
Structural Engineering and Mechanics, Vol. 33, No. 3 (2009) 373-385 373

Shear locking-free earthquake analysis of thick and thin 
plates using Mindlin’s theory

Y. I. Özdemir and Y. Ayvaz†

Civil Engineering, Department of Civil Engineering, Karadeniz Technical University, 

61080 Trabzon, Turkey

(Received May 13, 2009, Accepted September 7, 2009)

Abstract. The purpose of this paper is to study shear locking-free parametric earthquake analysis of
thick and thin plates using Mindlin’s theory, to determine the effects of the thickness/span ratio, the aspect
ratio and the boundary conditions on the linear responses of thick and thin plates subjected to earthquake
excitations. In the analysis, finite element method is used for spatial integration and the Newmark-β
method is used for the time integration. Finite element formulation of the equations of the thick plate
theory is derived by using higher order displacement shape functions. A computer program using finite
element method is coded in C++ to analyze the plates clamped or simply supported along all four edges.
In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the
design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can
be effectively used in the earthquake analysis of thick and thin plates. It is also concluded that, in general,
the changes in the thickness/span ratio are more effective on the maximum responses considered in this
study than the changes in the aspect ratio. 

Keywords: shear locking-free parametric earthquake analysis; thick plate, Mindlin’s theory; 17-noded
finite element; thickness/span ratio; aspect ratio.

1. Introduction

Plates are structural elements which are commonly used in the building industry. A plate is
considered to be a thin plate ate if this ratio is larger than 1/20 (Ugural 1981, Liew and Teo 1999).

The dynamic behavior of thin plates has been investigated by many researchers (Ugural 1981,
Timoshenko and Krieger 1959, Leissa 1969, Leissa 1973, Providakis and Beskos 1989, Warburton
1954, Caldersmith 1984, Qiu and Feng 2000, Zhu and Gu 1991, Grice and Pinnington 2002, Sakata
and Hosokawa 1988, Lok and Cheng 2001, Si et al. 2005, Ayvaz and Durmu , 1995]. There are
also many references on the behavior of the thick plates subjected to different loads. The studies
made on the behavior of the thick plates are based on the Reissner-Mindlin plate theory (Reissner
1945, 1947, 1950, Mindlin 1951). This theory requires only C0 continuity for the finite elements in
the analysis of thin and thick plates. Therefore, it appears as an alternative to the thin plate theory
which also requires C1 continuity. This requirement in the thin plate theory is solved easily if
Mindlin theory is used in the analysis of thin plates. Despite the simple formulation of this theory,
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discretization of the plate by means of the finite element comes out to be an important parameter. In
many cases, numerical solution can have lack of convergence, which is known as “shear-locking”.
Shear locking can be avoided by increasing the mesh size, i.e., using finer mesh, but if the
thickness/span ratio is “too small”, convergence may not be achieved even if the finer mesh is used
for the low order displacement shape functions.

In order to avoid shear locking problem, the different methods and techniques, such as reduced and
selective reduced integration, the substitute shear strain method, etc., are used by several researchers
(Hinton and Huang 1986, Zienkiewich et al. 1971, Bergan and Wang 1984, Ozkul and Ture 2004,
Hughes et al. 1977). The same problem can also be prevented by using higher order displacement
shape function (Özdemir et al. 2007). Wanji and Cheung (Wanji and Cheung 2000) proposed a new
quadrilateral thin/thick plate element based on the Mindlin-Reissner theory. Soh et al. (2001) improved
a new element ARS-Q12 which is a simple quadrilateral 12 DOF plate bending element based on
Reissner-Mindlin theory for analysis of thick and thin plates. Brezzi and Marini (2003) developped a
locking free nonconforming element for the Reissner-Mindlin plate using discontinuous Galarkin
techniques. Belounar and Guenfound (2005) improved a nev rectangular finite element based on the
strain approach and the Reissner-Mindlin theory is presented for the analysis of plates in bending
either thick or thin. Cen et al. (2006) developped a new high performance quadrilateral element for
analysis of thick and thin plates. This distinguishing character of the new element is that all
formulations are expressed in the quadrilateral area co-ordinate system. Ayvaz (1992) derived the
equations of motions for thick orthotropic elastic plates using Hamilton's principle, but did not
present any results. Liew and Teo (1999) studied three-dimensional vibration analysis of rectangular
plates based on differential quadrature method. Shen et al. (2001) studied free and forced vibration
of Reissner-Mindlin plates with free edges resting on elastic foundations. Cai et al. (2002) presented
the generalized mixed variational principle for Reissner plate analysis. Using finite element method,
Raju and Hinton (1980) made significant contributions to the vibration analysis of plates including
rotatory inertia effects for rhombic plates based on Mindlin’s theory. Woo et al. (2003) found
accurate natural frequencies and mode shapes of skew plates with and without cutouts by p-version
finite element method using integrals of Legendre polynomial for p = 1-14. Qian et al. (2003)
studied free and forced vibrations of thick rectangular plates using higher-order shear and normal
deformable plate theory and meshless Petrov-Galarkin method. Morais et al. (2005) studied
vibrations of thick plates using Lagrangean quadrilateral finite element with 16 nodes. However, no
references have been found in the technical literature for the shear locking-free earthquake analysis
of thick and thin plates using Mindlin theory by using 17-noded finite element. 

