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1. Introduction

To account for material nonlinearity in frame analysis, a flexibility-based inelastic beam-column

element utilizing a lumped plasticity model can be employed. Various researchers have

demonstrated the usefulness and efficiency of using the flexibility-based approach in determining

the inelastic response of frame members (Spacone et al. 1996, Neuenhofer and Filippou 1997). To

handle geometric nonlinearities, a solution method can incorporate a simplified geometric stiffness

matrix along with an iterative technique to capture the P-Delta effect (including of P − ∆ and P − δ

effects). For elastic systems, the geometric stiffness matrix is included in the elastic stiffness matrix

of an element in a straightforward way to form the final element stiffness matrix, which is not true

for the inelastic beam-column element being considered. Therefore, an approach to account for the

P − δ effect must be considered. The current paper will address this issue and a special procedure to

account for the P − δ effect will be proposed.

2. Element stiffness

In the flexibility-based element formulation, the element stiffness matrix k (a 3 × 3 matrix) for the

essential set is obtained through inversion of the element flexibility matrix f, which consists of the

elastic flexibility matrix fe and the hinge flexibility matrix fp shown in Eq. (1).
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For two-dimensional force space, each hinge has a 2 × 2 flexibility matrix, which is in terms of its

axial force and bending moment. The hinge at node I affects degrees of freedom r1 and r2 while the

hinge at node J affects degrees of freedom r1 and r3. Hence, the hinge flexibility matrix fp 

can be

obtained by

 (3)

where  is the flexibility matrix of hinge 

       is the flexibility matrix of hinge 

The definitions and more explanations of the hinge flexibility matrix can be found in literatures

(Kim and Engelhardt 2000, Taucer et al. 1992). After obtaining the element stiffness matrix k for

the essential set, one can calculate the 6 × 6 element stiffness matrix K for the complete set as

follows

K = AT × k × A (4)

3. Geometric nonlinearity

3.1 Introduction

The term “P-Delta effect” is commonly used to describe a type of geometric nonlinearity in

which axial compressive forces acting through the displacement of one end of a member relative to

the other amplify the lateral bending response of a beam-column. Thus, the P-Delta effect

influences the transverse bending stiffness of an element. As discussed earlier, the developed

solution methodology incorporates a simplified geometric stiffness matrix KG along with an iterative

technique to model the P-Delta effect in an approximate manner. This technique employed to

simulate the moment increase at the member ends due to the P − ∆ effect is referred to as the

equivalent lateral load method or the P − ∆ iterative method. Details of this method can be found in

the literature (Chen and Lui 1991). The derivation of KG, which is obtained by assuming cubic

shape functions of a beam element, is widely available (McGuire 2000). The geometric stiffness KG

for the complete set in a local coordinate system can be decomposed into two matrices  and 

 (5)

where  is a stiffness matrix that accounts for the chord rotation (P − ∆) effect,  is a stiffness

matrix that accounts for the member curvature (P −δ) effect.
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3.2 Adding a geometric stiffness matrix

For elastic systems, the geometric stiffness matrix KG can be included to the elastic stiffness

matrix Ke of an element in a straightforward way to form the final element stiffness matrix K = Ke +

KG However, for the inelastic beam-column element being considered, the geometric stiffness matrix

 accounting for the member curvature (P − δ) effect cannot be added directly to the element

tangent stiffness matrix Kt because the tangent stiffness matrix Kt is derived from the tangent

element stiffness matrix kt for the essential set using Eq. (4) in which it is obtained through the

inversion of the tangent flexibility matrix ft as expressed by Eq. (1). In the way it is formulated, the

tangent stiffness matrix Kt already accounts for inelastic material behavior in which axial and/or

flexural yielding may already occur. Therefore, in this case, a special procedure is needed for

computing the element tangent stiffness matrix.

Because the tangent flexibility matrix ft is determined using the essential set (three deformations

without rigid body motion), KG corresponding to the essential set will be considered. The geometric

stiffness matrix (P − δ  effect)  for the essential set can be written as

 

(6)

where  

3.3 A proposed procedure

To solve the problem addressed in Section 3.2, a special procedure to account for the P − δ  effect

is proposed. This process is simple and does not affect the main solution procedure of the nonlinear

algorithm being used. 

Let’s consider the adding of  to kt which can create inconsistency in violating the yield limit.

Instead of doing so, the geometric stiffness matrix  may be included in the elastic stiffness matrix

ke to form the elastic-geometric stiffness matrix keg as following

 

(7)

Then, the elastic flexibility matrix accounting for geometric nonlinearity feg can be obtained

through the inversion of keg
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(8)

To account for geometric nonlinearity, the elastic flexibility matrix feg appearing in Eq. (8) is used 

to replace the one in Eq. (2). With this replacement, the procedure to obtain the tangent stiffness

matrix remains unchanged, and the violation of the yield limit is avoided. After the tangent stiffness

matrix for the complete set Kt is obtained,  is later added to account for the P − ∆ effect.
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