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Abstract. Elastic buckling load of perforated steel plates is typically predicted using the finite element
or conjugate load/displacement methods. In this paper an artificial neural network (ANN)-based formula is
presented for the prediction of the elastic buckling load of rectangular plates having a circular cutout. By
using this formula, the elastic buckling load of perforated plates can be calculated easily without setting
up an ANN platform. In this study, the center of a circular cutout was chosen at different locations along
the longitudinal x-axis of plates subjected to linearly varying loading. The results of the finite element
method (FEM) produced by the commercial software package ANSYS are used to train and test the
network. The accuracy of the proposed formula based on the trained ANN model is evaluated by
comparing with the results of different researchers. The results show that the presented ANN-based
formula is practical in predicting the elastic buckling load of perforated plates without the need of an
ANN platform.

Keywords: artificial neural networks; plate buckling; perforated plates; linearly varying loading;
explicit formula.

1. Introduction

The buckling behavior of steel plates has been studied by many researchers in structural

mechanics for over a century (Timoshenko 1961, Chajes 1974, Brush and Almroth 1975). Steel

plates are often used as the main components of steel structures such as ship decks and hulls,

platforms on oil rigs, and plate and box girders of bridges. Openings in steel plates may be required

to provide access for inspection, maintenance, or simply to reduce weight. However, the presence of

such openings in plate elements leads to changes in stress distribution within the member and

variations in buckling characteristics of the plate element (Shanmugam et al. 1999).

The effects of the shape, size, location, and types of applied load on the performance and

buckling behavior of such perforated plates have been investigated by several researchers over the

past two decades. For example, Shanmugam et al. (1999) reviewed most of the previous work on

the elastic buckling of perforated plates. Then they analyzed several uniaxially and biaxially loaded

perforated square plates with different boundary conditions by using the finite element method
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(FEM). They showed that an increase in the hole size and slenderness ratio causes a significant loss

in the ultimate strength of perforated plates. Brown and his colleagues (1986, 1987, 1990) used the

conjugate load/displacement method (CLDM) to investigate the parameters affecting the stability of

perforated plates subjected to different types of loading. They also investigated the effects of

eccentricity of a rectangular hole on the buckling of a square plate under in-plane uniaxial and shear

loading. El-Sawy and Nazmy (2001) used the FEM to investigate the effect of plate aspect ratio and

hole location on the elastic buckling load of rectangular plates subjected to uniaxial end

compression in their longitudinal direction. They concluded that a perforated square panel that is a

part of a rectangular plate cannot be treated as a separate square plate having the perforation. 

Recently Komur and Sonmez (2008) investigated the effect of the plate aspect ratio and the hole

location on the buckling of rectangular plates subjected to linearly varying in-plane loading. They

showed that the presence of a circular hole always causes a decrease in the elastic buckling load of

plates subjected to bending, even if the circular hole is not in the outer panel. 

ANN has been used by many researchers for a variety of engineering applications including

predicting the buckling load of beams and plates. El-Kassas et al. (2002) used ANN to predict the

failure load of cold-formed steel compression members. They reported that the trained ANN can

encapsulate complex relationships very effectively and produces results significantly quicker than

using conventional methods. Pu and Meshabi (2006) used ANN to predict the ultimate strength of

unstiffened plates under uniaxial compression. They indicated that the ANN method could be used

to establish a functional relationship between input and output parameters. Cevik and Guzelbey

(2007) presented two plate strength formulations applicable to metals with nonlinear stress–strain

curves, such as aluminum and stainless steel alloys, obtained by soft computing techniques, namely

ANN and genetic programming. Komur and Sonmez (2005) showed that ANN may be used to

predict the elastic buckling load of rectangular perforated plates under compression.

In the literature, a great deal of attention has been focused on studying the elastic buckling of

perforated plates subjected to different types of loading, but the ANN has not been applied to

predict the elastic buckling load of perforated plates subjected to linearly varying in-plane loading.