The purpose of this paper is to study shear locking-free parametric earthquake analysis of thick
and thin plates using Mindlin’s theory, to determine the effects of the thickness/span ratio, the
aspect ratio and the boundary conditions on the linear responses of the thick and thin plates
subjected to earthquake excitations. A computer program using finite element method is coded in
C++ to analyze the plates clamped or simply supported along all four edges. In the program, the
finite element method is used for spatial integration and the Newmark-β method is used for the time
integration. Finite element formulation of the equations of the thick plate theory is derived by using
higher order displacement shape functions. In the analysis, 17-noded finite element is used to
construct the stiffness and mass matrices since shear locking problem does not occur if this element
is used in the finite element modelling of the thick and thin plates (Özdemir et al. 2007). No matter
what the mesh size is unless it is less than 4 × 4. This is a new element, details of its formulation
are presented in (Özdemir et al. 2007) and this is the first time this element is used in the
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earthquake analysis of thick and thin plates. If this element is used in an analysis, it is not necessary
to use finer mesh. 

2. Finite element modeling 

The governing equation for a flexural plate (Fig. 1) subjected to an earthquake excitation without
damping can be given as (Ayvaz et al. 1995, Tedesco et al. 1999)

(1)

where [K] and [M] are the stiffness matrix and the mass matrix of the plate, respectively, w and 
are the lateral displacement and the second derivative of the lateral displacement of the plate with
respect to time, respectively,  is the earthquake acceleration.

In order to do forced vibration analysis of a plate, the stiffness, [K], mass matrices, [M], and
equivalent nodal loads vector, [F], of the plate should be constructed. The evaluation of these
matrices is given in the following sections. 

2.1 Evaluation of the stiffness matrix

In this study, 17-noded quadrilateral serendipity element (MT17) (Fig. 2) is used. The stiffness
matrix for this element can be obtained by the following equation (Cook et al. 1989).

(2)

which must be evaluated numerically (Hughes et al. 1977). 
As seen from Eq. (2), in order to obtain the stiffness matrix, the strain-displacement matrix, [B],

and the flexural rigidity matrix, [D], of the element need to be constructed. 
The nodal displacements for 17-noded finite element can be written as follows 

(3)
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Fig. 1 The sample plate used in this study
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In these equations, w is the displacement of the plate in the vertical direction, x, y, and z are the
co-ordinate axes (see Fig. 1).

The displacement function chosen for this element is

 (5)

From this assumption, it is possible to derive the displacement shape function to be 

(6)

Then, the strain-displacement matrix [B] for this element can be written as follows (Cook et al.

1989)
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Fig. 2 17-noded quadrilateral finite element used in this study (Özdemir et al. 2007)
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The flexural rigidity matrix, [D], can be obtained by the following equation.

(8)

In this equation, [Ek] is of size 3 × 3 and [Eγ] is of size 2 × 2. [Ek], and [Eγ] can be written as
follows (Bathe 1996, Weaver and Johston 1984)

(9)

where E, υ, and t are modulus of the elasticity, Poisson’s ratio, and the thickness of the plate,
respectively, k is a constant to account for the actual non-uniformity of the shearing stresses. By
assembling the element stiffness matrices obtained, the system stiffness matrix is obtained.

