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Vibration of mitred and smooth pipe bends and 
their components

D. Redekop† and D. Chang‡

Department of Mechanical Engineering, University of Ottawa, Canada K1N 6N5

(Received April 20, 2009, Accepted October 8, 2009)

Abstract. In this work, the linear vibration characteristics of 90o pipe bends and their cylindrical and
toroidal shell components are studied. The finite element method, based on shear-deformation shell
elements, is used to carry out a vibration analysis of metallic multiple 90o mitred pipe bends. Single,
double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and
mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with
existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the
boundary conditions, and the various geometric parameters on the natural frequency is described. The
differential quadrature method, based on classical shell theory, is used to study the vibration of
components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one
or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support
are considered for each case. The results given provide information about the vibration characteristics of
pipe bends over a wide range of the geometric parameters.
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1. Introduction

Pipe bends form essential components of all piping networks. The bends provide flexibility to the

systems, and being connected to other components are subject to structural vibrations. Smooth pipe

bends offer better flow characteristics, and more gradual variations in stresses. Mitred bends,

comprising of oblique cylindrical shells welded together, may have less favorable flow and stress

characteristics, but can offer economic advantages in some parametric ranges. Interest in the

components stems from the fact that reinforcement provided for piping systems may provide

sufficient rigidity so that the motion of the individual components may be considered independently.

A compilation of studies performed on mitred bends has recently been presented (Wood 2008).

Extensive research has already been completed, dealing largely with stress and collapse analysis of

single mitred bends. Aside from several recent studies (Chang and Redekop 2007, 2008), little

attention has been paid to the study of the changes in behavior that occur as the multiplicity of the

mitred bend is increased. As well, aside from a few studies (Baylac and Copin 1975, Redekop and

Chang 2008), little work has been done on the topic of vibration of mitred bends. The significance
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of vibration characteristics of pipelines in their operation has been outlined, for example, by Wachel

et al. (1990). 

There is an immense literature dealing with the vibration of cylindrical shells. Studies on the

vibration of complete cylindrical shells have been summarized in three major monographs (Leissa

1973, Soedel 2006, Blevins 1979). Some analytical work has been done on the vibration of oblique

cylindrical shells (Hu and Redekop 2003), and on a cylindrical shell-torus assembly (Redekop

2004). Studies on the vibration of piping bends with a smooth curved pipe have been conducted by

Salley and Pan (2002), Ming et al. (2002), and Orynyak et al. (2007). Recently, a study has been

conducted on the vibrations of a curved pipe based on elbow finite elements (Carneiro et al. 2005).

Experimental and numerical results were given in this latter study, and these were compared with

results for a straight pipe of similar radius, thickness and center-line length. 

In the first part of this study, the finite element method (FEM), based on shear-deformation shell

elements, is used to study the linear vibration characteristics of metallic multiple mitred bends.

Reference is also made to smooth bends. Both natural frequencies and mode shapes are determined.

To validate the procedure, a comparison of natural frequencies is made with existing results for

cylindrical shells (straight pipes) and sectorial toroidal shells (curved pipes, pipe elbows). The

influence on the natural frequencies of the boundary conditions, of three geometric parameters, and

of the multiplicity of the bend is determined. In the second part of the study the differential

quadrature method (DQM) is used to determine the fundamental frequencies of oblique cylindrical

shells, and of curved pipes. These geometries represent the constituent components of mitred and

smooth pipe bends. Two types of boundary conditions are considered for each type of component.

Based on the frequency data generated, regression formulas are derived which permit the prediction

of the fundamental frequency of each component over a wide range of geometric parameters.

2. Geometry and material model

A schematic view of the pipe bend assemblies considered in the study is given in Fig. 1. All

bends are 90o, and have the same tangent pipe structure. The 1M bend has a single fold with an

oblique edge that makes an angle of β= 45o with the normal to the tangent pipe axes. The 2M bend

has two folds (β= 22.5o), and the 3M bend has three folds (β= 15o). The C bend has a smooth

circular transition between the two tangent pipes. Details of the geometry for the 2M bend are given

in Fig. 2. The main geometric characteristics are the nominal bend radius R, the mean cross-

sectional radius r, the wall thickness h, and the lengths of the tangent pipes L1 and L2. For the 1M

model an artificial bend radius R is assigned, to ensure a tangent pipe structure identical to the other

bends. For all models studied in this work, the two tangent pipes were taken as equal in length (i.e.,

Fig. 1 Four configurations of 90o pipe bends - left to right; 1M, 2M, 3M and C
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L1 = L2 = L), and were assumed integrally connected to the adjacent component. Stiffening rings,

flanges, weld protrusions, and imperfections are not directly considered in the model. A free

vibration analysis is conducted, i.e., there is no consideration of loadings on the surface or at the

ends of the pipe structures. 

In the current analysis of the mitred bends, the assemblies were assumed either clamped or free at

the lower end of the vertical tangent pipe, and at the right end of the horizontal pipe. The boundary

conditions at a clamped end were enforced by requiring all displacement and rotations on the

boundary nodes to be zero. Symmetry in the geometry is present about a central vertical plane, as

well as about the normal plane passing through the center of the bend, suggesting the possible use

of half or quarter models in the analyses. However, to obtain all possible modes of vibration,

including unsymmetrical ones, the analysis was for the full models in all cases. 