The objective of this paper, therefore, is to establish an ANN model based on the results obtained

from the finite element method and to present a formula based on this trained ANN model

predicting the elastic buckling load of plates. The use of the formula will ease the calculation of

elastic buckling load of plates for engineers.

2. Linear buckling analysis

In linear elastic analysis, the stress distribution is obtained after load is applied to the model

structure, but the load magnitude which the structure can sustain is unknown. In order to determine

the maximum load carrying capacity of the structure, nonlinear analysis or buckling analysis must

be employed. In nonlinear analysis, externally applied load is divided into smaller load steps, then

these smaller loads are incrementally applied and an equilibrium state is searched through iteration.

Hence, the maximum load carrying capacity or instability point(s) of the structure is determined by

tracing the peak load in a load-deflection curve. The second method is the buckling analysis by

which one may obtain only the critical loads and the corresponding deformation mode shapes of the

modeled structure. There are two types of buckling analysis: linear and nonlinear. The linear

buckling analysis (or eigenvalue analysis) is performed in two steps. The first step is an elastic
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linear analysis which is performed to determine the internal stresses (initial stress) in the structure

due to externally applied loads. The second step is to determine the eigenvalues based on the

stiffness matrix obtained from the linear analysis. The linear buckling analysis will not be suitable if

the deformations are not small or material shows nonlinear behavior near the collapse. In such

cases, the nonlinear buckling analysis, which is a combination of both nonlinear analysis and linear

buckling analysis, must be performed. 

In the present study, the material behavior is assumed to be linear elastic and deformations

compared with the overall dimensions of plate are assumed to be small. Based on the assumptions,

the linear buckling analysis is used in the analysis of perforated plates.

ANSYS (2005) uses the first and second order terms of strain to generate the stiffness matrices in

the buckling analysis. The first term of strain yields the conventional stiffness matrix, K0, and the

second term of strain is to account for the stress stiffness matrix, Kσ . The stress stiffness matrix,

Kσ , accounting for the effects of existing stress, is proportional to the stress level in the plate. The

total stiffness matrix including effect of stress σo can be expressed as

 (1)

Stress σ0 at buckling is unknown at the beginning of the analysis. By applying a small load (e.g.,

unit load) which is proportional to the applied load to the plate, the stress at buckling reaches to the

level of σ0 = λσ0l, where λ is a scalar multiplier and σ0l is the stress due to the applied small load.

The stiffness matrix can be expressed as

(2)

Then the matrix equilibrium equation may be given as 

(3)

where {F} and {D} are the external load and the corresponding nodal displacement vector,

respectively. At the buckling, the plate displacements increase with no increase in the external load.

Mathematically, this can be defined by

(4)

where {dD} is the incremental nodal displacement vector. Subtraction of the first equation from the

second yields

(5)

The incremental displacement vector {dD} cannot be zero (Cook et al. 1989); therefore, a non-

trivial solution of Eq. (5) is

(6)

Calculating the determinant given in Eq. (6) gives n-different eigenvalues λi, where n is the

dimension of stiffness matrix. The lowest eigenvalue λ1 corresponds to the critical stress level λ1σ0l

where buckling occurs. The associated eigenvectors represent the characteristic mode shapes of the

buckled plate. 
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3. Finite element analysis procedure

The ANSYS shell element library includes general-purpose shell elements and specifically

formulated shell elements for thick and thin shell problems. In this study, the general-purpose

Elastic Shell63 element is used to model the perforated plate because it has the capacity to simulate

both membrane and flexural behavior. The Elastic Shell 63 element has four nodes possessing six

degrees of freedom per node. This element was selected for use in the parametric study based on its

satisfactory performance in verification work previously described by El-Sawy and Nazmy (2001)

and El-Sawy et al. (2004). 