2.2 Evaluation of the mass matrix

The formula for the consistent mass matrix of the plate may be written as

(10)

In this equation, m is the mass density matrix of the form (Tedesco et al. 1999)

 (11)

where m1 = ρpt, m2 = m3 = 1/12(ρpt
3), and ρp is the mass density of the plate. and Hi can be written

as follows 

(12)

It should be noted that the rotation inertia terms are not taken into account. By assembling the
element mass matrices obtained, the system mass matrix is obtained.

2.3 Evaluation of equivalent nodal loads vector

Equivalent nodal loads, [F], can be obtained by the following equation.

(13)
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(14)

It should be noted that, the Newmark-β method is used for the time integration of Eq. (1) by
using the average acceleration method. 

3. Numerical examples

3.1 Data for numerical examples

In the light of the results given in references (Özdemir et al. 2007, Özdemir 2007), the aspect
ratios, b/a, of the plate are taken to be 1, 1.5, 2.0, and 3.0. The thickness/span ratios, t/a, are taken
as 0.01, 0.05, 0.1, 0.2, and 0.3 for each aspect ratio. The shorter span length of the plate is kept
constant to be 3 m. The mass density, Poisson’s ratio, and the modulus of elasticity of the plate are
taken to be 2.5 kN s2/m2, 0.2, and 2.8 × 107 kN/m2.

In order to obtain the response of each plate by using the time history analysis, the East-West
component of March 13 1992 Erzincan earthquake in Turkey is used. Duration of this earthquake is
21 s, but, in this study, the first 8 s of the earthquake is used since the peak value of the record
occurred in this range (Fig. 3). 

For the sake of accuracy in the results, rather than starting with a set of a finite element mesh size
and time increment, the mesh size and time increment required to obtain the desired accuracy were
determined before presenting any results This analysis was performed separately for the mesh size
and time increment. It was concluded that the results have acceptable error when equally spaced
4 × 4 mesh sizes are used for a 3 m × 3 m plate even if it is a thin plate, if the 0.01 s time
increment is used. Length of the elements in the x and y directions are kept constant for different
aspect ratios as in the case of square plate. 

In order to illustrate that the mesh density used in this paper is enough to obtain correct results,
the first six frequency parameters of the thick simply supported plate with b/a = 1 and t/a = 0.1 is
presented in Fig. 4 by comparing with the result obtained using 8-noded quadrilateral finite element
(MT8). It should be noted that the results presented for MT8 element are obtained by using equally
spaced 16 × 16 mesh size. As seen from Fig. 4, the results obtained by using 17-noded quadrilateral

M[ ] u··g{ }–

Fig. 3 East-West component of the March 13, 1992
Erzincan earthquake in Turkey

Fig. 4 The first six frequency parameters of the thick
simply supported plates modeled with 8- and
17-noded finite elements (b/a = 1, t/a = 0.1)
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finite element have excellent agreement with the results obtained by using MT8 element even if
4 × 4 mesh size is used for MT17 element.

3.2 Results

One of the purposes of this paper was to determine the time histories of the displacements and the
bending moments at different points of the thick and thin plates subjected to earthquake excitations,
but presentation of all of the time histories would take up excessive space. Hence, only the absolute
maximum displacements and bending moments for different thickness/span ratio and aspect ratio are
presented after two time histories are given. This simplification of presenting only the maximum
responses is supported by the fact that the maximum values of these quantities are the most
important ones for design. These results are presented in graphical rather than in tabular form.

The time histories of the center displacements of the thick clamped plates for b/a = 1.0, and 2.0
when t/a = 0.2 are given in Figs. 5(a), and 5(b), respectively. 

As seen from Figs. 5(a), and 5(b), the center displacements of the thick clamped plates for b/a = 1,
and t/a = 0.2, and for b/a = 2, and t/a = 0.2, reached their absolute maximum values of 0.00236
mm at 3.48 s, and of 0.00427 mm at 3.48 s, respectively. These absolute maximum values are
different even with the same occurring time as the dynamic characteristics of the thick plates affect
the response. It is also understandable that the system becomes more flexible as the aspect ratio
increases.

The absolute maximum displacements of the thick and thin plates for different aspect ratios, and
thickness/span ratios are given in Fig. 6 for the thick and thin plates simply supported along all four
edges and in Fig. 7 for the thick and thin plates clamped along all four edges.

