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Abstract. The dynamic response of a finite Bernoulli-Euler beam resting on a tensionless Pasternak
foundation and subjected to a concentrated harmonic load is investigated in this study. This load may be
applied at the center of the beam, or it may be offset from the center. Since the elastic foundation is
assumed to be tensionless, the beam may lift off the foundation, resulting in contact and non-contact
regions in the system. An analytical/numerical solution is obtained from the governing equations of the
contact and non-contact regions to determine the coordinates of the lift-off points. Although there is no
nonlinear term in the equations, the problem appears to be nonlinear since the contact regions are not
known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off
points) are calculated numerically using the Newton-Raphson technique. The results, which represent the
symmetric and asymmetric responses of the beam, are presented graphically in this work. They illustrate
the effects of the forcing frequency and the beam length on the extent of the contact regions and
displacements. 
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1. Introduction

Vibration problems of beams or beam-columns on elastic foundations are important in many fields

of structural and foundation engineering. As the mechanical response of the foundation is governed

by many factors and cannot be calculated directly, it is necessary to model the foundation behavior.

The Winkler elastic foundation model, which consists of an infinite number of closed-spaced linear

springs, is a one-parameter model used extensively in practice. The well-known text by Hetenyi

(1946) provides a thorough treatment of the Winkler model for elastic foundations. Although the

model is simple and widely used, it does not accurately characterize many practical foundations

since it does not consider the interactions between the springs. To overcome this dilemma, several

two-parameter foundation models have been suggested. A comprehensive review of these models

was presented by Kerr (1964), Zhaohua and Cook (1983), and recently by Dutta and Roy (2002). In

this paper, Pasternak’s model will be employed to represent the foundation, in which the shear
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interaction between the springs is considered. This is accomplished by connecting the top ends of

the springs to an incompressible layer that resists only transverse shear deformations. 

In most studies on the static and dynamic behaviors of beams on an elastic foundation, it is

assumed that the foundation (regardless of whether the model is of the Winkler or two-parameter

variety) reacts in tension as well as in compression. That is, if a downward lateral load is applied to

a beam resting on a foundation, the beam will be compressed into the foundation. If the direction of

the load is reversed, the beam and the foundation are pulled up, creating tension in the foundation.

However, this assumption does not hold for many practical problems; i.e., while compressive

stresses can be transmitted easily, it is difficult to transmit tensile stresses across the boundary

between a beam and foundation except when the adhesion between the beam and the foundation is

assured, and no separation is thus permitted between them. Instead, a model in which the foundation

reacts only by compression (one-way or tensionless) is more realistic. In the case of an absence of

tensile forces across the interface between the beam and the foundation, lift-off regions can develop

in the system. The problem of beams resting on a tensionless foundation is complicated since the

location and the extent of the contact/lift-off regions are not known at the outset. Thus, even for

cases involving linear foundation models and linear beam theories, the problem is nonlinear and

must be solved iteratively. 

The dynamics and stability of beams have been extensively studied by many researchers using the

conventional Winkler foundation. However, the case of beams on two-parameter foundations has

received less attention due to the model complexity and the difficulties in the parameter value

estimation. Typical studies on this subject can be found in studies by Valsangkar and Pradhanang

(1988), Franciosi and Masi (1993), De Rosa (1995), De Rosa and Maurizi (1998), Horibe and

Asano (2001), Filipich and Rosales (2002), Rao (2003), Chen et al. (2004), and Malekzadeh and

Karami (2008). Although there are extensive analyses of beams on elastic foundations that react in

compression and tension, only a limited number of studies addressing tensionless foundations have

been published. The static/dynamic behavior of infinite beams resting on a tensionless foundation

has been studied by Tsai and Westmann (1967), Weitsman (1970, 1971, 1972), Rao (1974), Choros

and Adams (1979), Lin and Adams (1987), Ioakimidis (1996), and Maheshwari et al. (2004). In

these studies, due to the infinite beam assumption, the system is symmetric and the applied

concentrated load must be centered on the beam. 

There are some studies involving the performance of finite beams on tensionless foundations.

Celep et al. (1989) studied the dynamic response of a finite beam on a tensionless Winkler

foundation by considering eccentric loading. Kerr and Coffin (1991) studied the static behavior of a

finite beam resting on a tensionless Pasternak foundation subjected to a vertical concentrated load.