When ring supports provide sufficient stiffness, the motion of the constitutive components

becomes of interest. For mitred bends, the constitutive component is a cylindrical shell, with one or

both ends oblique. For smooth bends, the constitutive component is a partial toroidal shell, and of

lesser interest, a right-ended cylindrical shell.

The material for all models was taken as linear, isotropic, and elastic. The three material

properties affecting the vibration behavior are the Young’s modulus E, the Poisson’s ratio ν, and the

mass density ρ. As results throughout the study are given for specific geometric cases, non-

dimensionalization was not carried out, and all frequencies ω are cited in Hz.

3. Linear finite element vibration analysis 

The structural FEM program ADINA (ADINA 2003) was used to carry out the main analysis for

the pipe bends, but the ANSYS code (ANSYS 2005) was also used in the validation. The shell

element used in ADINA was the 16-noded isoparametric element, while that in ANSYS the 8-

noded isoparametric element. These elements are both shear-deformation elements, belonging to the

Reissner-Mindlin family (Hinton et al. 2003). For parts of the validation study, a 4-node flat shell

element was also used in ADINA. The 16-noded isoparametric element is an intrinsic part of the

ADINA software, and is shown herein to give results closely agreeing with those from the more

Fig. 2 Details of the geometry for the 2M mitred configuration
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common low order elements. Results stemming from the NASTRAN program, mentioned in the

validation, were based on a 4-node element.

For models with all edges free, such as considered in this study, rigid body modes exist. While

the structural matrix is singular for such models, the software has provision to analyze these cases.

For the solution of the eigenvalue problem several options were available in ADINA, of which the

Lanczos method proved the most effective (Grimes et al. 1994).

The software used in the present study allows for a specification of element length ratio in a

graded mesh, and a value of two was used in one validation case. This selection gave an element

length at the support position two times that at the junction position. Grading of the mesh is known

to be highly significant for stress concentration problems. For the current vibration problem, it was

found that grading the elements in the axial direction did not greatly influence the results for the

fundamental frequency. 

4. Validation and convergence for FEM study

While no vibration results for mitred bends were available in the literature to validate the FEM

procedure, results were available for straight and curved pipes, and for an obliquely-cut cylindrical

shell. The comparison of results, and an indication of the convergence of the FEM for those

geometries, is presented in Tables 1, 2. 

A comparison is first made for the vibration of straight and curved pipes. In two recent studies

natural frequencies were given for both of these two geometries. The work of Carneiro et al. (2005)

concerned a clamped-clamped (C-C) straight pipe, and a clamped-free (C-F) 90o curved pipe. Two

finite element analyses were given, as well as an experimental one. The first finite analysis was

Table 1 Validation of FEM for natural frequency w (Hz) for straight and curved pipes 

Mode

Carneiro et al. (2005) models
(a) Straight pipe: C-C

Redekop (2004) models
(a) Straight pipe: C-F

ALGOR Expt.
ADINA
20×20

ANSYS
20×20

NASTRAN
64×20

DQM
28×27

ADINA
30×20

ANSYS
30×20

1 1320 1240 1246.1 1247.0 1578.3 1600.5 1617.9 1598.5
2 1640 1410 1617.1 1625.2 2016.9 2085.3 2154.4 2085.7
3 2340 2440 2173.4 2185.6 2795.7 2799.3 2806.9 2798.6
4 3880 2610 2426.2 2421.2 3524.0 3626.6 3870.3 3628.9
5 - - 2665.8 2676.3 4394.4 4365.0 4499.1 4355.3

(b) Curved pipe: C-F (b) Curved pipe: C-C

ALGOR Expt.
ADINA
20×20

ANSYS
20×20

NASTRAN
64×20

DQM
28×27

ADINA
40×30

ANSYS
40×30

1  440  370  448.1  467.4 2271.8 2273.1 2283.7 2271.6
2  830  620  491.2  471.2 2627.8 2628.3 2700.8 2623.5
3 1630 1040  860.3  863.7 2913.3 2920.6 3024.6 2909.1
4 1640 1640  876.0  880.7 3178.8 3198.8 3209.7 3181.9
5 1990 1670 1657.0 1635.6 3422.8 3441.3 3475.7 3427.1
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based on a newly developed semi-analytical curved pipe finite element, while the second one made

use of the commercial ALGOR program. In the experimental work the natural frequencies were

found with the aid of an electromagnetic shaker and a piezoelectric accelerometer. It was found that

the two sets of finite element results agreed fairly closely, but were generally higher than the

experimental results.

The work of Redekop (2004) concerns again straight and curved pipes, but the boundary

conditions are now C-F for the straight pipe, and C-C for the curved pipe. An FEM solution is

given, as well as one based on the DQM. The FEM makes use of the commercial NASTRAN

program, in which a 4-noded flat shell element is available. The DQM analysis makes use of a

procedure introduced by Bert and Malik (1996) in a study on cylindrical shells. In the work by

Redekop (2004) the governing equations are those of the Sanders-Budiansky linear shell theory

(Budiansky 1968). This shell theory does not account for shear effects, but is recognized as one of

the most accurate of the first-order theories. It was found that the FEM and DQM results showed

excellent agreement for both of the pipe geometries considered.