In this study an irregular mesh discretisation in finite element modeling is employed as shown in

Fig. 1. The mesh density of the plate was chosen based on the size of a circular hole. The default

shell element size was selected as b/20. The shell element size along the hole perimeter was set to

the smaller of b/50 or πd/40. The mesh pattern was set-up on the basis of the results achieved in

previous numerical studies (El-Sawy and Nazmy 2001). The center of the circular holes, located at

distance xedge from the nearest loaded end, was moved along the x-axis from the plate outer edge

xedge = 0.05b + d/2 toward the center of the plate (xedge = a/2). The material of the plates was

assumed to be homogeneous, isotropic and elastic with Young’s modulus E = 210 GPa and

Poisson’s ratio υ = 0.3 were selected.

4. Elastic buckling of perforated plates 

A rectangular plate given in Fig. 1 has length a, width b, thickness t and a circular hole with the

diameter d. The plate is subjected to linearly varying in-plane loading in the longitudinal direction

and all its edges are simply supported in the out-of-plane direction. In other words, there is no

lateral edge displacement perpendicular to the plate plane on all four edges. Three points on the

edge at y = −b/2, are restrained from in-plane translation to prevent the plate from exhibiting rigid

Fig. 1 Geometry and typical mesh of a plate with a circular hole
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body motion. Two of three points are restrained from translating in the y-direction and the third

restraint is used to prevent an x-direction translation. The location of the third restraint is chosen at

the intersection point of the plate’s longitudinal edge and the section of the hole center (El-Sawy

and Nazmy 2001). Plate aspect ratios (a/b) are selected to have integer values i.e., 1, 2, 3 and 4 in

order to investigate the effects of the aspect ratio on the buckling load.

A linearly varying force is subjected to two opposite edges (x = 0 and x = a) as follows

(7)

where No and α are the intensity of the compressive force per unit length and a numerical factor,

respectively. Negative sign in Eq. (7) represents compression. By changing α in Eq. (7), different

particular cases may be obtained as shown in Fig. 2. For instance, if α is set to zero, the uniformly

distributed compressive force is obtained. By taking α = 1, the compressive force varies linearly

from –No at y = −b/2 to zero at y = b/2. For α = 2, pure in-plane bending is obtained. The other

cases (α = 0.5 and α = 1.5) give a combination of bending and compression. Hereafter, the loading

cases of α = 0.0, 0.5 and 1.0 are called “compression,” and α = 1.5 and 2.0 are called “bending” for

the sake of simplicity. The case of α < 0 or α > 2 are not considered because such cases are

identical with the cases of 0 ≤ α ≤ 2 (Leissa and Kang 2002, Kang and Leissa 2005). 

In order to verify the method of analysis used in this study, a comparison with existing results in

the literature on the elastic buckling of rectangular plates without a cutout was performed. The non-

dimensional buckling in-plane loads  in Eq. (8) obtained by ANSYS, along with the

corresponding values obtained from Kang and Leissa (2005), are listed in Table 1. They obtained

these results by using an exact solution procedure based on the infinite power series. There is a

good agreement between the two sets of results. The maximum deviation was less than 1% and

within an acceptable level.

(8)

D in Eq. (8) is the flexural rigidity of the plate defined by

(9)
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Fig. 2 Example of in-plane loading Nx along the edge x = 0
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The buckling load of rectangular plates is presented in a normalized form as follows 

 (10)

where  and  are the non-dimensional elastic critical load of the plate with and without a

cutout, respectively. A number of plates with different loading cases (α ranging from 0 to 2),

normalized hole sizes (d/b ratios ranging from 0.0 to 0.7), the different locations of cutout (xedge/b

ranging from 0.5 to 2) and aspect ratios (a/b ranging from 1 to 4) were analyzed by using the finite

element package in ANSYS. Fig. 3 shows the variation in the buckling load ratios N* as the

normalized hole size (d/b) for various loading conditions. 

Close observation of Fig. 3(c) shows clearly that the presence of a small hole (i.e., d/b = 0.1 and

0.2) has no considerable effect on the buckling load ratio of the rectangular plate. However, moving

the holes with large diameter (d/b = 0.5-0.7) along the x-axis causes a significant variation on

buckling load ratios N*, this effect is even more significant for the compression loading cases. For

example the plate having a circular hole, whose center is at the middle of the plate, can buckle at

loads higher than the buckling load for corresponding plates without a cutout. Even though this

behavior is somewhat counterintuitive at first glance, this has been studied for many years and

experimentally verified for isotropic plates (Komur and Sonmez 2008, El-Sawy and Namzy 2001).