Kaschiev and Mikhajlov (1995) studied the problem of elastic beams on a tensionless Winkler

foundation for arbitrary loads. Co kun and Engin (1999), and Co kun (2000) studied the forced

vibrations of a finite beam resting on a nonlinear tensionless Winkler foundation subjected to a

vertical concentrated load. Co kun (2003) studied the response of a finite beam on a tensionless

Pasternak foundation subjected to a vertical harmonic load. Zhang and Murphy (2004) studied the

static response of a finite beam resting on a tensionless Winkler foundation subjected to a vertical

concentrated load that could be applied symmetrically or asymmetrically. Celep and Demir (2005)

studied the static behavior of a rigid circular beam on a tensionless two-parameter elastic foundation

subjected a concentrated force and a moment. The same authors also studied the response of an

elastic beam on this type of foundation subjected to a uniformly distributed load and concentrated

edge loads (Celep and Demir 2007). Lancioni and Lenci (2007) studied the forced vibrations of a
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semi-infinite beam on a tensionless Winkler foundation subjected to a uniformly distributed load.

Silveira et al. (2008) investigated the static behavior of beams, columns, and arches on this type of

foundation under different loading cases. Zhang (2008) studied the static response of a pinned-

pinned beam resting on a tensionless Reissner foundation subjected to a concentrated load, which

could be applied symmetrically or asymmetrically. By considering the same loading case but a

tensionless Pasternak foundation, the free-free beam response was studied by Co kun et al. (2008).

Most of the above results include the determination of the coordinates of the lift-off points; i.e., the

contact lengths of the beam. 

This paper investigates the response of a finite, free-free beam on a tensionless Pasternak

foundation subjected to a harmonic concentrated load. This load may either be located at the center

of the beam or it may be offset. The off-center loading disrupts the symmetry of the system and

requires the specification of appropriate boundary conditions. Closed-form solutions of the

differential equations of motion, in each of the contact and non-contact regions are determined,

using the coordinate system centered at the load. The boundary and continuity conditions are then

satisfied, which leads to a system of algebraic equations that are linear in certain unknown

coefficients and nonlinear in the unknown contact region lengths. Elimination of the linear

coefficients allows the contact region lengths to be determined numerically from the resulting

transcendental equations. 

2. Problem formulation 

2.1 Definition of the system and governing equations 

Consider a finite Bernoulli-Euler beam of length L resting on a tensionless Pasternak foundation

and subjected to a vertical load  such that lift-off of the beam is possible (Fig. 1).

The distance to the left (right) end of the beam is L1 (L2) and is measured from the origin of the

coordinate system centered at the load. The vertical displacement is given by W(x, t). The contact

region is defined as , where X1 and X2 represent the lift-off points on the left and right

sides of the beam, respectively. In order to investigate the behavior in both the contact and non-

sç
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Fig. 1 Beam on a tensionless Pasternak foundation subjected to an eccentric load 
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contact regions, the vertical displacement W(x, t) is broken into the following five distinct regions

 

where  and  are the displacements in the non-contact regions for the foundation

surface and the beam, respectively, and W3 is the displacement in the contact region. The governing

equations for these regions are

 

,  (1)

,  (2)

,  (3)

 ,  (4)

 ,  (5)

where k is the Winkler foundation modulus, G is the shear modulus of the shear layer, Ω is the

forcing frequency, P0 is the forcing amplitude, EI is the beam flexural rigidity,  is the Dirac

delta function, and mb and mf are the masses per unit length of the beam and foundation,

respectively. In the formulation given above, it is assumed that: (i) both the beam and foundation

are isotropic, homogeneous and linearly elastic; (ii) the vibration amplitudes of the system are

sufficiently small; and (iii) the effect of damping is neglected. Since the forcing is harmonic in time,

and thus the response of the beam and the foundation is harmonic, the displacements can be written

as 

 
, (6)

 
For convenience, the non-dimensionalized variable ξ, displacement , Winkler foundation

constant λ, shear foundation coefficient , frequency parameter , mass ratio , load F, lift-off

points ξ1 and ξ2, beam length l, and left (right) side beam length l1(l2) are introduced as follows

 (7)
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Introducing these quantities into the governing Eqs. (1)-(5) produces the following non-

dimensional equations 

,  (8)

