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Abstract. In this paper, a unified solution method is presented for the classical beam theory. In
Strength of Materials approach, the geometry, material properties and load system are known and related
with the unknowns of forces, moments, slopes and deformations by applying a classical differential
analysis in addition to equilibrium, constitutive, and kinematic laws. All these relations are expressed in a
unified formulation for the classical beam theory. In the special case of simple beams, a system of four
linear ordinary differential equations of first order represents the general mechanical behaviour of a
straight beam. These equations are solved using the numerical differential quadrature method (DQM). The
application of DQM has the advantages of mathematical consistency and conceptual simplicity. The
numerical procedure is simple and gives clear understanding. This systematic way of obtaining influence
line, bending moment, shear force diagrams and deformed shape for the beams with geometric and load
discontinuities has been discussed in this paper. Buckling loads and natural frequencies of any beam
prismatic or non-prismatic with any type of support conditions can be evaluated with ease.

Keywords: differential quadrature; buckling load; natural frequency; boundary conditions; constitutive
law; equilibrium.

1. Introduction

There is much literature treating classical beam theory (Timoshenko 1938) going bottom up

through tension, torsion, bending, compound stresses, deflections in statically determinate beams to

hyperstatic structures and end up with energy methods, buckling and considering even curved

beams (Rajasekaran and Padmanabhan 1989, Gimena et al. 2008). In this paper, first we will

present the general equations of the general problem of a straight beam. The system of differential

equations that relate forces, moments, slopes and deflections presented in a compact format, offers

certain advantages, when deriving solutions for special cases. Equilibrium, constitutive relationships,
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compatibility equations are derived for a straight beam. All of these equations will be combined into

a single unique system of twelve equations with twelve unknowns. This novel unified formulation

has several advantages. It permits ready identification and all data needed to solve structural

problem. The theory does not distinguish a priori between different kinds of structural elements, as

compression, torsion, bending of beams all of which are special cases of the general formulation. In

this paper, differential quadrature method DQM is employed as an effective numerical tool for

solving the above mentioned domain problems having any form of discontinuity in geometry

materials, loading, deformations and boundary conditions. Concentrated stress resultants are

considered as discontinuity in loading and influence line for stress resultants are drawn by

considering discontinuity in deformations. The DQM can be used to solve prismatic/non-prismatic

straight or curved beams subjected to any type of loading and also used to draw the influence lines

for various stress resultants at any point involving fewer grid points yet achieving acceptable

accuracy. Buckling loads and natural frequencies of any beam prismatic or non-prismatic with any

type of support conditions can be evaluated with ease.

2. Unified formula for straight beam

In this section of the paper, a unified formulation for the analysis of a straight beam will be

offered to apply the DQM for obtaining accurate results. This new approach for considering the

classical beam theory, permits solving the problem taken into account the different boundary

conditions at the same time. Arbitrary curved beams in local or global coordinates have been also

investigated by the authors (Gimena 2008).

2.1  Assumptions and limitations

1.- It is assumed that the elastic principle established by Hooke and generalized further by Cauchy

applies.

2.- The material behaviour is assumed to be linear homogeneous and isotropic.

3.- Second order effects like the change of forces and moments as a result of elastic deflection are

not considered.

4.- Principle of superposition applies because of linearity of the problem.

5.- Saint-Venant’s principle permits the representation of internal stresses by stress resultants

acting on the cross section centroid.

6.- Similarly external loads can be represented by forces and moments applied to the section

centroid.

7.- Navier-Bernoulli’s hypothesis is assumed.

2.2 Known quantities

Based on the assumptions, concerning the member shape, the known quantities of the problem

should be related in two consecutive points separated by an infinitesimal segment of length dx. In

general, longitudinal E and transversal G, Young’s moduli are functions of x. Likewise, all

geometric section properties, cross sectional area A, shear factors  and moments of inertia

 and torsional inertia It are also functions of x. External load consists of forces  and

αy αz αyz, ,
Iy Iz Iyz, , qx qy qz, ,
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moments  rotations  and displacements  defined in right hand

coordinate system Oxyz. These are the known quantities needed to evaluate the unknown internal

forces, moments, rotations and displacements.

