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Abstract. This paper presents theoretical solutions for the three-dimensional (3D) stress field in an
infinite isotropic elastic plate containing a through-the-thickness circular hole subjected to far-field in-
plane loads by using Kane and Mindlin’s assumption. The dangerous position, where the premature
fracture or failure of the plate will take place, the expressions of the tangential stress at the surface of the
hole and the out-of-plane stress constraint factor are found in a concise, explicit form. Based on the
present theoretical solutions, a comprehensive analysis is performed on the deviated degree of the in-plane
stresses from the related plane stress solutions, stress concentration and out-of-plane constraint, and the
emphasis has been placed on the effects of the plate thickness, Poisson’s ratio and the far-field in-plane
loads on the stress field. The analytical solution shows that the effects of the plate thickness and Poisson’s
ratio on the deviation of the 3D in-plane stress components is obvious and could not be ignored, although
their effects on distributions of the in-plane stress components are slight, and that the effect of the far-
field in-plane loads is just on the contrary of that of the above two. When only the shear stress is loaded
at far field, the stress concentration factor reach its peak value about 8.9% higher than that of the plane
stress solutions, and the out-of-plane stress constraint factor can reach 1 at the surface of the hole and is
the biggest among all cases considered. 

Keywords: three-dimensional stress field; through-the-thickness circular hole; thickness effect; stress
concentration; out-of-plane constraint.

1. Introduction

It is well recognized that stress concentration, which has long been a concern, is a very important

phenomenon to cause premature fracture or failure of materials and structures. Fortunately, it has

been confirmed by several numerical computations that the corresponding plane solutions of the

theory of elasticity provide a good approximation to the in-plane stress. For example, the plane
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stress assumptions, i.e., the out-of-plane stresses are negligible as compared to the in-plane ones,

can be used to study deformations of thin plates under in-plane loads. Consequently, in many

analyses on practical problems including plasticity problem (e.g., Dugdale model in fracture

mechanics), the plane stress solution is still acceptable to study the stress field in a plate with

thickness of at least an order of magnitude smaller than a characteristic in-plane dimension.

However, strictly speaking, plane solutions of the theory of elasticity are only valid for plates with

vanishing thickness or infinite thickness where the stress state can be classified as plane-stress or

plane-strain, respectively. Furthermore, it is also recognized that these plane solutions are not

applicable when assessing the out-of-plane stress and deformation (Sternberg and Sadowsky 1949,

Young and Sternberg 1966, Folias and Wang 1990, Krishnaswamy et al. 1998, Li et al. 2000). For

its importance, a lot of efforts have been paid to make clear of 3D stress field in a plate based on

the theoretical and numerical studies, since the exact analysis is mathematically difficult to develop. 

Recently, much attention has been paid to study on the two-dimensional and three-dimensional

(3D) stress field in the vicinity of a circular hole/inclusion (Chaudhuri 2003a, b, Folias and Wang

1990, Krishnaswamy et al. 1998, Kotousov and Wang 2002b, Penado and Folias 1989, Yang et al.

2008), a crack (Folias 1975, Jin and Hwang 1989, Jin and Batra 1997, Kotousov 2007, Kotousov

and Wang 2002c, Yang and Guo 2005, Yang and Freund 1985) and a notch (Filippi et al. 2002,

Filippo et al. 2004, Kotousov and Wang 2002a, Lazzarin and Tovo 1996, Li and Guo 2001, Li et al.

2000). However, the effects of the plate thickness, Poisson’s ratio and the loads on the stress field,

the deviated degree of the in-plane stresses from the related plane stress solutions, the stress

concentration and out-of-plane constraint have not been performed comprehensively for the case of

a finite thickness plate. 

Because of the difficulty in satisfying boundary conditions precisely, there are only a few

analytical 3D solutions available in the literature for relatively simple configurations with favorable

conditions of symmetry. About sixty years ago, by the use of series expansion and taking finite

terms into account, an excellent approximate solution for 3D stress distributions in the

neighborhood of a circular hole in an infinite plate of arbitrary thickness is obtained by Sternberg

and Sadowsky (1949). Detailed analyses for the out-of-plane stress constraint were provided, but for

stress concentrations only a brief discussion was given. By a similar method, the stress distribution

near a general triaxial ellipsoidal cavity in an infinite elastic body subjected to a triaxial tension is

obtained by Sadowsky and Sternberg (1949). Later, Kane and Mindlin (1956) provided a method to

obtain 3D stress field, while still retaining the simplicity of a two-dimensional model. The method

was employed by Yang and Freund (1985) and Jin and Hwang (1989) to study the effect of

transverse shear on the stress field in an elastic plate containing a through-thickness crack. Recently,

by using Kane and Mindlin’s assumption, Jin and Batra (1997) analyzed the interface fracture of an

elastic plate bonded to a rigid substrate and obtained the solutions of stresses and deformations for a

semi-infinite plate perfectly bonded to a rigid substrate and subjected to uniform in-plane normal

tractions at infinity. Using the same assumption, Krishnaswamy et al. (1998) investigated the stress

concentration in elastic Cosserat plates with a circular hole undergoing extensional deformations.