,  (9)

 ,  (10)

,  (11)

,  (12)

2.2 Boundary conditions

Eqs. (8) and (12) are second order differential equations and Eqs. (9), (10), and (11) are fourth

order differential equations. Therefore, 16 integration constants will appear in the solution of these

equations. Because the lift-off points (ξ1, ξ2) are also unknown, there are a total of 18 unknowns to

be determined. To obtain them, there must be an equal number of boundary/matching conditions. At

 and , the geometric boundary conditions require continuity of the displacement and

slope. These are expressed as 

(13)

 (14)

There are also four natural boundary conditions at , . These conditions require

continuity of the bending moment and shear force. These are 

 (15)

(16)

At  and , there is no bending moment or shear force. Thus, the natural boundary

conditions at these points can be written as 
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Finally, the displacement  at the free foundation surface should be finite as . This

gives us two additional conditions 

 

(18)

These are the 18 boundary/matching conditions necessary to determine the 18 unknown constants.

However, in the formulation given above, it is assumed that the load may either be applied at the

center of the beam or be offset. If the load is applied at the center of the beam, the number of the

boundary/matching conditions reduces to 11 with the use of the symmetry in the system. If the

 region is considered, for instance, the boundary and matching conditions given above for the

right side of the system are still valid. However, in addition to these conditions, one must use the

continuity of the slope of the elastic curve and the symmetry in the system: i.e., in dimensional

terms, the slope is zero ( ) and the shear force is  at the center of the

beam. Apart from this, in some cases, the beam may be completely compressed into the foundation

(no separation develops), or one-sided contact may occur between the beam and the foundation. In

the full contact case, the slopes of the free part of the foundation and the foundation beneath the

beam are not equal at the free ends of the beam. Thus, the boundary conditions that will be satisfied

at  and  are

(19)

Here, the terms on the left and right sides show the generalized shearing force in the foundation

beneath the beam and the generalized shearing force in the free part of the foundation, respectively.

If one-sided contact occurs in the system, the first or the second sections of Eq. (19) can be used,

depending on the region where separation fails to develop. It should be noted here that due to the

harmonic excitation, the beam can separate from the foundation completely. In such a case, the

governing equation of the beam becomes , and can be solved, for

example, using the Green’s function approach with the appropriate boundary/continuity conditions

and the jump condition on the shear. 

3. Solution

The differential Eqs. (8)-(12) contain only constant coefficients and are homogeneous except for

Eq. (10). By considering the homogeneous form of Eq. (10), solutions to these equations can be

taken as

 

 (20)

Substituting these solutions into Eqs. (8)-(12), one obtains the following characteristic equations 
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 (23)

The roots of these equations are

 (24)

 (25)

 (26)

where  and . Since the parameters EI, k, and G are

rigidity parameters of the beam and foundation, they are all non-negative and thus the parameter λG

is always positive. For this reason, the solutions of Eqs. (8), (10), and (12) depend on whether the

values of the roots r and m are real, imaginary, or complex. Taking   in order to

reduce the number of the parameters in the problem, the corresponding solutions to these cases can

be written as follows:

Case 1 

The roots ri and mi are real and unequal if  and α > 0. In this case, the general

solutions of Eqs. (8)-(12) are
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Case 2 

The roots ri are real, and mi are real and equal if  and α = 0. The general solution of

Eq. (10) is

 (32)

The solutions of Eqs. (8), (9), (11) and (12) are the same as in the case 1.

Case 3 

The roots ri and mi are real and complex, respectively, if  and α < 0. The general
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 (33)

The solutions to Eqs. (8), (9), (11), and (12) are the same as in case 1.

Case 4 

The roots ri and two of the roots mi are real, the other two roots of mi are imaginary if

 and α > 0. The general solution of Eq. (10) is

  (34)

Again, the solutions to Eqs. (8), (9), (11), and (12) are the same as in case 1.

Case 5 

The roots ri and two of mi are imaginary, and the two of mi are real if  and α > 0. In this

case, the general solutions of Eqs. (8) and (12) are

 (35)

 (36)

While the solutions of (9) and (11) are the same as for case 1, the solution to Eq. (10) is equal to

that in case 4.

In the above solutions,  and   are the integration constants.