2.3 Unknown quantities

The objective of the beam analysis problem is to determine the internal state of stresses and

displacements produced by externally applied loads and deformations. These quantities may be

expressed for each point P of the line element as the sum of internal stresses or strains developed in

the element. The internal forces and moments can be expressed as (see Fig. 1)

(1)

The remaining unknowns are the rotations φ, θy, θz about x, y and z axes respectively, and

displacement u, v and w in the coordinate axes at the point P on the member centre line,

respectively.

2.4 Formulation of the beam analysis problem

Once all the known and unknown quantities have been identified, the beam analysis problem can

be formulated using the equations of equilibrium, constitutive relationship and compatibility

equations.

Equilibrium equations
The internal forces acting on the infinitesimal beam segment must equilibrate the loads applied to

the segment. Force equilibrium in a tangent direction x in normal direction y and normal direction z

mx my mz, , θx θy θz, , ∆x ∆y ∆z, ,

N σ A; Vy τy Ad ; Vz τz Ad
A

 

∫=

A

 

∫=d
A

 

∫=

T τzy τyz–( ) Ad ; My σz A; Mz σy Ad
A

 

∫–=d
A

 

∫=

A

 

∫=

Fig. 1 Force and moment components on a beam section
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is established by the following equations.

(2)

Constitutive relations

According to Hooke’s law, stresses and strains are related as follows

(3)

where  is the Poison’s coefficient.

Compatibility equations

The equations of compatibility of rotations and displacements can be given as

(4)

Eqs. (2) and (4) represent the general mechanical behaviour of a straight beam.

2.5 General equations

Equilibrium and compatibility conditions as well as the constitutive relationships (Eqs. (2), (3) and

(4)) yielded the system of twelve differential equations (Gimena 2003).

Nd

xd
------- qx+ 0;

Vyd

xd
-------- qy+ 0;

Vzd

xd
-------- qz+ 0===

Td

xd
------ mx+ 0; Vz–

Myd

xd
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Mzd

xd
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E
---= ; εy

νσ
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τy
G
----= =
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GIt
-------–
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(5)

These can be written in vectorial form as shown below.

(6)

where

 

 

∇ d

dx
-----;=

ε1

1

EA
-------; ε2

αy

GA
--------; ε3

αyz

GA
--------; ε4

αz

GA
--------= = = =
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where  are the twelve components of forces, moments, rotations

and displacements of the state and  and  are the twelve forces

and moments and rotations and displacements of the actions distributed along the axis of the beam.

Note the comprehensive order in which the functions are arranged in the system; forces, moments,

rotations and displacements and the various effects are coupled.

2.6 Special cases

The above equation represents the mechanical behaviour of a general straight beam under

different types of effects, i.e., traction, compression, torsional and bending which are combined and

their effects interact because of the cross section relationships.

In a particular case when principal axes coincide with the section ones  and

neglecting shearing deformation  the whole system of equations can be uncoupled into

different subsystems to approach to the special cases.

If the displacements and rotations of the actions are zero

Traction and compression effect

(7)

Torsion effect

(8)

Bending effect – Pure flexion about z axis

(9)

Bending effect – Pure flexion about y axis

(10)
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-------: γ2
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A unique set of twelve linear first order differential equations which represent the general

mechanical behaviour of straight beam is established. It is also shown that this system of equations

could be, for special cases, uncoupled into traction, torsion and bending systems. The method does

not distinguish between different types of beams as statically determinate or indeterminate.