As seen from Figs. 6, and 7, the absolute maximum displacements of the thick and thin plates
increase with increasing aspect ratio for a constant t/a ratio. The same displacements decrease with
increasing t/a ratio for a constant b/a ratio. As also seen from these figures, the decrease in the
absolute maximum displacement for a constant b/a ratio increases with increasing b/a ratio. The
curves for a constant value of the aspect ratio, b/a are fairly getting closer to each other as the value
of t/a increases. This shows that the curves of the absolute maximum displacements will almost
coincide with each other when the value of the thickness/span ratio, t/a, increases more. In other
words, the increase in the thickness/span ratio will not affect the absolute maximum displacements
after a determined value of t/a. 

Fig. 5 The time history of the center displacement of the thick clamped plate for (a) b/a = 1.0 and t/a = 0.2,
and (b) b/a = 2.0 and t/a = 0.2
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As also seen from Figs. 6, and 7, the absolute maximum displacements of the thick and thin
simply supported plates are larger than those of the thick and thin clamped plates for the same
aspect and thickness/span ratios. In general, the effects of the changes in the thickness/span ratios
on the absolute maximum displacement are larger than the changes in the aspect ratios. 

The absolute maximum bending moments Mx at the center of the thick and thin plates for
different aspect ratios and thickness/span ratios are given in Fig. 8 for the thick and thin simply
supported plates and in Fig. 9 for the thick and thin clamped plates, respectively.

Fig. 6 Absolute maximum displacement of the thick
and thin simply supported plates for different
aspect ratios and thickness/span ratios

Fig. 7 Absolute maximum displacement of the thick
and thin clamped plates for different aspect
ratios and thickness/span ratios

Fig. 8 Absolute maximum bending moment Mx at
the center of the thick and thin simply
supported plates for different aspect ratios and
thickness/span ratios 

Fig. 9 Absolute maximum bending moment Mx at
the center of the thick and thin clamped plates
for different aspect ratios and thickness/span
ratios



Shear locking-free earthquake analysis of thick and thin plates using Mindlin’s theory 381

As seen from Fig. 8, the absolute maximum bending moment, Mx, at the center of the thick and
thin simply supported plates increases with increasing aspect ratio and thickness/span ratio. The
increases in the absolute maximum bending moment, Mx, increase with increasing aspect and
thickness/span ratios. This is understandable that increasing the aspect ratio makes the plate stiffer
in the short span, the x axis, direction. As also seen from this figure, in general, the effects of the
changes in the aspect ratios on the absolute maximum bending moment, Mx, are larger than the
changes in the thickness/span ratios.

As seen from Fig. 9, the absolute maximum bending moment, Mx, at the center of the thick and
thin clamped plates, as in the case of the absolute maximum bending moment, Mx, at the center of
the thick and thin simply supported plates, increases with increasing aspect ratio and thickness/span
ratio. The increases in the absolute maximum bending moment, Mx, increase with increasing aspect
and thickness/span ratios. This is also understandable that increasing the aspect ratio makes the plate
stiffer in the short span, the x axis, direction. As also seen from this figure, in general, the effects of
the changes in the aspect ratios on the absolute maximum bending moment, Mx, are larger than the
changes in the thickness/span ratios.

The absolute maximum bending moments My at the center of the thick and thin plates for
different aspect ratios and thickness/span ratios are given in Fig. 10 for the thick and thin simply
supported plates and in Fig. 11 for the thick and thin clamped plates, respectively.

As seen from Fig. 10, the absolute maximum bending moment, My, at the center of the thick and
thin simply supported plates decreases with increasing aspect ratio and increases with increasing
thickness/span ratio. The decrease in the absolute maximum bending moment, My, increase with
increasing aspect ratio. The increase in the absolute maximum bending moment, My, increases with
increasing thickness/span ratios. This is understandable that increasing the aspect ratio makes the
thick and thin plates more flexible in the long span, the y axis, direction. As also seen from this
figure, in general, the effects of the changes in the thickness/span ratios on the absolute maximum
bending moment, My, are larger than the changes in the aspect ratios.

