273

*data from Murakami (1987)
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Solving Eq. (42) after substituting numerical results of KI, KII and T into (42), one can give the

dependence of the crack kinking angle . Fig. 2 shows the kinking angle  versus the ratio of the

crack spacing 2h to the crack length 2a with α = 0.2, where . It is seen from Fig. 2 that

when two cracks are very close, tensile mode I loading drives two cracks to deviate away from each

other. However, with the spacing h increasing, the angle of deviation becomes progressively small.

When the distance of two cracks is large enough, two cracks will propagate in parallel. In this case,

two cracks may be understood as two independent single cracks since their interaction is very weak.

In particular, when the effects of the T-stress is taken into account, it is obvious that the angle of

deviation of two cracks is smaller. For example, when taking α = 0.2, h/a = 0.2, the kinking angle

is about 13.4o when the T-stress is included and about 23.4o when the T-stress is neglected,

respectively. It indicates that the T-stress in this case has a tendency to impede two cracks to deviate

away.

For a general case of uniaxial tension, , two cracks are actually loaded by mixed mode.

Here we only consider two special crack spacings, h/a = 4 and h/a = 0.4. Similarly, we first compute

the corresponding kI, kII, and t values at two tips A and D, which are listed in Tables 2 and 3,

respectively. In particular, from Table 3 it is seen that for small crack spacing h/a = 0.4, kI at the tip

A may be negative when the crack angle β is small enough (e.g., β = 5o). This is attributed to the

interaction of two close cracks. However, kI at the tip D is still positive. Although kI < 0 cannot

θk θk

α 2rc/a=

β 90
o≠

Fig. 2 The influence of the crack spacing on the kinking angle for the case of uniaxial mode I tensile loading

Table 2 Values of kI, kII, and t for uniaxial tension  in an angle β (h/a = 4)

β (deg) 
Tip A(a, h) Tip D(a, −h)

kI kII t kI kII t

5 0.0007 0.0874 0.9856 0.0008 0.0875 0.9844

15 0.0649 0.2516 0.8696 0.0662 0.2520 0.8661

30 0.2434 0.4354 0.5099 0.2458 0.4368 0.5037

45 0.4878 0.5022 0.0172 0.4905 0.5049 0.0101

60 0.7326 0.4341 −0.4765 0.7349 0.4381 −0.4826

75 0.9121 0.2493 −0.8388 0.9135 0.2543 −0.8424

90 0.9783 −0.0003 −0.9728 0.9783 0.0003 −0.9728

σyy

∞

σ0=



386 X.-F. Li, B.-Q. Tang, X.-L. Peng and Y. Huang

occur in practice since the crack is closed in this case, it only implies a shielding effect for very

small β angles at the tip A. Similarly, the upper crack has also a shielding effect at the tip C. With

β rising, the shielding effects disappear. Furthermore, the kinking angle as a function of the crack

angle β is displayed in Figs. 3(a,b), respectively, where solid lines correspond to those with the T-

stress, i.e., the K-T-field is used, whereas dashed lines correspond to those without T-stress, i.e., only

K-field is used. Obviously, the crack kinking angle is sensitive to the T-stress. When the distance

between two cracks is large enough (h/a = 4), the interaction of two cracks is negligible, moreover

in this case the kinking angles coincide with those for a single crack subjected to the same loading

(Williams and Ewing 1972). However, when the distance between two cracks is small (h/a = 0.4),

the interaction of two cracks is significant and cannot be ignored. Or rather, from Fig. 3(b) when

β = 90o, the crack kinking angle is larger than zero for h/a = 0.4 (θk = 11.2o when using the bi-

parameter criterion if taking α = 0.2, and θk = 18.5o when using the uni-parameter criterion),

manifesting that two cracks have a tendency to inhibit two cracks to deviate away. This result turns

out the strong interaction of two cracks. While for two cracks with large spacing h/a = 4, two

cracks will advance along the individual original crack planes if β = 90o, which can be clearly

observed in Fig. 3(a). Therefore, for uniaxial tension, the classical kinking angle is overestimated

for larger β angles and underestimated for smaller β angles, respectively.

Table 3 Values of kI, kII, and t for uniaxial tension  in an angle β (h/a = 0.4)

β (deg) 
Tip A(a, h) Tip D(a, −h)

kI kII t kI kII t

5 −0.0202 0.0802 1.0006 0.0317 0.0822 0.9683

15 −0.0239 0.2251 0.9095 0.1254 0.2426 0.8166

30 0.0601 0.3725 0.5694 0.3186 0.4377 0.4085

45 0.2295 0.4025 0.0708 0.5280 0.5330 −0.1149

60 0.4389 0.3072 −0.4527 0.6974 0.5029 −0.6135

75 0.6322 0.1121 −0.8608 0.7814 0.3556 −0.9537

90 0.7575 −0.1305 −1.0442 0.7575 0.1305 −1.0442

σyy

∞

σ0=

Fig. 3 Kinking angle at the crack tips A(a, h) and D(a, −h)  versus the crack inclination angle β for two
parallel cracks under simple uniaxial tension; (a) h/a = 4, (b) h/a = 0.4
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In the following, an analysis of the effects of the T-stress on crack initiation angle is made for two

parallel cracks under different biaxiality ratios. Fig. 4 displays the kinking angle θk versus the crack

inclination angle β for crack spacing h/a = 4. For this case, the interaction between two cracks is

weak, so the curves shown in Fig. 4 in fact approximately give the corresponding dependence of an

isolated crack. From Fig. 4, it is seen that the kinking angle θk < 0 for λ < 1, and θk > 0 for λ > 1.