3. Differential quadrature method

This problem of structural behavior of the classical beam theory, either prismatic or non-prismatic,

with different loads and supports, could easily be solved using Differential Quadrature Method

(DQM) which was introduced by Bellman and Casti (1971). With the application of boundary

conditions as per Wilson’s method (Wilson 2002) DQM will also be straight forward and easy to use

by the engineers. Since the introduction of this method, applications of the differential quadrature

method to various engineering problems have been investigated and their success has shown the

potential of the method as an attractive numerical analysis tool. The basic idea of DQM is to quickly

compute the derivatives of a function at any grid point within its bounded domain by estimating the

weighted sum of the values of the functions at a small set of points related to the domain. In the

originally derived DQM, Lagrangian interpolation polynomial was used by Bert and Malik (1996)

and (Bert et al. 1993, 1994). A subsequent approach of the original differential quadrature

approximation is called Harmonic Differential Quadrature (HDQ) originally proposed by (Striz et al

1995). Ulker and Civalek (2004) applied HDQ to the bending analysis of beams and plates. Wu and

Liu (2000) applied the generalized differential quadrature to axi-symmetric bending solution of shells

of revolution which includes both long and short cylinders and storage tanks with stepped wall

thickness. Lam and Li (2000) applied the differential quadrature for finding the frequency of rotating

multi-layered conical shells. Unlike DQM, HDQ uses harmonic or trigonometric functions as test

functions. As the name of the test function suggested, this method is called the HDQ method. All the

problems in this paper have demonstrated that the application of the DQM and HDQ will lead to

accurate results with less computational effort and that there is a potential that the method may

become alternative to conventional methods such as Finite Difference, Finite Element and Boundary

Element methods.

For a function , DQM approximation of the mth order derivative at the ith sampling point is

given by

for (11)

where n is the number of the sampling points.

Assuming Lagrangian interpolation polynomial

for (12)

f ξ( )

d
m

dξ
m

---------

f ξ1( )

f ξ2( )
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m( )
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⎪ ⎪
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⎪ ⎪
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=

… …
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---------------------------------= i 1 2 … n, , ,=
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where

for 

Substituting Eq. (12) in Eq. (11) leads to

; for

;  for (13)

The second and third and higher derivative can be calculated as

;    for

; for (14)

and the number of the sampling points n > m.

A natural and often convenient choice for the sampling point is that of equally spaced points or

Chebyshev-Gauss-Lobatto (CGL) mesh distribution as given by Eq. (15). For the sampling points,

we adopt the well accepted CGL mesh distribution and its normalized form is given by (Shu 2000)

as

(15)

where 

being L the length of the beam that is divided into n−1 divisions or n sampling points in case of

DQ method and xi is the distance from the left end of the beam.

4. Harmonic Differential Quadrature method (HDQ)

The Harmonic test function  used in HDQ method is defined as

(16)

According to the HDQ, the weighting coefficients of the first order derivative  denoted as

, for  is obtained using the form (Ulker and Civalek 2004)

M ξ( ) ξ ξj–( ); M1 ξi( ) ξi ξj–( )
j 1 j i≠,=

n

∏=

j 1=

n

∏= i j, 1 2 … n, , ,=

Cij

1( ) M1 ξi( )
ξi ξj–( )M1 ξj( )

----------------------------------= i j, 1 2 … n; i j≠, , ,=

Cii

1( )
Cij

1( )

j 1=
j i≠

n

∑–= i 1 2 … n, , ,=

Cij

2( )
Cik

1( )
Ckj

1( )

k 1=

n

∑= i j 1 2 … n, , ,= =

Cij

m( )
Cik

1( )
Ckj

m 1–( )

k 1=

n

∑= i j 1 2 … n, , ,= =

ξi
1

2
--- 1 cos

i 1–( )
n 1–( )

---------------π–=

ξi

xi

L
---=

hi ξ( )

hi ξ( )

sin π ξ ξk–( )/2[ ]
k =0, k i≠

n

∏

sin π ξi ξk–( )/2[ ]
k =0, k i≠

n

∏

-------------------------------------------------------=

Cij

1

C i j 1, ,( ) i j≠



Solution method for the classical beam theory using differential quadrature 683

for (17)

for (18)

where

for

The weighting coefficients of the second order derivative are given by

for

for (19)

Higher order derivatives can be obtained using Eq. (14).

