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Abstract. The rotating Rayleigh-Timoshenko beam element based on B-spline wavelet on the interval
(BSWI) is constructed to discrete short shaft and stiffness disc. The crack is represented by non-
dimensional linear spring using linear fracture mechanics theory. The wavelet-based finite element model
of rotor system is constructed to solve the first three natural frequencies functions of normalized crack
location and depth. The normalized crack location, normalized crack depth and the first three natural
frequencies are then employed as the training samples to achieve the neural networks for crack diagnosis.
Measured natural frequencies are served as inputs of the trained neural networks and the normalized crack
location and depth can be identified. The experimental results of fatigue crack in short shaft is also given.
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1. Introduction 

The vibration-based crack identification methods include non-model-based and model-based

methods have been rapidly expanding over the last few years (Dimarogonas 1996, Doebling 1998,

Montalvão 2006). 

The model-based method for damage and crack identification in structural components has

acquired an important role in recent years. Some research involving the prediction of the response

† Associate Professor, Corresponding author, E-mail: wxw8627@163.com
‡ Professor, E-mail: Chenxf@mail.xjtu.edu.cn
‡† Professor, E-mail: y-lianfa@163.com

DOI: http://dx.doi.org/10.12989/sem.2009.33.5.543



544 Jiawei Xiang, Xuefeng Chen and Lianfa Yang

of structures to the presence of a transverse crack, and the detection of transverse cracks by the

application of the linear facture mechanics theory. In order to evaluate the local flexibility or

stiffness introduced by the crack, neglecting the effects that may be incorporated into the mass and

damping matrices. In addition, it is assumed that the crack only affects the region adjacent to it.

This additional flexibility or stiffness introduced by the crack can be calculated using the linear

fracture mechanic theory (Papadopoulos and Dimarogonas 1987). Therefore, vibration behavior of

cracked structures, in particular cracked shafts has received considerable attention in the last three

decades (Sekhar and Srinivas 2002, Green and Casey 2005). There are two procedures, proposed in

the technical literatures, to achieve the progress of crack detection in structures. The first procedure

is forward problem analysis, which considers the construction of a crack stiffness matrix exclusively

for the crack section, then the finite element model for crack structures is built up to gain modal

parameters at various crack location and depth, such as natural frequencies, modal damping, modal

mode etc. The second procedure is inverse problem analysis, which considers the measurement of

dynamic parameters and numerical computing or searching for optimization values of crack location

and depth according to the solving results of forward problem (Lee and Chung 2000, Lele and maiti

2002, Nandwana and Maiti 1997, Xiang and Chen 2006, 2007, Murigendrappa and Maiti 2005,

Sinou 2007).

The most popular approach which is particularly well suited for modeling large-scale and

complicated dynamic systems is the finite element method. Lele and Maiti (2002), investigated

cracked short beam identification techniques based on the combination of forward and backward

problems analysis. For the sake of crack singularity, eight-node iso-parametric elements are used to

make more efficient calculation (Nandwana and Maiti 1997). However, both the numerical

simulation and experimental studies cannot obtain satisfactory results. In order to gain accurate

frequencies of structural systems, wavelet-based elements are employed as a high performance tool

to fulfill the finite element analysis (Xiang and Chen 2006, 2007). The first three metrical

frequencies are employed as inputs of the frequencies response functions. The intersection of the

three frequencies contour lines (Owolabi and Swamidas 2003) predicted the normalized crack

location and depth. However, in most experimental cases, the difference between measured

frequencies and finite element solutions will make the above mentioned method failure. The

difference caused by the numerical finite element modeling as compared to real structures. Then,

the ‘zero-setting’ procedure that described by Adams (Adams and Cawley 1978) is used to improve

the solution precision of inverse problem. In this procedure, Young’s modulus of the structure is

changed by using the undamaged natural frequencies of the structure to determine an effective

value. Obviously, ‘zero-setting’ procedure ascribes all the errors to Young’s modulus, which will

distort the modal parameters of a real dynamic system. 