The buckled mode shape of the plate may be used to explain such behavior. A solid plate subjected

to compression buckles in a double half waves, but the presence of large hole at the middle of the

plate changes from double half waves to three half waves. The presence of large hole changes the

buckling mode shape of the plate having a/b = 2. This makes the buckled loads of the rectangular

plates with aspect ratio of 2 larger than Ncr for the compression loading cases. All the buckling
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Table 1 Non-dimensional buckling load Ncr
* for different loading cases and aspect ratios

a/b α

Ncr
*

This Study Kang and Leissa Ratio

1 0.00 39.42 39.48 0.998

1 0.50 52.42 52.49 0.999

1 1.00 76.99 77.08 0.999

1 1.50 133.15 132.00 1.009

1 2.00 250.79 253.00 0.991

2 0.00 39.43 39.48 0.999

2 0.50 52.43 52.82 0.993

2 1.00 77.00 77.21 0.997

2 1.50 133.18 132.63 1.004

2 2.00 235.16 235.70 0.998

3 0.00 39.42 39.48 0.999

3 0.50 52.42 52.35 1.001

3 1.00 76.99 76.77 1.003

3 1.50 133.17 132.34 1.006

3 2.00 237.26 237.67 0.998
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Fig. 3 Buckling load ratios N* of plates with a cutout
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load ratios are less than one for the bending loading cases, because there is no change in the mode

shapes while the hole is moved along the x-axis. 

5. Artificial natural networks 

5.1 Background 

ANN is an information processing paradigm that has broad applicability to real world problems

including pattern recognition, identification, classification and control systems. It is based on an

artificial representation of the human brain that tries to simulate its learning process. The term

“artificial” means that neural nets are implemented in computer programs that are able to handle the

large number of necessary calculations during the learning process. ANNs consist of very simple

and highly interconnected processors called neurons or processing elements. The neurons are

connected to each other by weighted links over which signals can pass. Each neuron receives

multiple inputs from other neurons in proportion to their connection weights and generates a single

output, which may be propagated to a number of other neurons. 

The multilayer perceptron (MLP) is by far the most well known and most popular ANN among

all the existing ANN paradigms (Rumelhart and MacClelland 1986). It consists of at least three or

more layers, which comprises an input layer, an output layer and a number of hidden layers. Each

neuron in one layer is connected to the neurons in the next layer and there are no connections

among the units of the same layer (Kasabov 1996, Haykin 1999). The number of neurons in each

layer may vary depending on the problem. The layers between the input layer and output layer are

referred to as hidden layers. MLPs have been applied successfully to many complex real-world

problems consisting of non-linear decision boundaries. Three-layer MLPs have been sufficient for

most of these applications (Omondi and Rajapakse 2006).

Back Propagation Algorithm (BPA) is one of the most famous training algorithms for the MLP to

its success from both simplicity and applicability viewpoints. It is a gradient descent technique to

minimise the error through a particular training pattern in which it adjusts the weights by a small

amount at a time. The algorithm consists of two phases: Training phase and recall phase. In the

training phase, first, the weights of the network are randomly initialized. Then, the output of the

network is calculated and compared to the desired value. In sequel, the error of the network is

calculated and used to adjust the weights of the output layer. In a similar fashion, the network error

is also propagated backward and used to update the weights of the previous layers.