Additionally, the non-dimensional parameters used in these equations are defined as 

 (37)

in which the parameters P1−P8 are related to the particular solutions of . The parameters P5

and P6, which are seen in Eq. (33), for example, are obtained as follows. The homogeneous solution

of Eq. (10) is
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Now, consider the particular solution of Eq. (10) to be the sum of the functions

 and . The second and fourth derivatives
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Substituting the functions f1 and f2, and the derivatives given above into Eq. (10), and equating the

coefficients of  and , one obtains  and .

This procedure has been applied for the evaluation of other Pi values. 

There are 16 unknown integration constants for any one of the five cases given above. In addition

to these constants, the size of the contact zone, given by ξ1 and ξ2, is also unknown. Therefore, the

total number of unknowns becomes 18 as was mentioned in section 2. Because the solution

procedure for obtaining these unknowns is the same for cases 1-4, only case 1 will be discussed for

brevity. However, it should be noted here that the solutions (35) and (36) have exponential spatial

behavior on the free foundation surface and correspond to the incoming and outgoing waves when

the time factor  is considered. Thus, the radiation condition should be used for case 5. The

boundary conditions (18) give  and . Thus, the number of the integration constants is

reduced to 14. With the use of the boundary conditions (17), the constants B3, B4, D3, and D4 are

obtained in terms of the other constants as , , , and

. In this case there are 12 boundary conditions that have not yet been used.

Substituting these constants into the boundary conditions (13), (14), (15), and (16), 12 nonhomo-

geneous algebraic equations are obtained for the 10 unknown constants ,

 and E2. In these equations, the coefficients of the constants and the terms that appear on the

right hand side of the equations are related to ξ1, and  ξ2. Since ξ1 and ξ2 are not known in advance,

the solution is determined iteratively. First, ξ1 and ξ2 are chosen to numerically obtain the 10

constants from the solutions of the 10 equations at each step, and are substituted into the remaining

2 equations. Then, the lift-off points are determined as the roots of these transcendental equations

using the Newton-Raphson technique. During the solution, the global equilibrium of the beam is

checked by considering the vertical equilibrium of the forces as

(39)

4. Numerical results and discussion

Numerical results obtained with the above formulation are displayed graphically to show the

effects of the frequency parameter and the beam length on the extent of the contact lengths and

displacements for the symmetric and asymmetric loading cases. In all figures, the shear foundation
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coefficient is assumed to be constant at , and the applied load is taken to be  (except

in Fig. 10).

Fig. 2 shows the variation of the total contact length  with respect to the frequency

parameter  for different beam lengths. The concentrated load F is symmetric, i.e., at the center of

the beam , so the left- and right-side contact lengths are equivalent . From

Fig. 2(a), it is seen that as  increases, first one and then two solutions (two different contact

lengths at a fixed ) develop in the system. In other words, the solution is not unique; for a given

beam length and frequency more than one solution exists. The stability of the solutions are not

investigated here, but the actual solution can be obtained by using an energy criterion. The contact

length increases with the frequency parameter for both solutions. This increase persists until certain

values of  are reached for the first solution (upper curves in the figure), at which points complete

contact develops in the system. These values are = 0.649 for  for l = 4.0, 0.687

for l = 4.5, and 0.694 for l = 5.0. However, for the second solution (lower curves in the figure), the

beam continues to separate from the foundation until about = 0.8. When  is increased beyond

this value, first the beam deflections significantly increase (i.e., resonance behavior is seen in the

system), and then the contact and non-contact regions are interchanged. In other words, the middle

part of the beam lifts off the foundation while the two sides make contact with the foundation. In

this case, it is necessary to reformulate the problem with different boundary and continuity

conditions, which are given in the Appendix A. In addition to the frequency parameter, the length of

the beam considerably affects the contact behavior. As seen in Fig. 2(a), there are one or two

solutions in the system for short beam lengths in the  region. This situation persists until

l = 5.11, which is the critical length that changes the qualitative nature of the solution. In other

words, there is no solution for some values of the frequency parameter as the beam length increases

beyond l = 5.11 (Fig. 2(b)). The reason for not having solutions for the low frequency and large

beam-length is that at lower frequencies the load exhibits pseudo-static behavior. On the other hand,

at large frequencies, the long beam does not have time to react to the load, since the sign of the

load quickly changes. Therefore the beam is not lifted much from the foundation, resulting in a