5. Solution of pure flexion problems

5.1 Applying DQM to the system of differential equations

The governing equations of pure flexion problems are given by Eq. (9)

Assume the beam is idealized into n sampling points as given by CGL mesh distribution or

uniform distribution.  at any jth point is given by

(20)

Hence  at all the sampling points can be calculated as

(21)

Hence  at n sampling points are given by

C i j 1, ,( )
πP ξi( )/2

P ξj( )sin π ξi ξj–( )/2[ ]
---------------------------------------------------= i j 1 2 … n, , ,= =
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n
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n
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⎪ ⎪
⎪ ⎪
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⎪ ⎪
⎪ ⎪
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⎪ ⎪
⎪ ⎪
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⎪ ⎪
⎪ ⎪
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⎪ ⎪
⎪ ⎪
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(22)

where [1/EI] is a diagonal matrix consisting of 1/EI at sampling points.

Eq. (22) is rewritten as

(23)

where [D] is an un-symmetric matrix.

Multiplying both sides of the Eq. (23) by [D]T we get

(24)

where {r}, from 1 to n denotes the shear at sampling points, n+1 to 2n denotes moments at the

sampling points, 2n+1 to 3n denotes slopes at the sampling points and 3n+1 to 4n denotes

deflections at the sampling points.

Boundary conditions

Since it is a system of four differential equations of first order, four boundary conditions should

be given.

The boundary conditions will be applied as follows.

Clamped - Pinned

(25)

Clamped – Clamped

(26)

Pinned – Pinned

(27)

C :,:,1( )/L[ ]  0[ ]  0[ ]  0[ ]
I[ ]  C :,:,1( )/L[ ]  0[ ]  0[ ]
0[ ]  1/EI[ ]–   C :,:,1( )/L[ ]  0[ ]
0[ ]  0[ ]  I[ ]  – C :,:,1( )/L[ ]

V{ }

M{ }

θ{ }

v{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫ q{ }

0{ }

0{ }

0{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

 

D[ ]T D[ ] r{ } D[ ]T R{ } or G[ ] r{ } E{ }= =

v x 0=( ) 0; G 4n 1 3n 1+,+[ ] 1==

θ x 0=( ) 0; G 4n 2 2n 1+,+[ ] 1==

v x L=( ) 0; G 4n 3 4n,+[ ] 1==

M x L=( ) 0; G 4n 4 2n,+[ ] 1==

v x 0=( ) 0; G 4n 1 3n 1+,+[ ] 1==

θ x 0=( ) 0; G 4n 2 2n 1+,+[ ] 1==

v x L=( ) 0; G 4n 3 4n,+[ ] 1==

θ x L=( ) 0; G 4n 4 3n,+[ ] 1==

v x 0=( ) 0; G 4n 1 3n 1+,+[ ] 1==

M x 0=( ) 0; G 4n 2 2n 1+,+[ ] 1==

v x L=( ) 0; G 4n 3 4n,+[ ] 1==

M x L=( ) 0; G 4n 4 2n,+[ ] 1==
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Clamped – Free

(28)

Wilson’s method of applying boundary conditions (Wilson 2002)

In general, the boundary conditions are given by 

(29)

Combining governing equations and boundary conditions we get

(30)

Using Lagrange multiplier approach as recommended by (Wilson 2002), Eq. (30) can be modified

to square matrix as

(31)

The above equation has both equilibrium and equation of geometry. Solving Eq. (31) as an

equilibrium problem, one will be able to get the shear, moment, rotations and deflections all along

the sampling points of the beam.