A number of approaches for training neural networks are used. Most of them fall into two classes:

i) unsupervised and ii) supervised learning. Unsupervised system must organize itself by internal

criteria and local information designed into the network. Learning process is carried out without

being taught. In this class, only the input samples are used to train the network. On the other hand,

supervised learning algorithms may change weights of neurons according to the inputs/outputs

samples. After a network has established its input/output mapping with a defined minimum error

value, the training task has been completed. In sequel, the network can be used in recall phase in

order to find the outputs for new inputs. An important factor is that the training set should be

comprehensive and cover all the practical areas of applications of the network. Therefore, the proper

selection of the training sets is critical to the good performance of the network (Zilouchian and

Jamshidi 2001). 
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In Fig. 4, various inputs to the network are represented by the mathematical symbol xi. Each of

these inputs is multiplied by a connection weight. These weights are represented by wji. In the

simplest case, these products are summed, fed through a transfer function to generate a result, and

then output. This figure also includes the bias θj, which has the effect of lowering or increasing the

net input of the activation function (Haykin 1999). 

The relation between the input xi, and the output signal Outj of a single neuron is formulated as

follows 

(11)

where Outj is the output of the jth neuron. f (.) is a called an “activation” or “transfer” function,

which could be a sigmoid or hyperbolic tangent function (Haykin 1999).

The training of the network is accomplished by adjusting the weights and is carried out through a

large number of training sets and training cycles (epochs). The goal of the training procedure is to

find the optimal set of weights, which in an ideal case would produce the right output for any input

and minimize global error between the model output and the target output. The training is carried

out until the global error, such as the absolute fraction of variance (R2), the root mean square error

(RMS), or the mean absolute error (MAE), gets to an acceptable level. Global errors are given by

the following equations 

(12)

(13)

 (14)

where m is the number of neurons in the output layer and n is the number of samples. Tij and Outij

are the actual (target) values and the output of neural network values, respectively. SSE is the sum

of the square of errors, defined as

(15)
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Fig. 4 Basic elements of an artificial neuron
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5.2 Development of ANN model 

A review of different ANN models is found in several papers and books (e.g., Veelenturf 1995,

Haykin 1999, Pala 2006, Elhatip and Komur 2008). Among the various types of ANN, the feed-

forward or multilayer perceptron neural network is widely used for function approximation, with

numerous successful applications in almost every scientific and engineering domain (Pu and

Mesbahi 2006). In the training process of the feed-forward algorithm, the input information is

propagated forward through the network, while the output error is back-propagated through the

network for updating the weights. The back-propagation algorithm can speed up and stabilize the

convergence during training. In this study, the multilayer feed-forward network trained by

supervised learning was chosen. This model also uses a scaled conjugate gradient training algorithm

(SCGA), which avoids a time-consuming line search per learning iteration. A sigmoid function has

been used as an activation function and approximately 4000 epochs have been used in the training

of the ANN model. In this study the built in function which is available in Matlab ANN toolbox is

used for ANN applications. An interface developed to call these toolbox functions when they are

needed. 

The ANN model was trained and tested by means of the previously described results obtained by

finite element analysis. Randomly selected 320 FEM results out of 400 were used to train the

network while the rest of the data was used for testing the model. Input and output data were

normalized by using the normalization values given in Table 2, since the sigmoid function having

asymptotic limits of [0, 1] was used in training the ANN model. Table 2 also gives the range of the

input parameters in which the input data are valid. 

The number of neurons in the input layer is set to 4, namely the aspect ratio (a/b), hole size (d/b),

loading case (α), and the location of circular hole (xedge /b). The number of neurons in the output

layer is 1, which returns the elastic buckling load of the perforated plate. The number of neurons in

the hidden layer has a direct effect on the model quality in terms of accuracy; hence, selecting the

number of neurons in the hidden layer is the key issue in the development of an ANN model (El-

Kassas et al. 2002). Unfortunately, there is no rule of thumb to determine the number of the hidden

layers and the neurons in these layers. In practice, a trial-and-error procedure must be carried out

(Haykin 1999, Guzelbey et al. 2006). In order to determine the most appropriate ANN model,

several multi-layer perceptron architectures with various numbers of hidden layers and nodes were

developed and tested in this study. The most appropriate ANN model is selected based on the

performance of both training and testing sets in terms of the RMS Errors. A number of ANN

models having one and two hidden layers with different number of neurons are developed and the

corresponding RMS errors are given in Fig. 5 and Fig 6, respectively. In Fig. 6, x-axis is label as