Unfortunately, some of the results are incorrect in their paper (Li et al. 2000 and Kotousov and

Wang 2002a, b). More recently, Kotousov (2007), Kotousov and Wang (2002a, b, c, 2003) studied

the 3D stress distribution around a notch, a circular hole or a crack in an isotropic elastic plate or a

transversally isotropic elastic plate by using Kane and Mindlin’s assumption. However, the explicit

expressions for stress concentration and out-of-plane constraint factor in a plate with a circular hole

have not been provided. 
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It is the purpose of this paper to present exact 3D solutions for the stress field in an infinite plate

holding a through-the-thickness circular hole subjected to remote in-plane loads based on Kane and

Mindlin’s assumption. Explicit expressions for the tangential stress at the hole and the out-of-plane

stress constraint factor are obtained in a concise, explicit form. Based on the present theoretical

solutions, a comprehensive analysis is performed on the characters of 3D stress field, stress

concentration and out-of-plane constraint, and the emphasis has been placed on the effects of the

plate thickness, Poisson’s ratio and the far-field in-plane loads on in-plane stress field, stress

concentration and out-of-plane constraint. 

2. Governing equations and the boundary conditions

Consider a homogeneous, isotropic, elastic, infinite plate bounded by planes z = ±h with a

through-the-thickness circular hole in its center. The plate is subjected to in-plane loads,  and

, at infinite. Kane and Mindlin’s kinematic assumption is adopted, namely, the displacement field

in the plate has the following form

, ,  (1)

It is clear that Eq. (1) implies that lines normal to the mid-plane of the plate in the un-deformed

state are still the normal in the deformed state and that these lines experience uniform extensional

strain w(x, y)/h along the z direction, where w(x, y) is the out-of-plane displacement of the plate at

z = h. With the displacement field given by Eq. (1), two out-of-plane shear stress components are

linearly distributed in the thickness (z) direction. 

Considering the following definitions

 (2)

the constitutive relations and the equilibrium equations can be expressed as

 (3)

,  (4)

where E and ν are the Young’s modulus and Poisson’s ratio of an isotropic material. A comma

stands for differentiation and repeated indices k implies summation. In Eqs. (2)-(4) and throughout

the remains of the paper, Greek indices range 1 and 2. Introduce function φ, similar to the Airy

stress-resultant function, and ϕ, and

 (5)
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Inserting Eqs. (3), (5) and (6) into the deformed harmonious equations yields

, (7)

where  and  are the two-dimensional Laplacian and biharmonic operators, respectively, and

, (8)

Introduce polar coordinates . The formulae of stress components are

 (9)

,

In the polar coordinate systems, the boundary conditions can be expressed as follows

 (10)

3. The stress solutions in a plate with a circular hole

Considering the boundary conditions (10), solutions to (7) can be found as

 (11)

 (12)

Inserting Eqs. (11) and (12) into Eq. (9), and considering the boundary conditions Eq. (10) and

that all stress components must remain bounded at infinity, the solutions of all stress components

are obtained, whose expressions are given in Appendix.
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Then, the tangential stress at the surface of the hole can be expressed as follows

 (13)

In Eq. (13) and throughout the remained paper, Kn denotes , the modified Bessel

functions of order n, where n is an integer. Throughout the remains of the paper, the notation

 is used. Consider the following definitions

the far-field in-plane loads ratio: 

the tangential stress ratio: 

the stress concentration factor: 

Where θt is at the location where  reaches its peak value and can be determined by

Eq. (13), namely

 (14)

It can be clearly seen that the position at which the stress concentration factor presents depends on

the far field loading style. In the polar coordinate system, the out-of-plane constrain factor is

defined as follows

 (15)

Substituting Eqs. (11), (A1) and (A2) into Eq. (15), then simplifying the resulting equation yields

 (16)

When the plate thickness is vanishing, this problem becomes a plane stress problem and the

solutions to the in-plane stress field can be expressed as follows

 (17)

Consider a special case that there is only one uni-axial load  loading at far field. Now the

tangential stress ratio becomes , which can be expressed as
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 (18)

where

 (19)

The stress concentration factor for  and  is

 (20)

Eq. (16) can be rewritten as

  (21)