A comparison of the results of Carneiro et al. (2005) and of Redekop (2004) with the current

results is given in Table 1. A 16-node element was used for ADINA and an 8-node element for

ANSYS. The mesh sizes varied, as indicated in the table. In the mesh sizes quoted for the current

FEM and DQM approaches the first and second integers indicate, respectively, the elements or

sampling points in the axial and circumferential direction. The material properties for the Carneiro

et al. (2005) models were E = 200 GPa, ν = 0.3, and ρ = 7850 kg/m3. For the Redekop (2004)

models, the properties were E = 207 GPa, ν = 0.3, and ρ = 7800 kg/m3.

The straight pipe model of Carneiro et al. (2005) had a cross-sectional radius of r = 0.05 m, a

length of L = 0.382 m, and a thickness of h = 2 mm, while the curved pipe had a cross-sectional

radius of r = 0.05 m, a pipe bend radius of R = 0.2 m, and a thickness of h = 2 mm. The comparison

values quoted herein were scaled from Fig. 5 of Carneiro et al. (2005) or taken from those quoted

by Orynyak et al. (2007). The current FEM results found using ADINA and ANSYS show

excellent agreement with each other for all the five cited frequencies. The fundamental frequency

found in the current FEM analysis also agrees well with the experimental fundamental frequency for

the straight pipe, and with the ALGOR fundamental frequency for the curved pipe. There are

 
Table 2 Convergence and validation of natural frequency ω (Hz) for an oblique cylindrical shell - comparison

with DQM results of Hu and Redekop (2003) for C-C geometry

Mode
DQM FEM - untapered mesh 2:1 taper

22×44 12×24 -16N 24×48 - 16N 48×94 - 4N 24×48 - 16N

1 806.3 824.6 825.2 835.3 825.1
2 - 835.3 835.7 849.9 835.6
3 959.4 957.8 958.1 968.0 958.1
4 - 958.2 958.7 970.0 958.6
5 1034.5 989.1 990.0 1006.5 990.0
6 1040.7 1003.5 1003.7 1017.3 1003.7
7 1227.4 1217.6 1218.8 1249.2 1218.8
8 1231.7 1217.9 1218.9 1315.0 1218.9
9 1331.3 1308.1 1307.8 1327.0 1307.8
10 1336.3 1321.1 1320.8 1404.6 1320.8
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indications that some modes are absent in either the experimental or numerical results. 

The straight pipe model of Redekop (2004) had r = 0.0858 m, L = 0.176 m, and h = 7.11 mm,

while the curved pipe had r = 0.0858 m, R = 0.2286 m, and h = 7.11 mm. The current ADINA and

ANSYS results again show excellent agreement with each other. There is also good agreement with

the previous NASTRAN and DQM results, for both the straight and curved pipes, with differences

in the fundamental frequency being less than 2.6%. For all the comparisons of Table 1, it is noted

that the ADINA results contain a full complement of modes relative to those of the other

approaches.

A comparison is next made for the natural frequencies of a cylindrical shell with an oblique edge

(Fig. 3), geometrically resembling one half of a 1M mitred bend. In a study by Hu and Redekop

(2003), a semi-analytical DQM solution was given for this problem. In the solution the surface of

the shell was first developed onto a plane, and the resulting irregular domain then mapped, using

blending functions, onto a square domain. The vibration analysis was carried out in the square

domain using the transformed Sanders-Budiansky linear shell theory equations (Budiansky 1968).

Results quoted by Hu and Redekop (2003) were for the fundamental frequency (in rad/s) only, but

access to the DQM program was obtained, and for the current study the first ten frequencies were

calculated, recorded in Hz.

A comparison of the results stemming from Hu and Redekop (2003) with the current ADINA

results is given in Table 2. The cylindrical shell had a radius of r = 0.1 m, a mean axial length of

L' = 0.3 m, and a thickness of h = 1 mm (Fig. 3). The angle of obliquity α at the top end of the shell

was 30o, and the material properties were E = 183 GPa, ν = 0.3, and ρ = 7492 kg/m3. For this case a

fundamental frequency of 5066 rad/s (806.3 Hz) is quoted by Hu and Redekop (2003). The

comparison with the current ADINA results in Table 2 includes a full set of results from the DQM,

and four sets of results from the FEM. Three of the FEM results are for uniform meshes, and one is

for a graded mesh, having element axial length at the perpendicular edge twice the axial length at

the oblique edge. For the uniform (untapered) meshes both a 16 and a 4-node element are used. In

the mesh sizes quoted, the first and second integers again indicate, respectively, the elements or

sampling points in the axial and circumferential direction. Two frequencies are apparently absent

from the DQM results, possibly arising from a difficulty in the software to determine some near-

Fig. 3 Geometry of cylindrical shell (straight pipe) with single oblique edge
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equal or equal roots.

There is close agreement in the various results, with the difference in the fundamental frequency

being less than 3.7%. The 4-node element gives slightly higher results than the 16-node element,

but the agreement is very consistent up to the tenth mode. The results obtained from the tapered

mesh using 16-node elements agree with the results of the uniform mesh to within 1%. It is clear

that a 12×24 16-node mesh is sufficient for this geometry. While no comparison could be made

with vibration results for mitred bends, it is clear that the current FEM approach gives reliable

results for the components of mitred and smooth pipe bend geometries.