Neural networks is a useful tool to deal with inverse problems in engineering. Liu proposed an

inverse analysis method to simulate the A-scan ultrasonic nondestructive testing by means of back-

propagation neural networks and computational mechanics (Liu 2002). Qu and Chen presented a

two-step approach for diagnosing the joint damage of framed structures by using artificial neural

networks (Qu and Chen 2003). Cho and Choi presented an efficient algorithm for the estimation of

damage location and severity in bridge structures using probabilistic neural networks and applied to

a cable-stayed bridge to verify its applicability (Cho and Choi 2004). Recognition of representative

damages on returnable crates of beverages was carried out by an artificial neural networks trained

exclusively with frequency response spectra from finite element simulations, which was proposed

by Zachiarias (2004). Yuan developed a method focused on a neural networks method based on a
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new damage signature for on-line damage detection applied to thin-walled composite structures

(Yuan 2005). Lee and Yun thought that soft computing techniques such as neural networks and

genetic algorithm had been utilized increasingly for the damage detection or assessment due to their

excellent pattern recognition or optimization capability (Lee and Yun 2005). However, for the

forward problem analysis, the traditional finite element method or computational methods are

employed to build up crack detection database with bad precision. In addition, numerous dynamic

response parameters will inevitably cause the huge input nodes of neural networks. Then the size of

networks will increase accordingly and the corresponding usability and stability of the neural

networks will be reduced enormously.

The desirable advantages of wavelet-based elements by using B-spline wavelet on the interval

(BSWI) are multi-resolution properties and various basis functions for structural analysis (Canuto

and Tabacco 1999, 2000). By means of “two-scale relations” of wavelets, the scale adopted can be

changed freely according to requirements to improve analysis accuracy. Han, Ren and Huang

successfully constructed some spline wavelet elements for analyzing structural mechanics problems

under the theory frame of spline elements (Han et al. 2006). Xiang et al. construct C0 and C1 types

transformation matrix to transfer the wavelet coefficients to physical degree of freedoms in finite

element space, and classes of 1D and 2D BSWI elements for structural analysis with high

performance (Xiang et al. 2006a, 2007a, 2007b, 2007c). 

The purpose of the present work is to establish a method for predicting the normalized location

and depth of transverse crack in short shaft by only considering the first three frequencies of the

cracked shaft. We combine the wavelet-based finite element method with neural networks to make

an effectively and accurately detection in cracked short shafts. Firstly, BSWI rotating Rayleigh-

Timoshenko beam element is constructed to model and analysis short shaft and make a more

effectively and accurately frequencies solutions. Then the surface fitting technique (Xiang and Chen

2006, 2007) is employed to achieve a precision crack detection database. The model-based inverse

problems are solved by neural networks, which is a robust way to deal with inverse problem for

crack detection in structures (Qu and Chen 2003, Cho and Choi 2004, Lee and Yun 2005). 

2. A brief review of BSWI scaling functions 

Classical approaches to wavelet construction deal with multiresolution analysis (MRA) on the

Fig. 1 BSWI scaling functions
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entire real axis R or a function space L2(R). Sometimes the numerical oscillations will occur when

the boundary value problems are solved by WFEM. To overcome this limitation, Chui, Quak and

Goswami constructed BSWI functions, and presented a fast decomposition and reconstruction

algorithm (Chui and Quak 1992, Goswami and Chui 1995). The scaling functions  for order

m at the scale j are simply denote as BSWImj scaling functions. Some scaling functions are shown

in Figs. 1(a), (b) respectively.

3. BSWI rotating Rayleigh-Timoshenko beam element

The static disc is modeled by a Rayleigh-Timoshenko beam considering the effects of the cross-

section inertia and shear deformation, the elemental potential energy Ue can be written as (Nelson

1980)

(1)

where E is the Young’s modulus, Iz and Iy is the moment of inertia,  and  are the

transverse displacement, le is the elemental length, G is the shear modulus, A is the area of the

cross-section, k is the shear deformation coefficient (In the present work, we suppose k = 10/9), and

 and  are the rotation of the beam section due to bending.

The elemental kinetic energy Te of the Rayleigh-Timoshenko beam allowing for the rotatory

inertia effect and gyroscopic effect can be expressed as (Nelson 1980)

(2)

   

where ρ is the density, A is the area of the cross-section, Ω is the rotational speed(rad/s), Jx is the

polar moment of inertia.