In particular, when λ = 1, meaning that tensile principal stresses are equal, two cracks expand along

their individual crack plane. This is easily understood since = 0 in this case. Additionally, for

, meaning that the cracked plate is subjected to uniaxial or biaxial tension, one can find that

the solid lines in Fig. 4 usually lie above the dashed lines for large β angles, while they lie below

the dashed lines for small β angles. This reveals the contribution of the biaxiality ratio on the

kinking angle. In other words, if λ > 1, the classical kinking angle is overestimated for β larger than

about 45o and underestimated for β less than about 45o, whereas the trend is reversed for .

This is not surprising because σ0 in place of λσ0 becomes a larger tensile principal stress.

Furthermore, for tensile-compressive loading, the situation becomes more complicated, as seen from

the curves with λ = −1. Since two cracks have large spacing, the tips A and D almost have a

σxy

∞

λ 0≥

0 λ≤ 1<

Fig. 4 Kinking angle at the crack tips A(a, h) and D(a, −h)  versus the crack inclination angle β for two
parallel cracks with large spacing for different biaxiality ratios

Fig. 5 Kinking angle versus crack inclination angle β for two parallel cracks with smalle spacing for different
biaxiality ratios; (a) tip A(a, h), (b) tip D(a, −h)
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common feature. For two close parallel cracks, Figs. 5(a,b) show the variation of the kinking angle

at the tips A and D versus the crack inclination angle β with different biaxiality ratios. The trends

observed in Fig. 4 are still retained for two near cracks in Figs. 5(a,b), and the magnitude of the

kinking angle at the tip A is however noticeably different from that at the tip D. For example, for

the case of equal-biaxiality ratio, the crack deviates away at the tip A in a positive branching angle,

and in a negative branching angle at the tip D. The branching angle at the tips A and D depends on

β save the case of λ = 1.

To further demonstrate the effects of the T-stress on the crack kinking angle, Figs. 6(a,b) display

the dependence of the kinking angle on the biaxial ratio λ for h/a = 4,0.4 with β = 90o, respectively.

It is evident that for h/a = 4, α = 0.2, the kinking angle exhibits a nearly symmetrical characteristic

with respect to the crack plane, which basically agrees with that for a single crack in an infinite

plane (Ayatollahi et al. 2002). The reason is that the crack spacing is large, and so their interaction

is negligible. As a result, two cracks branch in nearly identical kinking angle. Moreover, the higher

the value of λ, the larger the kinking angle. However, if the T-stress is neglected, the classical

kinking angle implies that two cracks advance straightly ahead, and do not kink or branch,

irrespective of the value of λ. For two parallel cracks with small crack spacing h/a = 0.4, the above

feature is no longer retained. In this case, the kinking angle at the tips A and D versus λ is

illustrated in Fig. 6(b). Since the interaction of two cracks is remarkable, it is observed in Fig. 6(b)

that one crack kinks away from the other, even for the classical result. Nevertheless, the classical

result without the T-stress does not vary with λ, implying two cracks deviate in an identical angle.

Opposite to the above, when the nonsingular stress is included a large positive λ increases the

kinking angle, and a negative λ decreases the kinking angle. In particular, when λ = 1, the kinking

angle based on the K-T-field is almost equal to the one based on the K-field, while the classical

kinking angle is severely underestimated for λ > 1, and overestimated for λ < 1, respectively.

5. Conclusions

Using the fundamental solution of the elastic field induced by an edge dislocation, singular

integral equations for two parallel cracks have been derived. The stress intensity factors and elastic

Fig. 6 Effect of the biaxiality ratio λ on the kinking angle at the crack tips A(a, h) and D(a, −h)  versus λ
with β = 90o, α = 0.2; (a) h/a = 4, (b) h/a = 0.4
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T-stress were evaluated by numerical solutions of the resulting equations. Results were presented for

two parallel cracks under the action of uniaxial and biaxial tension. The effects of the T-stress on

the crack kinking angle was discussed. It was found that the T-stress plays a strong role in

dominating crack growth behavior, in particular for two cracks with small spacing. Therefore, in

engineering design an efficient approach for changing the crack growth direction is to suitably

adjust crack orientation and biaxiality ratio. Main conclusions are drawn as follows:

• There is a shielding effect when two parallel cracks are very close for small β angles between

the cracks and loading direction.

• For uniaxial tension, the classical kinking angle is overestimated for larger β angles and

underestimated for smaller β angles, respectively.

• For the case of biaxial loading, the classical kinking angle is overestimated for λ < 1 and

underestimated for λ > 1, respectively.
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