5. Results for mitred bends 

FEM results from the ADINA program are presented in Tables 3, 4 and Figs. 6, 7 and 9,

indicating the effect on the natural frequencies of changes in the boundary conditions, wall

thickness, cross-sectional radius, length of tangent pipe, and type of bend configuration. The

standard parametric model has a cross-sectional radius of r = 0.15 m, a pipe bend radius of

R = 0.25 m, a tangent pipe length of L = 0.25 m, and a wall thickness of h = 4.81 mm. The R value is

a bend radius which is uniquely defined for the configurations 2M, 3M and C (see Fig. 2). For the

1M configuration the R value is a theoretical radius, used to describe an analogous shell assembly

with a single fold. The boundary conditions for the standard model were free-free (F-F), while the

material properties were E = 200 GPa, ν = 0.3, and ρ = 7850 kg/m3. The F-F boundary conditions

Table 3 Variation of the natural frequency ω (Hz) for the boundary conditions C-C, C-F, and F-F for the 1M
and C configurations (r = 0.15 m, R = 0.25 m, L = 0.25 m, t = 4.81 mm)

Mode
1M configuration C configuration

C-C C-F F-F C-C C-F F-F

1 689.8 128.6 145.8 820.1 131.9 152.1
2 690.8 140.9 146.6 841.7 147.3 155.5
3 696.7 209.4 181.2 941.2 230.7 198.4
4 700.1 214.1 192.8 1134.7 235.3 213.0
5 757.5 404.9 284.7 1143.0 430.6 305.4
6 904.9 411.1 290.0 1166.8 430.6 339.9

Table 4 Variation of the natural frequency ω (Hz) with the type of configuration for the F-F boundary
condition (r = 0.15 m, R = 0.25 m, L = 0.25 m, t = 4.81 mm) 

Mode
Configuration

Straight 1M 2M 3M C

1 139.1 145.8 155.8 154.3 152.1
2 145.5 146.6 157.7 156.2 155.5
3 393.0 181.2 197.7 200.5 198.4
4 401.5 192.8 209.3 212.8 213.0
5 552.6 284.7 310.8 311.0 305.4
6 696.3 290.0 329.6 331.9 339.9
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were selected, as they are the most likely experimental form. The FEM model consisted typically of

a 36×36 mesh of 16-node elements. A parametric study was carried out typically for one or two of

the four basic configurations of Fig. 1. For the various studies the natural frequency ω is given in

Hz for the first six modes of vibration. 

In Table 3 are given the results indicating the effect on the natural frequencies of changes in the

boundary conditions. Two geometric boundary configurations are covered; the 1M and the C, and

three types of boundary conditions; C-C, C-F, and F-F. The various results indicate that the 1M

configuration is more flexible than the C configuration. For both configurations there is a significant

drop in the fundamental frequency going from the C-C to either a C-F or F-F condition. A similar

trend is recorded in a work for a straight pipe (Leissa 1973, Fig. 2.83). 

The fundamental mode shapes for the 1M and C configurations of Table 3 for the C-C, C-F, and

F-F boundary conditions are given in Fig. 4. For the C-C and F-F cases the fundamental mode

spans the full geometry for both configurations, while for the C-F geometry large amplitude is

largely restricted to that half of the structure distant from the support. The first six mode shapes for

the 1M configuration for C-C boundary conditions are shown in Fig. 5. For this boundary condition

there is symmetry about a central plane passing through the junction. Furthermore, as the junction

restricts displacement similar to a clamped support, there is an indication that the vibration in each

half of the 1M configuration may closely resemble the vibration of an oblique cylindrical shell of

similar dimensions. Analysis using the DQM program, however, led to a fundamental frequency of

857.9 Hz for the oblique cylindrical shell, compared to the FEM value of 689.8 Hz value for the

1M geometry. 

Fig. 4 Fundamental mode shapes for the 1M and C configurations for C-C, C-F, and F-F boundary conditions
(r = 0.15 m, R = 0.25 m, L = 0.25 m, t = 4.81 mm). The FEM coordinate system does not follow the
system of Fig. 2
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The effect on the natural frequencies of variation of the wall thickness for the 2M configuration is

shown in Fig. 6. In this figure, and in Figs. 7-9, the results presented are for the F-F boundary

conditions. With an increase in wall thickness there is a monotonic increase in the first six natural

frequencies. For this geometry, a 12-fold increase in thickness leads to a 9.5-fold increase in the

fundamental frequency.

Fig. 5 First six mode shapes for the 1M configurations for C-C boundary conditions (r = 0.15 m, R = 0.25 m,
L = 0.25 m, t = 4.81 mm)

Fig. 6 Variation of the natural frequency ω (Hz)
with the wall thickness for the 2M
configuration for the F-F boundary conditions
(r = 0.15 m, R = 0.25 m, L = 0.25 m)

Fig. 7 Variation of the natural frequency ω (Hz)
with the cross-sectional radius for the 1M
configuration for the F-F boundary conditions
(R = 0.25 m, L = 0.25 m, t = 4.81 mm)
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In Fig. 7 are shown the results indicating the effect on the natural frequencies of the variation of

the cross-sectional radius for the 1M configuration. With an increase in cross-sectional radius, there

is a monotonic decrease in the fundamental frequency. For this geometry, a 4-fold increase in cross-

sectional radius leads to a 3.2-fold decrease in the fundamental frequency. The fundamental mode

shapes for the 1M configuration for four cross-sectional radius values for the F-F boundary

conditions are given in Fig. 8. For the cases having the two lowest cross-sectional radii, large

amplitude vibration is restricted to the junction area.