 
Table 2 The range of inputs and output parameters and normalized values

Parameters Range of Values Normalization Value

Aspect Ratio, a/b 1.0-4.0 4

Hole size, d/b 0.0-0.7 0.7

Loading case, α 0.0-2.0 2

Location of Hole, xedge/b 0.5-2.0 2

Buckling load, Ncr
* 0.00-300.00 300.00
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AxB on which A and B denote the neurons in the first and second hidden layer, respectively. As

can be seen from Figs. 5 and 6, the comparison of the performance of the ANN models with both

one and two hidden layers revealed the fact that the one hidden layer model with 9 neurons resulted

Fig. 5 Effect of the neuron number for a single hidden layer case

Fig. 6 Effect of the neuron number for two hidden layer case

Fig. 7 The architecture of the proposed ANN model
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in better model accuracy. Consequently, the ANN model is selected as having 4 neurons in input

layer, 9 neurons in first hidden layer and 1 neuron in output layer to define the buckling load of

elastic perforated plates. The ANN model used in this study is depicted in Fig. 7. 

Fig. 8 shows the correlation of predicted values (by ANN model) and actual values (obtained

from finite element analysis) when the 320 samples were used for training the network. The

network predicted them very well. Fig. 9 shows the predicted and actual values of the buckling load

when 80 samples that were not used for training were used for testing the network. The training and

test errors are given in Table 3. The R2 values were found to be 99.97% and 99.97% and the mean

absolute error was 1.67% and 2.01% for the train and test sets of the buckling load, respectively. It

was observed from the results that the network can predict the elastic buckling load of plates within

a very small error margin. This indicates that the developed ANN model is quite accurate. 

5.3 Explicit formulation of the ANN model 

Although ANN has been employed successfully to solve complex engineering problems, its

capacity to establish a functional relationship between input and output data has not been

thoroughly investigated (Pu and Mesbahi 2006, Pala 2006). The functional relationship between

input parameters (aspect ratio, loading case, location and size of hole) and the output parameter

(elastic buckling load) was derived based on the trained ANN model. The elastic buckling of plate

 was obtained in the functional form asNo
*

Fig. 8 Performance of the ANN model for the
training set

Fig. 9 Performance of the ANN model for the test
set

 
Table 3 Statistical parameters for the ANN used for elastic buckling

Training Set Test Set

R2 0.99973 0.99965

RMS 0.006175 0.006926

MAE 1.67 2.01
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(16)

(17)

Where 6.258 is the bias value and Wo is the weight matrix of 9 neurons between the hidden layer

and the output layer. Outh is the output vector of 9 neurons in the hidden layer, which is expressed

as 

(18)

Where  and  are the weighted inputs of the neurons in the hidden layer.

They are obtained by using Eqs. (19)-(23)

(19)

(20)

(21)

(22)

(23)

Wh and θh are the weight matrices and bias value vector of input variables in the input layer to

neurons in the hidden layer. X is the normalized input vector. It should be noted that the proposed

NN model be valid within the ranges of variables given in Table 2. 

6. Verification of the proposed formula

The explicit formula in Eq. (16), which was proposed for the calculation of elastic buckling load

of perforated plates, can be verified by comparing the ANN results with those available in the

literature, namely from Kang and Leissa (2005) and El-Sawy and Nazmy (2001). Kang and Leissa

(2005) investigated the linearly varying loading on the buckling load of the solid plates by using an

exact solution procedure based on the infinite power series. El-Sawy and Nazmy (2001) used the

finite element method to obtain the elastic buckling load of perforated plates subjected to uniformly

distributed force. The results are given in Tables 4 and 5. For verification, a comparison between

the two results and statistical values such as MAE and the maximum absolute errors are also given

in Tables 4 and 5. It can be seen that nearly every prediction is accurate to within less than 5

percent. The maximum deviation takes place when the aspect ratio is 2.30, even though this aspect
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5.356– 1.228– 0.001– 9.529– 1.446– 1.919 3.335 1.165– 7.083–

T

=

θh 12.865  0.436  2.946  6.607–   0.827   5.986  3.5226  1.181  14.138{ }T
=

X
a/b

4
--------  

xedge/b

2
---------------  

α

2
---  

b/d

0.7
--------

⎩ ⎭
⎨ ⎬
⎧ ⎫

T

=
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ratio was not used in training the ANN model. The prediction of the buckling load had a very high

accuracy, mostly within ±2 percent. 