5.2 Example 1. Beam fixed at both ends subjected to uniform distributed load (udl) 

Fig. 2 shows the bending moment diagram of a fixed - fixed beam of span 10 m subjected to

uniformly distributed load of 1 kN/m. Even though the above method is simple and can handle

discontinuity in geometry and loading, the method involves the solution of large number of

equations. To handle discontinuity in geometry and loading we will present the following method.

v x 0=( ) 0; G 4n 1 3n 1+,+[ ] 1==

θ x 0=( ) 0; G 4n 2 2n 1+,+[ ] 1==

M x L=( ) 0; G 4n 3 2n,+[ ] 1==

V x L=( ) 0; G 4n 4 n,+[ ] 1==

 

 

 

Fig. 2 Bending moment diagram for a fixed beam under constant loading
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5.3 Applying DQM to a high order differential equation

The governing equation for flexion problem (assume D = EI varies along the length) expresses

equilibrium in terms of displacement for the beam flexion problem. The elastic line equation,

combines equilibrium, constitutive and compatibility equations 

(32)

Eq. (32) is written in differential quadrature form as

(33)

where

being  and 

Eq. (33) is rewritten as

(34)

Unlike the method exposed in section 5.1, now [G] matrix is un-symmetric.

Boundary conditions must be applied similar to method in 5.1 section but in term of

displacements as shown below. Eq. (34) can be solved as an equilibrium problem.

Boundary conditions

Since it is a fourth order differential equation, four boundary conditions should be given. The

boundary conditions will be applied as follows.

Clamped - Pinned

(35)

Clamped – Clamped

(36)

D
d

4
v

x
4

d
------- 2

dD

xd
-------

d
3
v

x
3

d
-------

d
2
D

x
2

d
---------

d
2
v

x
2

d
-------+ + q=

k[ ]C :,:,4( )/L4
2 α[ ]C :,:,3( )/L3

β[ ]C :,:,2( )/L2
+ +[ ] v{ } q{ }=

 

αi C i 1:n 1,,( ) D{ }/L= βi C i 1:n 2,,( ) D{ }/L
2

=

G[ ] v{ } q{ }=

v x 0=( ) 0; G n 1 1,+[ ] 1==

v′ x 0=( ) 0; G n 2 1:n,+[ ] C 1 1:n 1,,( )/L==

v x L=( ) 0; G n 3 n,+[ ] 1==

v″ x L=( ) 0; G n 4 1:n,+[ ] C n 1:n 2,,( )/L2
==

v x 0=( ) 0; G n 1 1,+[ ] 1==

v′ x 0=( ) 0; G n 2 1:n,+[ ] C 1 1:n 1,,( )/L==

v x L=( ) 0; G n 3 n,+[ ] 1==

v′ x L=( ) 0; G n 4 1:n,+[ ] C n 1:n 1,,( )/L==
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Pinned – Pinned

(37)

Clamped - Free

(38)

Wilson’s method of applying boundary conditions (Wilson 2002)

In general, the boundary conditions are given by (in case of buckling and free vibration problems)

(39)

Combining governing equations and boundary conditions we get 

(40)

Using Lagrange multiplier approach as recommended by (Wilson 2002), Eq. (40) can be modified

to square matrix as

(41)

The above equation has both equilibrium and equation of geometry. Writing the right hand side of

the Eq. (41) as  and solving it as an eigenvalue problem, one will be able to get either the

buckling load or natural frequency.

6. Analysis of discontinuity in load and geometry. Influence lines

Consider a non-prismatic beam idealized into 12 elements say, shown in Fig. 3, with geometric

discontinuities and load discontinuities. Assume each element has n (say n=11) sampling points and

hence total number of sampling points for ne=12 elements is 11×12=132. Assume for each element

the flexural rigidities are given at 11 sampling points as

v x 0=( ) 0; G n 1 1,+[ ] 1==

v″ x 0=( ) 0; G n 2 1:n,+[ ] C 1 1:n 2,,( )/L2
==

v x L=( ) 0; G n 3 n,+[ ] 1==

v″ x L=( ) 0; G n 4 1:n,+[ ] C n 1:n 2,,( )/L2
==

v x 0=( ) 0; G n 1 1,+[ ] 1==

v′ x 0=( ) 0; G n 2 1:n,+[ ] C 1 1:n 1,,( )/L==

v″ x L=( ) 0; G n 3 1:n,+[ ] C n 1:n 2,,( )/L2
==

v″′ x L=( ) 0; G n 4 1:n,+[ ] C n 1:n 3,,( )/L3
==

 