Fig. 2 shows the nodal layout of BSWI rotating Rayleigh-Timoshenko beam element and the

corresponding DOFs. We divide the standard solving domain Ωe into  segments, the

node number = n + 1, Each node has four DOFs, i.e., , . The elemental

whole DOF = 4(n + 1).
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Fig. 2 The layout of elemental nodes and the corresponding DOF for BSWI rotating Rayleigh-Timoshenko
beam element
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The elemental physical DOFs can be represented by 

(3)

 and  can be independently interpolated by the BSWImj scaling

functions as

 (4)

where 

(5)

C0 type transformation matrix Te is given by (Xiang et al. 2007b)

(6)

Substituting Eq. (4) into Eq. (1) and Eq. (2) respectively, we obtain

(7)
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(12)

the translational mass matrices are 

(13)

the rotatory inertia mass matrices are

(14)

(15)

and the element gyroscopic matrix Ge is

(16)

in which 

(17)

Applying Hamilton’s principle to the elemental Lagrangian function L, we can obtain the

elemental free vibration equation

(18)

where Me, ge and Ke are the element mass, gyroscope and stiffness matrices respectively, which are

given by
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(20)

(21)

According to the layout of elemental physical DOFs Eq. (3), Eq. (18) can be rewritten as 

 (22)

Where the element mass matrix is

(23)
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 is the corresponding entries of gyroscope matrix Ge.

and the element stiffness matrix is

(27)

in which

(28)

in which  are the entries of stiffness matrices

.

Assemble elemental free vibration equation to global solving equation, we have

(29)

For the sake of computational purposes, Eq. (27) is written in the first order state vector form as
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Substituting Eq. (34) into Eq. (30), we have the global free vibration frequency equations is

(35)

where  is the complex eigenvalue. ω (rad/s) is the natural whirl speeds, f

(Hz) is the modal frequency of structural dynamic systems. σ represents the instability threshold

when σ > 0.

4. Crack detection forward problem for short shafts

As the model-based crack detection method, there are two procedures need to be done. The first

procedure is forward problem analysis, which considers the construction of a stiffness matrix

exclusively for the crack section by applying linear fracture mechanics theory. Then a finite element

model of the structures to compute the reasonable frequencies is necessary to make discrete

relationships between natural frequencies along one direction (for example, y direction as shown in

Fig. 2) and normalized crack location β and depth α. Therefore, a more precision database for crack

identification is determination by surface fitting technique (in the present study, the two-dimensional

least square surface fitting technique is used), as follows

(36)

To analysis the forward problem, it is necessary to determine the additional crack stiffness due to

the presence of the transverse crack, and insert this crack stiffness into a discrete representation of

the structural system.

The localized additional flexibility can be calculated according to linear fracture mechanics theory

(Gounaris and Dimarogonas, 1988). A section of a short shaft containing a crack of depth δ is

shown, under general loading, in Fig. 3. P1 is axial tension, P2 is transverse shear, P3 is transverse

shear, P4 is bending moment, P5 is bending moment and P6 is torsion. Fig. 4 shows the cross

section of the cracked short shaft. The current analysis is not concerned with torsion or axial

displacement, hence only c22, c33, c44, c45, c54, c55 are required. These elements are then given by

(37)

Eλ F+ 0=

λ σ i ω⋅+ σ i 2π f⋅+= =

fj Fj α β,( )= j 1 2 3, ,=( )

c22

4 1 µ
2

–( )
πEr

--------------------- ηFIII

2 η

H
----⎝ ⎠
⎛ ⎞dηdξ

0

a

∫
0

b

∫=

Fig. 3 Typical shaft containing a crack
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(38)

(39)

(40)

(41)

where , , ,

 denotes normalized crack depth. The corresponding intensity functions are given by

(Tada et al. 2000)

(42)

Therefore, the dimensionless flexibilities can be obtained according to
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The dimensionless compliance matrix is then

(44)

Fig. 5 shows a simply supported cracked short shaft (suppose the crack occurred on segment L2).

A transverse crack of depth δ is considered on a shaft of diameter d1 (the corresponding radius is r1)

and the normalized crack location . 

The inverse of the compliance matrix  is the stiffness matrix of the cracked nodal element, and

the cracked stiffness submatrix Kcrack can be written as (Kisa et al. 1998)

(45)

The short shaft and rigid disc are modeled by BSWI rotating BSWI rotating Rayleigh-

Timoshenko beam element. Hence, we can assemble cracked stiffness submatrix Kcrack into the

global stiffness matrix according to the corresponding DOFs easily. The global mass and

gyroscope matrices of cracked short shaft are equal to the uncracked one. For the determination

of the natural frequencies f for a given crack location (determine the insert location of cracked

stiffness matrix Kcrack in global stiffness) and depth (determine the cracked stiffness matrix

Kcrack), the normalized crack location β and depth α are given as input. The discrete values

between the natural frequencies and the crack parameters will be solved by BSWI finite element

model. Then the precision crack identification database for short shaft is accomplished by least

square surface-fitting techniques. Fig. 6 shows the crack identification database along y directions

by using least square surface-fitting techniques for simply supported short shaft without rigid

disc.
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5. Neural networks for inverse problems