The results of Fig. 9 show the effect on the natural frequencies of the variation of the length of

the tangent pipe for the 3M configuration. With an increase in the length of each tangent pipe there

is a monotonic decrease in the fundamental frequency. For this geometry a 15-fold increase in the

length of the tangent pipe leads to a 1.9-fold decrease in the fundamental frequency. A comparison

considering the total axial length of the assembly is also of interest. The total axial length is taken

as the arc length of the center line of the bend itself (approximately 0.4 m), plus twice the tangent

pipe length. The longest case of Fig. 9 represents a 3.8-fold increase in total axial length relative to

the shortest case, and a 1.9-fold decrease in the fundamental frequency.

For a straight cylindrical shell with F-F boundary conditions, a detailed coverage of the

relationship between the fundamental frequency and the shell thickness, radius, and length is

Fig. 8 Fundamental mode shapes for the 1M configuration for various cross-sectional radius values for F-F
boundary conditions (R = 0.25 m, L = 0.25 m, t = 4.81 mm) 

Fig. 9 Variation of the natural frequency ω (Hz) with the length of the tangent pipe for the 3M configuration
for the F-F boundary conditions (r = 0.15 m, R = 0.25 m, t = 4.81 mm)
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available (Leissa 1973, Section 2.4.5). The Figs. 2.92-2.96 of his work give plots of the lowest

frequency, for a given circumferential mode, versus ratios of the three geometric parameters. Similar

trends in frequencies observed for the present shell assembly are observed for a straight pipe,

namely an increase in frequency with an increase in thickness, and a decrease in frequency with an

increase in radius or axial length. Earlier work has indicated that there is close agreement between

theoretical and experimental frequencies for F-F boundary conditions (Leissa 1973, Fig. 2.97).

In Table 4 results are presented indicating the effect on the natural frequencies of the type of bend

configuration. In this table natural frequencies are also given for a straight pipe having an axial

length equal to the total center line length of the assembly of the C configuration. It is observed for

the higher order bends, i.e., configurations 2M, 3M and C, that the natural frequencies are very

similar in magnitude. The two lowest frequencies of the 1M configuration more closely resemble

the frequencies of the straight pipe than those of the higher order bends. 

The fundamental mode shapes for the 1M, 2M, 3M, and C configurations for the F-F boundary

conditions are given in Fig. 10. Cross-sectional flattening at the two ends is observed, with the

major cross-sectional axes lying roughly along perpendicular directions. For the 2M and 3M

configurations, the amplitudes are relatively large only in the tangent pipe sections, as the weld lines

provide a ring-like stiffening effect. Commencing from the 2M configuration, it is observed that

when the number of segments is increased a trend in frequencies is established towards the curved

pipe value, and when the number of segments is decreased a trend towards the straight pipe value.

6. Differential quadrature method

For the study of the vibration of the oblique cylindrical shell and curved pipe components, use

was made of the DQM. A brief summary of this method is provided herein for completeness. The

governing equations were those of the Sanders-Budiansky theory (Budiansky 1968), which is based

on the Love-Kirchoff assumptions. In the DQM, a grid of sampling points covering the domain

must first be defined (Shu 2000). For both the oblique cylindrical shell and the curved pipe a two-

dimensional grid of sampling points is required. The replacement of all derivatives in the governing

equations with series of terms, that contain the product of a displacement function at a sampling

point and a weighting coefficient, must next be made. Thus the r-th derivative of a generic function

Fig. 10 Fundamental mode shapes for the 1M, 2M, 3M, and C configurations for F-F boundary conditions
(r = 0.15 m, R = 0.25 m, L = 0.25 m, t = 4.81 mm)
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of a single variable f(x) at the sampling point xi is replaced by the series

(1)

where the  are the weighting coefficients of the r-th order derivative in the x direction for the

i-th sampling point, f(xh) is the value of f(x) at the sampling point position xh, and the summation is

over the number of sampling points in the x direction. This second step converts the problem from

one of differential equations to one of linear algebraic equations.

In the DQM, the weighting coefficients are determined a-priori for the pre-selected grid, with the

aid of selected trial functions. For the oblique cylindrical shell and for the curved pipe polynomial

functions were used in the axial direction and trigonometric functions in the circumferential

direction (Bert and Malik 1996). For the oblique cylindrical shell a preliminary step was required,

namely the use of blending functions (Hu and Redekop 2003) to map the domain onto a rectangle.

A regular spacing of the grid points was then introduced for the rectangle. For all DQM meshing

schemes used, explicit formulas for the weighting coefficients  are available (Shu 2000).