 

 

P E[ ]
v

λ⎩ ⎭
⎨ ⎬
⎧ ⎫
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(42)

The beam is subjected to concentrated loads and concentrated moment and udl and also there is a

discontinuity in geometry. Concentrated load and concentrated moment mean that there is a

discontinuity in loading. It should be specified where the various discontinuities are considered

applied. In fact, such discontinuities can be located at points on the boundary of the element.

Appropriately the singularities or pathological functions are closely stated in subsequent rows at the

end of section 6.2. 

For example the governing equation for element 1 (applying Eq. (33)) is written as

(43)

Such equations for each element are written as

(44)

where  denotes the displacements at the sampling points of element i.

D[ ]

D 1 1,( )  D 1 2,( )  …  D 1 11,( )
D 2 1,( )        

        

D ne 1,( )     …  D ne 11,( )

=

12 11×

… …

…

G[ ]1 v{ }1 k[ ]C :,:,4( )/L1

4
2 α[ ]C :,:,3( )/L1

3
β[ ]C :,:,2( )/L1

2
+ +[ ] v{ }1 q{ }1= =

G[ ]1  0[ ]    …    [ ]

0[ ]  G[ ]2        

    G[ ]3      

          

        G[ ]11  0[ ]

0[ ]      …  0[ ]  G[ ]12

v{ }1

v{ }2

v{ }3

v{ }12⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫ q{ }1

q{ }2

q{ }3

q{ }12⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=
… …

…

… …

v{ }i

Fig. 3 Sample points numbering
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6.1 Compatibility at internal node 2

1) The displacement of the 11th sampling point of the element 1 is equal to the displacement of

the first sampling point of the element 2 and this can be written as

(45)

which can be written in matrix form as

By applying Wilson’s method

2) The rotation to the left of the 2nd node is equal to the rotation to the right of the node 2 and

this can be written as

(46)

where

or 

By applying Wilson’s method

6.2 Equilibrium at internal node 2

1) Sum of the moments at the internal node 2 must be equal to zero i.e., moment to the left of the

node must be equal to the moment at the right of node 2 and this is written as

(47)

or 

or 

By applying Wilson’s method

and 

v11 v12– ΛQ 0 or v11 v12= = =

G 133 11,( ) 1= , G 133 12,( ) 1–=

G 11 133,( ) 1= , G 12 133,( ) 1–=

θ2( )L θ2( )R– ΘQ 0 or θ2( )L θ2( )R== =

θ2( )L G 144 1:11,( ) v{ }1 C n 1:n 1, ,( )/L1[ ] v{ }1  or  G 144 1:11,( ) C n 1:n 1, ,( )/L1= = =

θ2( )R G 144 12:22,( ) v{ }2 C 1 1:n 1, ,( )/L2[ ] v{ }2–= =

G 144 12:22,( ) C 1 1:n 1, ,( )– /L2=

G 1:11 144,( ) G 144 1:11,( )T=   and  G 12:22 144,( ) G 144 12:22,( )T=

M2( )L M2( )R– MQ 0 or M2( )L M2( )R== =

M2( )L G 155 1:11,( ) v{ }1 k11( ) 1( )
C n 1:n 2, ,( )/L1

2[ ] v{ }1==

G 155 1:11,( ) k11( ) 1( )
C n 1:n 2, ,( )/L1

2
=

M2( )R G 155 12:22,( ) v{ }2 k1( ) 2( )
– C 1 1:n 2, ,( )/L2

2[ ] v{ }2==

G 155 12:22,( ) k1( ) 2( )
– C 1 1:n 2, ,( )/L2

2
=

G 1:11 155,( ) G 155 1, :11( )T=

G 12:22 155,( ) G 155 12:22,( )T=
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2) Sum of the shears at the internal node 2 must be equal to zero i.e., shear to the left of the node

must be equal to the shear at the right of node 2 and this is written as

(48)

or 

or 

By applying Wilson’s method

and 

Similarly compatibility equations must be established at all the interior joints. In addition one has

to give support boundary conditions as discussed in method presented in section 5.3.