The second procedure is inverse problem analysis, which considers the measurement of dynamic

parameters and numerical computing or searching for optimization values of normalized crack

location and depth according to the solving results of forward problem. That is the determination

the normalized crack location β and depth α, as follows

(46)

The method of frequencies contour lines (Owolabi 2003, Xiang et al. 2006, 2007) or other

methods (Lele and Maiti 2002, Murigendrappa and Maiti 2005) plus ‘zero-setting’ procedure

(Adams et al. 1978) can fulfill the inverse problem of crack detection. In the ‘zero-setting’

procedure procedure, Young’s modulus of the structure is changed by using the undamaged natural

frequencies of the structure to determine an effective value. namely

 

(47)

where Em is the corrected value of Young’s modulus E, which can be acquired through solving

Eq. (47) for each frequency. This procedure can reduce the error between theoretical analysis and
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Fig. 6 Crack identification database for simply supported short shaft without rigid disc
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the experimental studies, which are caused by boundary conditions and material parameters.

However, ‘zero-setting’ procedure ascribes all the errors to Young’s modulus, which will distort the

modal parameters of a real dynamic system.

Neural networks can efficiently solve inverse problems in engineering as mentioned in

introduction. Neural networks are based on models of biological neurons and form a parallel

information processing array based on a networks of interconnected artificial neurons. The function

of artificial neurons is similar to that of real neurons: they are able to communicate by sending

signals to each other over a large number of biased or weighted connections. Each of these neurons

has an associated transfer function which describes how the weighted ksum of its inputs is

converted to an output. Computational models of a neural networks try to emulate the physiology of

real neurons. There are two principal functions for artificial neural networks. One is the input-output

mapping or feature extraction. The other is pattern association or generalization. The mapping of

input and output patterns is estimated or learned by the neural networks with a representative

sample of input and output patterns. The generalization of the neural networks is an output pattern

in response to an input pattern, based on the networks memories that function like the human brain.

Therefore, a neural networks can learn patterns from a sample data set and determine the class of

new data based on previous knowledge.

Among the various types of neural networks, the multi-layer perceptron trained with the back-

propagation algorithm (BP neural networks) has been proved to be most useful in engineering

applications (Qu and Chen 2003, Cho and Choi 2004, Lee and Yun 2005). Thus BP neural networks

is used in the present studies. The back-propagation networks is given its name due to the way that

it learns by back propagating the errors in the direction from output neurons to input neurons.

The input/output relationship of the neural networks can be non-linear as well as linear, and its

characteristics are determined by the synaptic weights assigned to the connections between the

neurons in two adjacent layers. Fig. 7 shows the principle of crack diagnosis algorithm based on

neural networks. The fist three frequencies database (i.e., the relationship between different

normalized crack location and depth and the first three natural frequencies of cracked short shaft)

solved by wavelet-based finite element model of cracked short shaft is employed as training

samples to train the BP neural networks. Then the measured first three natural frequencies at one

direction (e.g., y direction) are applied to the trained BP neural networks to quantitatively identify

the real crack location and depth.

Fig. 7 Crack diagnosis algorithm based on neural networks
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Based on BP neural networks, three procedures will be done to accomplish the crack

identification in short shaft, i.e., networks definition, networks train and networks identification.

Fig. 8 shows the flow chart of neural networks to deal with data.

(1) Networks definition. The normalized crack location β and depth α are defined as the diagnosis

parameters NP and the first three natural frequencies  are served as vibration

parameters NT. Because the high performance of BSWI element, we can get a high precision

cracked identification database by forward problem analysis. Therefore, the little input nodes and

small networks scale are needed to train a stability and robust BP neural networks.

(2) Networks train. A pair of NP and fr is employed as training samples to train neural networks

for crack identification in short shafts. The first three natural frequencies  of short

shaft computed by wavelet-based model are served as inputs parameters while the normalized crack

location β and depth α are looked as outputs parameters. Then compute specific mean-square

training errors with standard procedures and iterations constantly. And terminating the training

process when output parameters equal to target parameters or the errors between output parameters

and target parameters satisfy the threshold values.

(3) Networks identification. The measured first three frequencies of real cracked short shaft are

applied to the trained BP neural networks to gain the normalized crack location β and depth α

though networks computing. 