4. The three-dimensional stress field around the hole

4.1 The in-plane stress field

At first, the attention is placed on a special case- only a uni-axial load  is loading at far

field. Fig. 1 shows the distributions of the plane stress solution of  and the present solution of
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Fig. 1 Distributions of the plane stress solution of  and the 3D solution of tangential stress ratio
K =  for cases that (a) on the section at θ = π/2 and (b) at the line of r/R = 1.0 when h/R = 0.01
and ν = 1/3

σθ/σ0

σθ /σ0



Stress concentrations around a circular hole in an infinite plate of arbitrary thickness 149

tangential stress ratio  on the section of θ = π/2 and along the line of r/R = 1.0 for the

case of h/R = 0.01 and ν = 1/3. As is expected, the present solution for the case of a very thin plate

coincides well with the relative plane stress solutions, completely. From Fig. 1(a), it can be found

that  and K decrease rapidly from 3.0 and 3.00165 to 1.51852 when r/R varies from 1.0 to

1.5, respectively, then approach slowly and gradually to the limit value of 1.0. Fig. 1(b) shows that

these two ratios increase monotonically from −1.0 and −1.00165 to 3.0 and 3.00165 when θ varies

from 0 to π/2, respectively.

The variations of the three in-plane stress ratios with the distance ratio r/R on three different

sections for various semi-thickness ration h/R are given in Fig. 2. From Fig. 2 it can be found that

the variations of the three in-plane stress ratios are nearly independent of the thickness of the plate

and are in good agreement with the related plane stress solutions. This conclusion is in good

agreement with the results obtained by using the finite element method (Li et al. 2000, 2001).

Comparison of the present solutions with the related solutions given by Kotousov and Wang

(2002a) is shown for the variation of the stress concentration factor, Kt, with the semi-thickness

ratio h/R for different ν in Fig. 3. It can be found that the present solutions coincide very well with

K σθ /σ0=

σθ /σ0

Fig. 2 Distributions of the three in-plane stress ratios: (a)  on the section at θ = 0, (b)  on the
section at θ = π/4 and (c) K =  on the section at θ = π/2 with the distance ratio r/R for cases of
h/R = 0.01, 0.1, 1.0, 1.2, 1.5, 2.0, 3.0, 5.0, 10.0 and ν = 1/3

σ
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Fig. 3 Variations of the stress concentration factor Kt at the root of the circular hole with the semi-thickness
ratio h/R for different ν

Fig. 4 Distributions of the three in-plane normalized stresses: (a)  on the section at θ = 3π/4, (b)
 on the section at θ = π/2 and (c)  on the section at θ = 3π/4 with the distance ratio r/R

for different ν with h/R = 1.2 when the loads ratio is 1:1:1

σ
r
/σr

σ
rθ /σrθ σθ /σθ
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that of Kotousov and Wang (2002a) completely. It also can be seen that both the plate thickness and

Poisson’s ratio have an obvious effect on the stress concentration. The stress concentration factor is

higher in finite thickness plates than in thin plates of the plane stress and plane strain cases. The

factor Kt rises quickly and reaches its peak value at about h/R = 1.2 when the plate is thin. Outside

this region, Kt decreases with the increase of h/R. Based on the above results and comparison with

some related for a special case of uni-axial load, it shows that the present solutions are valid.

Then, our attention is placed on the comparisons of the present 3D in-plane stress solutions with

the related 2D solutions to show their deviations through Fig. 4. It shows distributions of the three

in-plane normalized stresses with the distance ratio r/R and various Poisson’s ratios ν for the cases

of h/R = 1.2 and the loads ratio of 1:1:1. One should be mentioned that, the values of  and

 at r/R = 1.0001 is looked as that at r/R = 1.0 for the analytic simplification. And emphasis

is only placed on special section, on which stress components will easily reach their peak value. It

is found that deviations of three in-plane stresses,  and , increase with the increase of

Poisson’ ratio ν, and that they reach 5.924%, 8.888% and 5.926%, respectively, at the surface of the

hole when ν = 0.5. The deviation of the 3D solutions for the in-plane stress components is obvious

due to the effect of the plate thickness and Poisson’s ratio, although this effect on distributions of

these three stress components is slight according to present solutions. Furthermore, the effect of

Poisson’s ratio is more significant than that of plate thickness. 

4.2 The stress concentration and out-of-plane stress constraint effect

In this section, one studies the stress concentration first. Fig. 5 describes variations of the stress

concentration factor Kt at the root of the circular hole with the semi-thickness ratio h/R. It can be

seen from Fig. 5(a) that the plate thickness has an obvious effect on the stress concentration. The

stress concentration factor is higher in finite thickness plates than that in the case of the plane stress

and plane strain. The factor Kt rises quickly when the plate is relatively thin and reaches its peak

value at about h/R = 1.2. Outside this region, Kt decreases with the increase of h/R and approaches

its limit value. From Fig. 5(b), it can be seen that Kt depends strongly on the loads ratio. 