λG 2= F 1=

ξ1 ξ2+( )
Ω
l1 0.5l=( ) ξ1 ξ2=( )

Ω
Ω

Ω
Ω l 3.5 0.674,=

Ω Ω
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Fig. 2 Variation of total contact length  as a function of the frequency parameter  for different
beam lengths l, for the symmetric case 
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large contact length. As Fig. 2(b) shows, complete contact develops in the system at higher values

of the frequency parameter for the first solution, whereas the contact and non-contact regions

interchange for the second solution. As mentioned above, the beam separates from the foundation

having two different contact lengths at a fixed frequency (see Fig. 2(a)). An example highlighting

this case is given in Fig. 3 with , for a beam length of l = 5. The contact length is

 for the first solution and  for the second solution. The summation

of the left and right side contact lengths gives the total contact lengths of the beam as 3.09 and

1.974, respectively, which agrees with Fig. 2(a). It is seen that the first solution gives a larger

contact length than that of the second solution.

Fig. 4 shows the variation of the left and right contact lengths with respect to the frequency

parameter  under an asymmetric loading at , for a relatively small beam length of .

For this same length, the symmetric case is given in Fig. 5 for comparison. As seen in Fig. 4, the

left ( ) and right ( ) side contact lengths of the first solution increase as  increases, and they

reach the left and right side beam lengths  at  and ,

respectively. Due to the asymmetric loading, the right end of the beam touches the foundation

before the left end, and after this one-sided lift-off, complete contact develops in the system when

the left end touches the foundation. From the figure, it is seen that a second solution develops in the

system when . The corresponding left and right side contact lengths to this solution are

 and . At , the left side of the beam is not in contact with the foundation

whereas the right side is in full contact . When  is increased beyond that value,

right side contact length first decreases and then increases until it reaches the right side beam length

 at . The beam continues to separate from the foundation on the left side until

about , i.e.,  does not reach the left side beam length . If the value of  is

increased beyond that value, the beam deflections increase considerably, and then the contact and

non-contact regions interchange, having a one-sided lift-off. In this case, as mentioned previously, it
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Fig. 3 Deflection curves showing two different lift-
off points at the same frequency parameter
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is necessary to reformulate the problem with different boundary and continuity conditions. These

conditions are given in Appendix B for the asymmetric case. By using the contact curves given in

Figs. 4 and 5, a comparison of the total contact length of the beam for the symmetric and

asymmetric cases is given in Fig. 6. Considering Fig. 5, the total contact length of the beam in the

symmetric case  is obtained as 2×ξ1 for the first and second solutions. However, in the

asymmetric case, the total contact length is obtained by summing the left and right contact lengths,

since they are different from each other . Therefore, the summation of ( ) and ( )

given in Fig. 4 gives the total contact length for the first solution. Similarly, the summation of ( )

and ( ) gives the total contact length for the second solution. The contact length in the

asymmetric case is smaller than that of the symmetric case for the first solution. This is because the

right side contact length in the asymmetric case is always smaller than that of the symmetric one.

For example, the left side contact length for the symmetric case is 1.492 at = 0.5. Thus, the total

contact length is 2 × ξ1 = 2.984. At the same value of , the left and right side contact lengths for

the asymmetric case are  and , respectively. The total contact length for

this case is 2.943. As a result, the contact length is smaller in the asymmetric case than in the

symmetric case. In contrast to the first solution, the second solution in the asymmetric case gives

larger contact lengths than those in the symmetric case , since the left and right

contact lengths in the asymmetric case are larger. 

Fig. 7 shows the deflection curves of the beam  and the free foundation surface with

different frequency parameters for the asymmetric loading case . For brevity, only the

first solution is considered here. The figure shows that the total contact lengths of the beam increase

with . These are 1.271 + 1.272 = 2.543 for = 0.4, 1.561 + 1.382 = 2.943 for = 0.5, and

2.221 + 1.60 = 3.821 for = 0.65. It is clear that the beam is compressed into the foundation with

larger displacements as  increases. 