Use of the quadrature rule (1) for the derivatives in the governing equations leads to transformed

algebraic DQM vibration equations. Enforcement of these equations at the grid points leads to the

set 

(2)

where the unknown (U) contains the values of the displacement functions at the sampling points, λ

is the unknown eigenvalue, and [K], [M] are the known ‘stiffness’ and ‘mass’ matrices. 

For the DQM work of this study, programs developed earlier by Hu and Redekop (2003) for

oblique cylindrical shells and by Redekop (2004) for straight and curved right-ended pipes were

extended to enable the generation of results for the two individual components. In particular for the

curved pipe, a program was developed to cover three types of boundary conditions, clamped, free

and shear diaphragm. Extensive testing was conducted to ensure the accuracy of results for both

programs. 

7. Regression formulas for oblique cylindrical shells

Natural frequencies may be determined using the FEM or DQM in a lengthy numerical process.

When quick approximations are desired, simple formulas may be used instead. The formulas are of

two types, asymptotic formulas (derived directly from the theory) which are often valid only for a

small range of limited interest, and regression formulas (derived from numerical work) which can

cover a specified range of significant interest. In this section, regression formulas based on

numerical DQM results are derived for the fundamental frequencies of cylindrical shells with one or

two oblique edges. A cylindrical shell with one oblique edge approximates a tangent pipe in a

mitred bend, whereas a cylindrical shell with two oblique edges approximates a central component

of a 2M or 3M mitred bend (Fig. 1). 

In consideration of earlier work (Leissa 1973), the fundamental frequency is assumed to have a

direct relation with the square root of the quotient of the elastic modulus and mass density, and an

inverse first power relation with the shell radius. Additionally, it is assumed that an exponential
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variation of the frequency exists with the obliquity angle, the length ratio L'/r, and the thickness

ratio r/h. The exponential indices for the latter three variations are determined by standard least

squares regression analysis of DQM results. For both of the cylindrical shell edge cases two ranges

of geometric parameters were specified

Range 1: 

Range 2: (3)

The regression formula is assumed to have the form

(4)

where ω is the natural frequency in Hz, E is the elastic modulus in Pa, ρ is the mass density in kg/

m3, γ =π /2−α is the complementary obliquity angle in radians, L', r, h are length quantities given

in m (see Fig. 3), and the bi are regression coefficients. For the first of the two cylindrical shell

edge cases (single oblique edge), the cylindrical shell was assumed to be clamped at the normal

base, as well as at the oblique top. For the second of the two cases, the cylindrical shell was

assumed to have two oblique edges, in a symmetrical arrangement. The boundary conditions at both

oblique edges were considered clamped. Analysis was carried out on a half model, with L'

representing the axial length from middle of the oblique edge to the central plane of symmetry. 

The values of the coefficients of the regression formulas bi for the two parametric ranges, for the

two edge conditions, are given in Table 5. It is seen that the constants bo in the formulas for the two

edge conditions are roughly in the ratio of 2 to 1, as expected. For all four formulas derived, there

is relatively low dependence of the frequency on the complementary angle of obliquity, strong

dependence on the length ratio, and moderate dependence on the thickness ratio. Considering for a

given edge condition the pairs of comparable exponential coefficients for the two ranges covered,

small but significant distinctions are noted, as expected. Similar, but not identical dependence of the

frequency on the three parameters should be present for the two ranges. For both of the edge

components there is a significant increase in the importance of the b1 coefficient (length ratio) going

from range 1 to range 2, indicating that for thinner shells the length ratio is more important than for

thick shells.

A comparison of frequencies obtained from the regression formulas with previous values is given

in Table 6 for right-ended and single-oblique-edged cylindrical shells. Cases 1-4 represent

cylindrical shells having some geometric parameters lying outside of both of the parametric ranges

defined, and close agreement is generally not seen. Cases 5-7 have all parameters within either of

the two defined geometric ranges, and agreement within 5% is observed.

α 0 π/4;L′/r– 1.5 4;r/h 15 50–=–= =

α 0 π/4;L′/r– 1.5 4;r/h 50 200–=–= =

ω bo E/ρ( )
0.5

1/r( ) γ( )
b
1

L′/r( )
b
2

r/h( )
b
3

=

Table 5 Values of the coefficients in the DQM regression formulas for oblique cylindrical shells

Range Edges
Geometry Coefficients

γ = π/2−α L'/r r/h bo b1 b2 b3

1
1

π/2–π/4 1.5-4 15-50
0.3177 0.2126 −0.8209 −0.4521

2 0.1653 0.1431 −0.9073 −0.4277

2
1

π/2–π/4 1.5-4 50-200
0.3353 0.2937 −0.8075 −0.4701 

2 0.1890 0.2468 −0.8652 −0.4752
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8. Regression formulas for curved pipes

Regression formulas based on DQM results are derived in this section for the fundamental

frequency of curved pipes having either clamped-clamped (CC) or shear-diaphragm shear-

diaphragm (SD) boundary conditions. Similar to the case of the straight pipe, the fundamental

frequency is assumed to have a direct relation with the square root of the quotient of elastic

modulus and mass density, and an inverse first power relation with the shell radius. Additionally, it

is assumed that an exponential variation of the frequency exists with the bend angle ψ (in radians),

the bend to cross-section radius ratio R/r, and the thickness ratio r/h. The exponential indices for the

latter three variations are again determined by a regression analysis of the DQM results. For both of

the boundary conditions considered two ranges of parameters were specified

Range 1: 

Range 2: (5)

The regression formula was assumed to have the form

(6)

where ω is the natural frequency in Hz, E is the elastic modulus in Pa, ρ is the mass density in kg/m3,

ψ is the bend angle in radians, R, r, h are respectively the bend radius, cross-sectional radius,

thickness in m, and the bi are regression coefficients.