As seen from Fig. 11, the absolute maximum bending moment, My, at the center of the thick and
thin clamped plates, as in the case of the absolute maximum bending moment, My, at the center of
the thick and thin simply supported plates, decreases with increasing aspect ratio and increases with

Fig. 10 Absolute maximum bending moment My at
the center of the thick and thin simply
supported plates for different aspect ratios
and thickness/span ratios

Fig. 11 Absolute maximum bending moment My at
the center of the thick and thin clamped
plates for different aspect ratios and thickness/
span ratios
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increasing thickness/span ratio. The decrease in the absolute maximum bending moment, My,
increase with increasing aspect ratio. The increase in the absolute maximum bending moment, My,
increases with increasing thickness/span ratios. This is also understandable that increasing the aspect
ratio makes the thick and thin plates more flexible in the long span, the y axis, direction. As also
seen from this figure, in general, the effects of the changes in the thickness/span ratios on the
absolute maximum bending moment, My, are larger than the changes in the aspect ratios.

In this study, the absolute maximum bending moments Mx at the center of the edge in the y

direction and the maximum bending moment My at the center of the edge in the x direction are not
presented for the thick and thin plates clamped along all four edges. It should be noted that the
variations of these moments are similar to the absolute maximum bending moments Mx at the center
of the thick and thin clamped plates.

4. Conclusions

The purpose of this paper was to study shear locking-free parametric analysis of thick and thin
plates subjected to earthquake excitations and to determine the effects of the thickness/span ratio, the
aspect ratio and the boundary conditions on the linear responses of thick and thin plates by using
Mindlin’s theory. It is concluded that 17-noded finite element can be effectively used in the
earthquake analysis of thick and thin plates without shear locking-problem and that if this element is
used in an analysis, it is not necessary to use finer mesh. No matter what the mesh size is unless it is
less than 4 × 4. The coded program can be effectively used in the earthquake analyses of any thick
and thin plates. It is also concluded that, in general, the changes in the thickness/span ratio are more
effective on the maximum responses considered in this study than the changes in the aspect ratio.

For a thick or thin plates subjected to the earthquake excitations, it is somewhat difficult to
interpret the effects of the thickness/span ratio, the aspect ratio, and the boundary conditions on the
responses because both the frequency content of the earthquake excitation and the exact natural
frequency of the particular thick and thin plates can make a difference to its response. In order to
generalize the results obtained in this study, the responses of the different thick and thin plates
subjected to different earthquake excitations should be evaluated all together. Therefore, the curves
presented herein can help the designer to anticipate the effects of the thickness/span ratio, the aspect
ratio, and the boundary conditions on the earthquake response of a thick plate. 

The following conclusions can also be drawn from the results obtained in this study.
The absolute maximum displacements of the thick and thin plates increase as the aspect ratio

increases for a constant t/a ratio. The same displacements decrease as the t/a ratio increases for a
constant b/a ratio.

The changes in the aspect ratios are generally less effective on the absolute maximum
displacement than the changes in the thickness/span ratios.

The absolute maximum bending moment, Mx, at the center of the thick and thin simply supported
plates increases as the aspect ratio and thickness/span ratio increase. 

The changes in the aspect ratios are generally more effective on the absolute maximum bending
moment, Mx, of the thick and thin simply supported plates than the changes in the thickness/span
ratios.

The absolute maximum bending moment, Mx, at the center of the thick and thin clamped plates
increases with increasing aspect ratio and thickness/span ratio. 
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The changes in the aspect ratios are generally more effective on the absolute maximum bending
moment, Mx, of the thick and thin clamped plates than the changes in the thickness/span ratios.

The absolute maximum bending moment, My, at the center of the thick and thin simply supported
plates decreases as the aspect ratio increases and increases as the thickness/span ratio increases. 

The changes in the thickness/span ratios are generally more effective on the absolute maximum
bending moment, My, of the thick and thin simply supported plates larger than the changes in the
aspect ratios.

The absolute maximum bending moment, My, at the center of the thick and thin clamped plates
decreases with increasing aspect ratio and increases with increasing thickness/span ratio. 

The changes in the thickness/span ratios are generally more effective on the absolute maximum
bending moment, My, of the thick and thin clamped plates than the changes in the aspect ratios.

In general, degrees of decreases and increases depend on the changes in the aspect and thickness/
span ratios, and the changes in the thickness/span ratio are more effective on the maximum
responses considered in this study than the changes in the aspect ratio.
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