If  at any interior joint as concentrated load acting at the joint.

If  at any interior joint as concentrated moment acting at the joint.

If  at any interior joint one can get the influence line diagram for moment at that joint.

If  at any interior joint, then one can get the influence line diagram for shear at that point.

6.3 Example 2. Continuous beam. Influence lines

Consider a two span continuous beam of each span of 12 m and uniform section I-shaped. Fig. 4

and 5 show the influence lines for shear and bending moment at midpoint of first span. Figs. 6 and

7 show bending moment diagram and deformed shape due to concentrated moment acting at mid

point of first span. Figs. 8 and 9 show the bending moment diagram and deformed shape for

concentrated load acting at mid point of first span. Figs. 10 and 11 show the bending moment and

deflected shape when the beam is subjected to uniformly distributed load.

V2( )L V2( )R– VQ 0 or V2( )L V2( )R== =

V2( )L G 166 1:11,( ) v{ }1 k11( ) 1( )
C n 1:n 3, ,( )/L1

3
α11( ) 1( )

C n 1:n 2, ,( )/L1

2
+[ ] v{ }1==

G 166 1:11,( ) k11( ) 1( )
C n 1:n 3, ,( )/L1

3
α11( ) 1( )

C n 1:n 2, ,( )/L1

2
+[ ]=

V2( )R G 166 12;22,( ) v{ }2 k1( )2
C 1 1:n 3, ,( )/L2

3
α1( ) 2( )

C n 1:n 2, ,( )/L2

2
+[ ]– v{ }2==

G 166 12;22,( ) k1( )2
C 1 1:n 3, ,( )/L2

3
α1( ) 2( )

C n 1:n 2, ,( )/L2

2
+[ ]–=

G 1:11 166,( ) G 166 1:11,( )T=

G 12:22 166,( ) G 166 12:22,( )T=

VQ 0≠
MQ 0≠
ΘQ 0≠
ΛQ 0≠

Fig. 4 Influence line for shear at midpoint of the
first span

Fig. 5 Influence line for moment at midpoint of the
first span
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Fig. 6 Moment diagram (concentrated moment at
midpoint of the first span)

Fig. 7 Deflected shape due to concentrated moment
at midpoint of the first span

Fig. 8 Moment diagram due to concentrated load at
midpoint of the first span

Fig. 9 Deflected shape due to concentrated load at
midpoint of the first span

Fig. 10 Bending moment diagram for uniform
distributed load in both spans

Fig. 11 Deflected shape due to udl in both spans
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7. Buckling analysis

The governing equation for buckling of a beam is given by

(49)

For buckling problem Eq. (49) is modified as

(50)

where  and  and the

boundary conditions are applied as before.

7.1 Example 3. Continuous beam. Buckling load

The same continuous beam (See example 2) is subjected to axial load. The first span has moment

of inertia of 2 and second span has moment of inertia of 1. The buckling load by differential

quadrature is obtained as 0.09363EI whereas the value obtained by Finite Element method is

0.093150EI. The buckled shape is also shown in Fig. 12. The beam is idealized into two elements

(two spans). It is seen from Fig. 13 that (10 divisions) 11 sampling points are enough to achieve the

desired accuracy. 
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------- 2
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-------
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v1{ }

v2{ }

vn{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

P

E[ ]1  0[ ]  …  0[ ]

0[ ]  E[ ]2    

      0[ ]
0[ ]  …  0[ ]  E[ ]n

–

v1{ }

v2{ }

vn{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=
… …

… … …… ……

G[ ]1 k[ ]C :,:,4( )/L1

4
2 α[ ]C :,:,3( )/L1

3
β[ ]C :,:,2( )/L1

2
++= E[ ]1 C :,:,2( )/L1

2
–=

Fig. 12 Buckled shape of a continuous beam Fig. 13 Variation of the buckling load with respect
to sampling points
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8. Free vibrations of beams

The governing equation for free vibration of a beam is given by

(51)

or 

(52)

where 

being 

The boundary conditions are applied as explained above.