For the first of the two boundary conditions, the pipe was assumed to be clamped at both ends,

forming a symmetrical arrangement. For the second of the boundary conditions, the curved pipe

was assumed to have two edges with shear diaphragm supports, again in a symmetrical

arrangement. For both cases the analysis was carried out on the full model.

The values of the coefficients bi of the regression formulas for the two parametric ranges, for the

two types of boundary conditions are given in Table 7. Contrary to expectation, it is seen that the

constant bo in the formula for the CC boundary condition is not higher than for the SD condition. It

might be expected that the frequencies for the CC boundaries would be significantly higher than

frequencies for the SD boundaries but this is not the case. There is a greater variation in the

regression parameters for the curved pipe geometry than for the oblique cylindrical shell geometry.

For the CC boundary condition there is a relatively low dependence on the bend angle, whereas for

ψ π/6 π/2;R/r 2.5 10;r/h–=– 15 50–= =

ψ π/6 π/2;R/r 2.5 10;r/h–=– 50 200–= =

ω bo E/ρ( )
0.5

1/r( ) ψ( )
b
1

R/r( )
b
2

r/h( )
b
3

=

Table 6 Comparison of the fundamental frequency ω1 (Hz) from oblique cylindrical shell regression formulas
with previous results for right-ended (α = 0o) and oblique cylindrical shells. Previous value for case 1
was found using FEM, cases 2-4 using series solution, cases 5-7 using DQM

Case Reference
Boundary condition and geometry Fundamental frequency 

Edges γd (
o) r (m) L'/r r/h Prev. Regr. % diff.

1 R&C 2008 1 90 0.05 7.64 25.0 1246 1579 −26.7
2 Leissa p93 1 90 0.0762 4.00 300  522  577 −10.5
3 Leissa p103 1 90 0.0489 8.13 19.2 1240 1730 −39.5
4 Leissa p101 1 90 0.2422 2.52 374  240  232  3.5
5 H&R 2003 1 90 0.1 2.00 100 1264 1241  1.8
6 H&R 2003 1 60 0.1 3.00 25.0 1560 1501  3.8
7 H&R 2003 2 60 0.1 3.00 100  420  409  2.5
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the SD condition there is strong dependence. As well, for the CC boundary condition there is

relatively low dependence on the thickness ratio, while there is at least a moderate dependence for

the SD condition. For both boundary conditions there is strong dependence on the radius ratio.

There are again small but significant differences in the regression parameters for the two specified

ranges of geometric parameters.

A comparison of frequencies obtained from the regression formulas with previous values is given

in Table 8 for curved pipes. Cases 1-4 represent curved pipes having CC boundary conditions, while

cases 5-7 are curved pipes with SD conditions. With a radius ratio of 12.1, case 1 is slightly outside

of both specified geometric parameter ranges, and there is a sizeable difference between the

previous and regression frequency values. Case 6 is at the extreme end of the radius ratio range

(value of 10), and there is a large percentage difference between the previous and regression

frequency values. A further look at results relevant to this parameter indicated that a limit in the

range of R/r to 8 in the use of the regression formulas is in order. Generally, the agreement between

the previous frequency values and the regression values is not as good as for the oblique cylindrical

shell case, and the deviations in frequency for cases entirely within the range of geometric

parameters may occasionally exceed 10%. 

9. Conclusions

 

The trends in the natural frequencies of multiple 90o mitred pipe bends have been found using the

finite element method based on shear-deformation shell elements. The results determined in the

Table 7 Values of coefficients in the DQM regression formulas for curved pipes

Range Bdy.Cond.
Geometry Coefficients

ψ R/r r/h bo b1 b2 b3

1
CC

π /6–π /2 2.5-10 15-50
0.2713 −0.6983 −1.0516 −0.2123

SD 0.4729 −1.5474 −1.2690 −0.5893

2
CC

π /6–π /2 2.5-10 50-200
0.3196 −0.5548 −1.0668 −0.2494 

SD 0.3658 −1.3599 −1.2452 −0.5367

Table 8 Comparison of the fundamental frequency ω1 (Hz) from curved pipe regression formulas with
previous results. All previous values were found using the FEM, except for case 7 (series solution
using Donnel Mushtari theory)

Case Ref.
Boundary condition and geometry Fundamental frequency 

Bdy. ψd (
o) r (m) R/r r/h Prev. Regr. % diff.