 
Table 4 Compression of proposed ANN formulation and Kang and Leissan’s results

a/b xedge /b α d/b Kang (2005) ANN-Formula Ratio

2.30 1.15 0.00 0.00 39.48 38.92 1.0144

2.30 1.15 0.50 0.00 52.49 50.30 1.0435

2.30 1.15 1.00 0.00 77.08 75.60 1.0196

2.30 1.15 1.50 0.00 132.00 133.38 0.9897

2.30 1.15 2.00 0.00 235.70 240.51 0.9800

1.00 0.50 2.00 0.00 252.00 249.74 1.0090

1.00 0.50 1.33 0.00 108.70 106.80 1.0178

1.00 0.50 1.00 0.00 77.10 75.95 1.0151

1.00 0.50 0.80 0.00 65.09 64.61 1.0074

1.00 0.50 0.67 0.00 58.86 58.67 1.0032

1.50 0.75 2.00 0.00 238.00 244.41 0.9739

1.50 0.75 1.33 0.00 113.3 112.57 1.0065

1.50 0.75 1.00 0.00 82.59 80.83 1.0218

1.50 0.75 0.80 0.00 70.2 68.40 1.0263

1.50 0.75 0.67 0.00 63.64 62.05 1.0256

Maximum absolute error: 4.17 

MAE: 1.75

Table 5 Compression of proposed ANN formulation and El-Sawy and Nazmy’s results 

a/b xedge /b α d/b El-Sawy (2001) ANN-Formula Ratio

1.00 0.50 0.00 0.20 34.84 35.15 0.9912

1.00 0.50 0.00 0.60 27.63 28.38 0.9736

2.00 0.50 0.00 0.10 38.69 38.66 1.0008

2.00 1.00 0.00 0.50 46.88 46.56 1.0069

3.00 0.50 0.00 0.40 34.54 33.64 1.0268

3.00 1.00 0.00 0.60 42.44 44.42 0.9554

4.00 0.50 0.00 0.20 37.50 36.95 1.0149

4.00 1.00 0.00 0.50 40.66 41.20 0.9869

3.00 1.50 0.00 0.65 41.65 41.73 0.9981

4.00 1.50 0.00 0.60 40.47 40.68 0.9948

4.00 2.00 0.00 0.45 39.48 40.37 0.9780

Maximum absolute error: 4.67

MAE: 1.58
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7. Conclusions

The elastic buckling load of simply supported perforated rectangular plates subjected to linearly

varying loading has been obtained by using the finite element method. The results were then used to

train and test a multilayer, feed-forward neural network using the supervised learning method to

predict the elastic buckling of perforated plates in terms of aspect ratio, size, and location of cutout

and load cases. An ANN model that had one hidden layer with nine neurons was chosen. The

model was shown to be capable of providing accurate estimates of the elastic buckling load of

plates. Based on the trained model, an ANN-based formula to predict the elastic buckling load of

perforated plates was presented. The formula presented was verified using results obtained from the

literature to check its accuracy in predicting the buckling load of perforated plates. It was found that

the proposed formula gives very accurate predictions, mostly within ±2 percent error. 

ANN is generally an easy-to-use tool to solve engineering problems, but it may also be used in

establish a mathematical expression between inputs and output results by means of the weight and

bias terms of neurons based on the activation function. In this study, an ANN-based formula is

presented. The proposed formula does not require rigorous mathematical computations and a single

formula covers different loading patterns, sizes and locations of the hole, and different aspect ratios

of the plates. 

The method presented here can be improved by including nonlinear behavior of perforated plates.

In order to so, a series of experimental and analytical studies should be performed to obtain the

necessary data set for training the model.
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