8.1 Example 4. Non-prismatic cantilever. Free vibration

The Non-prismatic thin-walled cantilever beam shown in Fig. 14(a) is analysed for free vibration

and the first five fundamental frequencies are obtained. The results are in good agreement with

Wekezer (Wekezer 1987, 1989) and are tabulated in Table 1. The cross sectional properties are

given in Fig. 14(b). The first mode shape is shown in Fig. 15.

∂2

∂x
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-------
∂2
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∂x
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-------⎝ ⎠
⎛ ⎞ P

∂2
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∂x
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-------⎝ ⎠
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+ ρA
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-------=
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v1{ }
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⎨ ⎬
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–
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⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
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=
… …

… … …… ……
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4
2 α[ ]C :,:,3( )/L1

3
β[ ] P I[ ]+( )C :,:,2( )/L1

2
++=

E[ ]1 diag EA[ ]=

Fig. 14(b) Cross section geometry at initial fixed and final free end

Fig. 14(a) Free vibration of a non-prismatic thin walled beam
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The material properties were assumed as, Young’s modulus E = 206.8 GPa, mass density

ρ = 1250 kg/m3 and Poisson’s ratio ν = 0.375.

8.2 Example 5. Pinned-pinned column. Frequencies and buckling load

To find the buckling load of a pinned-pinned column given E = 200 GPa, I=0.000038 m4 mass

density ρ = 7800 kg/m3, A = 1/7800 m2 and span = 12 m. By trial and error by giving various axial

loads natural frequencies are calculated. The load at which the frequency becomes imaginary will

give the buckling load. For the column, the buckling load is obtained as 520895 N which agrees

with Euler critical load. When the axial load is zero the natural frequency ωn = 188.9 rad/sec thus

obtained agrees with Euler beam with simple support conditions. When the axial load is tensile say

P = −300000 N, the natural frequency is ωn = 237.19 rad/sec which agrees with the value

(53)

9. Conclusions

A unified formulation expressed in a unique differential system equation is presented to simulate

the structural behavior of the classical beam theory. The DQ and HDQ methods are applied to solve

ω

ωn P 0=( )
-----------------------

2

1
P

Pcr

-------– 1.5759= =

Fig. 15 Fundamental mode shape

Table 1 Fundamental frequencies of non-prismatic beam

ω rad/sec DQM Wekezer

ω1 42 42

ω2 117 125

ω3 197 191

ω4 250 255

ω5 400 398
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equilibrium analysis of beam problems, stability problems and free vibration problems. Unlike

Rayleigh-Ritz methods, DQ and HDQ methods do not need the construction of an admissible

function that satisfies boundary conditions a priori. Accurate results are obtained for the problem

even when a smaller number of discrete points are used to discretize the domain. The application is

convenient for solving problem governed by the higher order differential equations and matrix

operations could be performed using symbolic mathematic software as MATLAB with ease. It is

also easy to write algebraic equations in the place of differential equations and application of

boundary conditions is also an easy task. It is also explained how Lagrangian multiplier method is

used to convert rectangular matrix to square matrix by incorporating boundary conditions using

Wilson’s procedure. Results with high accuracy are obtained in all study cases. DQM and HDQ are

computationally efficient and DQM is straight forward that the general procedure can be easily

employed for handling problems with other boundary conditions. It is also shown in the paper how

discontinuity on the boundary of the elements can be handled to obtain shear force diagram and

bending moment diagram due to concentrated loads and moments and influence lines for moment

and shear due to concentrated rotations and deflections. It is expected that DQM will find a wide

range of applications in structural engineering (Rajasekaran 2007b).
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