1 Red. 2004 CC 90 0.0858 2.66 12.1 2272 2499 10.0
2 Red. 2004 CC 90 0.1730 3.08 18.2  968  975  0.7
3 Red. 2004 CC 90 0.2492 3.06 26.1  664  632  −4.9
4 W,X&R ’06 CC 90 0.0561 2.72 26.6 3152 3048 −3.3
5 W,X&R ’06 SD 90 1.0 2.55 100  27  25 −9.2
6 W,X&R ’06 SD 90 0.1 10 33.3  67  83  23.2
7 Red. 1994 SD 22.9 0.1 5.0 50.0 1153 1304  13.1
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parametric study indicate, as expected, that a relaxation of the boundary conditions or a decrease in

the wall thickness leads to a significant decrease in the fundamental frequency. An increase in the

cross-sectional radius or in the length of the tangent pipe leads to a modest decrease in the

fundamental frequency. There are close similarities in the fundamental frequencies and vibration

modes for the 2M, 3M, and C configurations. The 1M configuration on the other hand has some

vibration characteristics that more closely resemble those of a straight pipe. Regression formulas for

fundamental frequencies of cylindrical shells with one or two oblique edges showed smooth

exponential variation with obliquity angle, length ratio, and thickness ratio. Similarly, regression

formulas for curved pipes showed smooth exponential variation with bend angle, radius ratio, and

thickness ratio. The results given provide information about the vibration characteristics of pipe

bends over a wide range of the geometric parameters.

References

ADINA, AUI 8.2 (2003), User Interface Primer and AUI Command Reference Manual, ADINA R & D Inc.,
Watertown, MA.

ANSYS (2005), Release 10.0 - Documentation for ANSYS, ANSYS Inc., Canonsburg, PA.
Baylac, G. and Copin, A. (1975), “Vibration studies of the primary circuit of the Chinon 3 reactor”, Proceedings

3rd Int. Conf. on Struct. Mech. in React. Tech., Paper F4/3, London, Sept.
Bert, C.W. and Malik, M. (1996), “Free vibration analysis of thin cylindrical shells by the differential quadrature

method”, J. Pres. Ves. Tech., 118, 1-12.
Blevins, R.D. (1979), Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, New York. 
Budiansky, B. (1968), “Notes on nonlinear shell theory”, J. Appl. Mech., 35, 393-401.
Carneiro, J.O., de Melo, F.J.Q., Rodrigues, J.F.D., Lopes, H. and Teixeira, V. (2005), “The modal analysis of a

pipe elbow with realistic boundary conditions”, Int. J. Pres. Ves. Pip., 82, 593-601.
Chang, D. and Redekop, D. (2007), “Collapse analysis of multiple 90o mitred pipe bends”, Proceedings 3rd Int.

Conf. on Struct. Eng. Mech. & Comp. (SEMC 2007), Cape Town, Sept. 10-12, 8 pages.
Chang, D. and Redekop, D. (2008), “Stress analysis of pressurized multiple 90o mitred pipe bends”, Proceedings

4th Int. Conf. on Advances in Struct. Eng. and Mech. (ASEM '08), Korea, 11 pages.
Grimes, R.G., Lewis, J.G. and Simon, H.D. (1994), “A shifted block Lanczos algorithm for solving sparse

symmetric generalized eigenproblems”, SIAM J. Matrix Anal. A., 15(1), 228-272.
Hinton, E., Sienz, J. and Özakça, M. (2003), Analysis and Optimization of Prismatic and Axisymmetric Shell

Structures, Springer, Berlin.
Hu, X.J. and Redekop, D. (2003), “Blending functions for vibration analysis of a cylindrical shell with an

oblique end”, Int. J. Struct. Stab. Dyn., 3, 405-418.
Ming, R.S., Pan, J. and Norton, M.P. (2002), “Free vibrations of elastic circular toroidal shells”, Appl. Acoust.,

63, 513-528.
Leissa, A.W. (1973), Vibration of Shells, NASA SP-288, Scientific and Technical Information Office,

Washington.
Orynyak, I.V., Radchenko, S.A. and Batura, A.S. (2007), “Calculation of natural and forced vibrations of a

piping system. Part 2. Dynamic stiffness of a pipe bend”, Strength Mater., 39(2), 144-158.
Redekop, D. (1994), “Natural frequency of a short curved pipe”, Trans. CSME, 18, 35-45.
Redekop, D. and Chang, D. (2008), “Linear vibration analysis of multiple 90o mitred pipe bends”, Proc. 3rd Int.

Conf. on Advances in Struct. Eng. and Mech. (ASEM '08), Korea, 10 pages.
Redekop, D. (2004), “Vibration analysis of a torus-cylinder shell assembly”, J. Sound Vib., 277, 919-930.
Salley, L. and Pan, J. (2002), “A study of the modal characteristics of curved pipes”, Appl. Acoust., 63, 189-202.
Soedel, W. (2006), Vibration of Shells and Plates, 3rd Ed., Marcell Dekker, New York.
Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer, Berlin.
Wachel, J.C., Morton, S.H. and Atkins, K.E. (1990), “Piping vibration analysis”, Proc. 19th Turbomachinery



Vibration of mitred and smooth pipe bends and their components 763

Symposium, College Station, Texas, 119-134.
Wang, X.H., Xu, B. and Redekop, D. (2006), “Theoretical natural frequencies and mode shapes for thin and

thick curved pipes and toroidal shells”, J. Sound Vib., 292, 424-434.
Wood, J. (2008), “A review of literature for the structural assessment of mitred bends”, Int. J. Pres. Ves. Pip.,

85(5), 275-294.