6. Experimental studies 

Fig. 9 shows the experimental setup used for measuring the first three frequencies of the cracked

shaft with a single mass disc using the Doppler signal laser vibrometer. A Polytec Doppler laser

vibrometer OFV-505/5000 is used to measure the velocities of one point in the shaft and a hammer

is used to excite the rotor systems at the other point. In order to gain a reality measured frequencies,

100 data sets are recorded to solve an average frequencies values.

Some sawed short shafts with width 0.02 mm are used. The six crack cases are shown in Table 1.

The material of workpiece for experiment is 40Cr steel, and the simply supported short shaft

geometries and material properties are: L = 154 mm, L1 = 8 mm, L2 = 60 mm, L3 = 18 mm,

d1 = 30 mm, d2 = 100 mm, Young’s modulus E = 2.06×1011 N/m2, material density ρ = 7860 kg/m3,

Poisson’s ratio µ = 0.3, the shear modulus G = 80 GPa, the shear deformation coefficient k = 10/9.

Fig. 10 shows the crack identification database for the experimental short shaft systems. That is

fr r 1 2 3, ,=( )

fr r 1 2 3, ,=( )

Fig. 8 The flow chart of neural networks to deal with data
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the relationship between  and all possible normalized crack location β and depth α by

using wavelet-based finite element model and the least square surface fitting techniques (Here,

fi i 1 2 3, ,=( )

Fig. 9 Testing principle diagram

Fig. 10 Crack identification database for the experimental short shaft systems
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). The standard procedures of BP neural networks for inverse problems analysis

are applied to solve the inverse problem of experimental shafts.

Table 1 shows the comparison of actual normalized crack parameters β and α and the predicted

crack parameters β* and α*. For the given cases, the relative errors of β* are not more than 5%

while the relative errors of α* arrive at 10%. Hence, the proposed model-based crack identification

method by using wavelet-based element and neural networks is considered to be valid for applying

to detect cracks in short shafts. Because the good characteristics of BSWI scaling functions, such as

multi-resolution analysis and localization, the presented element have higher efficiency and

precision to deal with high performance computing in engineering. Therefore, fewer wavelet-based

elements are needed to construct higher finite element model of structural dynamic systems. And

the model-based inverse problems are solved by BP neural work, which is a robust and stability

way to deal with inverse problem for crack detection in short shafts. In addition, the BSWI rotating

Rayleigh-Timoshenko element can also employed as a useful tool to solve rotor dynamics not only

for short shaft but also for slender shaft. The reason is that C0 type BSWI element has the ability to

resist shear-locking phenomenon (Xiang et al. 2007). 

7. Conclusions

The strategies and procedures of crack identification of short shaft are proposed by combining

BSWI rotating Rayleigh-Timoshenko beam element and BP neural networks. The present studies

developed a new wavelet-based beam element for analysis short shafts. By applying linear fracture

mechanics theory, the wavelet-based finite element model of short shafts can be built up to gain

more accurate natural frequencies of the cracked structural systems. A precise crack identification

database is also obtained by using the least square surface fitting technique. For solving the inverse

problem, the BP neural networks is employed as an efficient tool to gain a robust and stability crack

identification results. The experimental results of cracked short shaft have demonstrated that the

present method is a useful and robust way to identify the crack location and size in short shaft.

It remain some problems should be considered in the future. Firstly, the key to successful

applying the present method to on-line monitor and diagnosis cracks in short shaft is the operational

modal analysis (OMA) techniques to extract the exact modal parameters. Therefore, bearing

stiffness and damp will be considered in the future work. Secondly, for the detection of multiple

α β, 0.05 0.9,[ ]=

Table 1 Crack cases of short shaft and identification results

Case β α
Measured frequencies/Hz Predicted β*

(Error/%)
Predicted α*

(Error%)f1/Hz f2/Hz f3/Hz

1 0.4 0.2 1331.1 4384.9 14160.1 0.42(5) 0.18 (10)

2 0.4 0.4 715.3 4011.7 13040.1 0.38 (5) 0.42 (5)

3 0.6 0.2 1048.5 4329.4 15129.6 0.58 (3.3) 0.23 (15)

4 0.6 0.4 698.3 4139.3 15653.3 0.63 (5) 0.38 (5)

5 0.5 0.2 1176.4 4330.8 14529.1 0.83 (3.8) 0.22 (10)

6 0.5 0.4 679.2 4088.7 15517.3 0.79 (1.3) 0.42 (5)

Notes: Error/% is calculated by |β*-β|/β×100% or |α*-α|/α×100%
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cracks, the different crack orientations should be considered to make a more reasonable results.
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