σr/σr

σ rθ /σrθ

σ r σ rθ, σθ

Fig. 5 Variations of the stress concentration factor Kt at the root of the circular hole with the semi-thickness
ratio h/R for the case that (a) for different Poisson’s ratio ν when the loads ratio is 1:1:1 (b) for
different loads ratio with ν = 1/3
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Fig. 6 gives variations of the stress concentration factor Kt with Poison’s ratio ν. It can be seen

that Kt increases monotonically with ν and that Kt increase more rapidly when h/R ≈ 1.2 than all

other cases. Consequently, the maximum deviation of the present solution from the related plane

stress solution is at h/R ≈ 1.2 and ν = 0.5. And the maximum deviation is about 5.926% when the

loads ratio is 1:0:0, and 8.889% when the loads ratio is 0:0:1, respectively. 

Next, the analysis is performed on the out-of-plane stress constraint effect. Distributions of the

out-of-plane stress constrain factor Tz with the distance ratio r/R is shown in Fig. 7 when ν = 1/3.

Variations of the out-of-plane constrain factor Tz with the semi-thickness ratio h/R is plotted in

Fig. 8. It shows that Tz increases with the increase of plate thickness and the decrease of the

distance, and that the effect of the load ratio on the out-of-plane stress constraint is significant,

especially when only the shear stress is loaded at far field. The value of Tz for an infinite thickness

Fig. 6 Variations of the stress concentration factor Kt at the root of the circular hole with the Poison’s ratio ν
for the case that (a) for different plate thickness ratio when the loads ratio is 1:1:1 (b) for different
loads ratio with h/R = 1.2

Fig. 7 Distributions of the out-of-plane stress constrain factor  with the distance ratio r/R
for the cases that (a) for different h/R with ν = 1/3 when the loads ratio is 1:1:1 and (b) for different
loads ratio with ν = 1/3 and h/R = 1.2
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plate is about 2/3 when the loads ratio is 1:0:0, and 1 when the loads ratio is 0:0:1, respectively. It

should be note that the effect of Poisson’s ratio ν on Tz is rather weak on the section at . 

5. Conclusions

Based on Kane and Mindlin’s assumption, theoretical solutions of the three-dimensional stress

field are obtained for an infinite plate holding a through-the-thickness circular hole subjected to far

field in-plane loads. Explicit expressions for the tangential stress around the hole and the out-of-

plane stress constraint factor are obtained. Based on the present solutions, a comprehensive analysis

is performed on the characters of 3D stress field and the emphasis has been placed on the effects of

the plate thickness, Poisson’s ratio and the load ratios on in-plane stress field, stress concentration

and out-of-plane constraint. Some important characters are revealed: 

(1) The dangerous position, where the failure of the plate will most likely take place initially, is

determined by Eq. (14), the value of the tangential stress at this position is determined by

Eq. (13), and the out-of-plane constrain factor is determined by Eq. (16). 

(2) The effect of the plate thickness and Poisson’s ratio on the deviation of the 3D in-plane stress

components is obvious and could not be ignored, although this effect on distributions and

variations of these three stress components is slight. Furthermore, the effect of Poisson’s ratio

is more significant than that of plate thickness. However, just on the contrary of that of the

above two, the effect of the loads ratio on distributions and variations of the three in-plane

stresses is significant, although this effect on the deviation degree of them from the related

plane stress solutions is rather weak. 

(3) The stress concentration factor rises quickly when the plate is relatively thin and reaches its

peak value at about h/R = 1.2. Outside this region, it decreases with the increase of the plate

thickness and approaches its limit value. And the stress concentration factor increases

monotonically with the increase of Poisson’s ratio. Furthermore, it increases more rapidly for

the case of h/R ≈ 1.2 than that of all other cases. The dependence between the stress

θ θt=

Fig. 8 Variations of the out-of-plane constrain factor  with the semi-thickness ratio h/R
for the cases that (a) for different r/R with ν = 1/3 when the loads ratio is 1:1:1 and (b) for different
loads ratio with ν = 1/3 and r/R = 1.0
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/ν σ
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σ
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concentration factor and the load ratios is very strong. Consequently, the peak value of the

factor occurs at h/R ≈ 1.2 and ν = 0.5. The maximum deviation of the present solution from the

related plane stress solution is about 8.9% when the loads ratio is 0:0:1. 

(4) The out-of-plane constraint factor increases with the increase of plate thickness and the

decrease of the distance, and the effect of the load ratio on the out-of-plane constraint is

significant. The factor can reach 1 at the surface of the hole when only the shear stress is

loaded at far field. However, the effect of Poisson’s ratio on the out-of-plane constraint is

rather weak on the section at . 
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Appendix

(A1)
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where

(A2)

In which, Kn denotes , the modified Bessel functions of order n, where n is an integer, and
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