As mentioned above, the contact-length behavior changes drastically after the critical beam length

( ), and there is no solution for some ranges of the frequency parameter for long beams in

the symmetric case (see Fig. 2(b)). For example, at a beam length of l = 6, there is no solution for
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Fig. 5 Variation of the left  side contact lengths
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Fig. 6 Variation of total contact length  as
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l = 4, for the symmetric and asymmetric case
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the range . However, this range becomes larger in the asymmetric case

, as can be seen from Fig. 8 or 9. Fig. 8 shows the variation of the total contact

length with respect to the frequency parameter with l = 6 for the asymmetric loading. For this beam

length, the behavior of the left and right side contact lengths is given in Fig. 9. The symmetric case

is also shown for comparison. As before, the left and right contact lengths are summed to obtain the

total beam contact length. As seen in Fig. 8, contact length for the asymmetric case is less than that

0.227 Ω 0.569< <
0.143 Ω 0.603< <( )

Fig. 7 Deflection curves showing lift-off at different
values of the frequency parameter  for a
beam length of l = 4, for the asymmetric case

Ω
Fig. 8 Variation of total contact length 

with frequency parameter  for l = 6, for the
symmetric and asymmetric loading case

ξ1 ξ2+( )
Ω

Fig. 9 Variation of the left  and right  side
contact lengths with frequency parameter 
for l = 6, for the symmetric and asymmetric
case. Note: superscripts (1) and (2) correspond
to the first and second solutions, respectively 
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Ω

Fig. 10 Deflection curves showing lift-off with l = 6,
= 0.1 and F = 1;2;3 for the asymmetric

case
Ω
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of the symmetric case at small  values. This is because the left  and right  side contact

lengths in the asymmetric case are different from each other (see Fig. 9), and the summation of

these functions gives smaller values than that of the symmetric case. From Fig. 8, it is also

observed that four solutions (four different contact lengths at the same frequency) exist in the

asymmetric case for larger values of . While two of the solutions exist between the symmetric

solutions, the other two solutions are very close to the symmetric ones. As before, these solutions

are obtained by summing the left  and right  side contact functions given in Fig. 9.

Finally, Fig. 10 shows the deflection under different asymmetric loads for a beam length of l = 6.

This figure shows that the beam has clearly lifted off the foundation in both sides. In addition, an

increase in the load results in an increase in the displacements without changing the extent of the

contact region. 

5. Conclusions

The contact lengths and deflections of a finite free-free beam with different lengths and

symmetric/asymmetric harmonic loadings on a tensionless Pasternak foundation are discussed. The

frequency parameter and the beam length are vital to determining the contact lengths. The loading

position is also important, as asymmetric loading results in different left and right contact lengths.

The contact length is independent of the magnitude of the load, whereas the deflection profile is

directly proportional to it. Depending on the frequency parameter and the beam length, more than

one solution (contact length) may exist in the system; i.e., the solution is not unique. The non-

uniqueness of the solutions is due to the nonlinearity associated with the existence of the lift-off

regions. For a relatively short beam , contact length increases with the frequency

parameter and beam length for all solutions. However, contact-length behavior changes considerably

if the beam length is increased beyond the critical value. For long beams, there is no solution for

some frequency parameter ranges; i.e., the beam does not lift off the foundation. These ranges are

larger in the asymmetric case than those of the symmetric case. In addition, it is observed that the

contact and non-contact regions interchange at high frequency values for all beam lengths in both

loading cases. 
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Appendix A 

When the contact and non-contact regions interchange in the symmetric case, the boundary and continuity
conditions become 

 

Due to symmetry, only the left side of the system is considered here. In the above equations, w1 is the
vertical deflection of the shear layer beyond the beam left end, w2 is the beam deflection in the contact
region, and w3 and w4 are the vertical deflections of the beam and shear layer in the non-contact region (in the
middle part of the beam), respectively. Note that the number of the boundary and continuity conditions
becomes 13 for this case. 

Appendix B 

When the contact and noncontact regions interchange in the asymmetric case, the boundary and continuity
conditions on the left and right sides are as follows  

On the left side of the system 

On the right side of the system 
 

Here, w1, w2, and w3 are defined as in the symmetric case. However, the deflection of the shear layer in the
non-contact region, i.e., in the middle part of the beam, is denoted by w6. Also, w4 and w5 show the deflec-
tions of the beam in the contact region and the deflections of the shear layer beyond the beam right end,
respectively. Note that the number of the boundary and continuity conditions becomes 20 for this case. 

 

 

 




