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1. Introduction

It is proved that the size effects exist for the material on microscale. Classic elasto-plasticity

cannot explain the size effects because there is no length scale in the constitutive equations.

Recently, couple stress/strain gradient theories (Fleck et al. 1994, Wang et al. 2003), including the

material length parameter � entering the constitutive equations, have been developed and

successfully applied to predict the size effects.

For its simplicity, the beam model on microscale can be chose to measure the material length

parameter �. For example, Papargyri-Beskou et al. (2003) applied strain gradient theory into

dynamic response of the beam on microscale; Pradhan and Sarkar (2009) used nonlocal theories to

predict the size effects in the tapered fgm beams. Both of them adopted the elastic beam models,

however, it is easy to enter plastic state for the microscale beam.

Stolken and Evans (1998), Haque and Saif (2003) successively designed the plastic microbend test

where the material length parameter � can be determined according to the relationship between the

moment M and the surface strain εb. This test has been widely used to measure �. Based on couple

stress/strain gradient plasticity, the analytical solutions (Stolken and Evans 1998, Wang et al. 2003)

have been developed successively under small deformation assumption. However, all of the solutions

include an assumption that the beam is in the rigid-plastic state, which may cause some errors in

analysis.
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2. Pure bending solutions in couple stress elasto-plasticity

Compared with strain gradient theories, couple stress is simpler and therefore is chosen to deduce

the solution in this paper. The microscale beam with the thickness h and the width b is studied,

whose Cartesian coordinate system (x, y) is shown in Fig. 1.

For a pure bending thin beam under plane strain deformation, the displacement fields can be

given by

 (1)

and therefore the nonvanished components of strain tensor and curvature tensor are (Wang et al.

2003)

(2)

(3)

where, κ is the constant curvature. For simplicity, we adopt κ > 0 in this paper.

2.1 Solution in the elastic region

Substituting Eqs. (2) and (3) into the elastic constitutive equations, the nonvanished stresses σij

and couple stresses mij are be calculated as

(4)

and both of them contribute to the moment M at the across section (Chen and Wang 2001), i.e.

(5)

Inserting Eqs. (4) into (5), the moment can be obtained

(6)

On the elasto-plastic interface , the Tresca yield condition must be satisfied as

(7)
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Fig. 1 Coordinate system (x, y) on a pure bending beam
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where, sij is the deviatoric part of the stress tensor; Σ is the generalized effective stress. According

to Eqs. (4) and (7), the vertical coordinate of the elasto-plastic interface can be determined

 (8)

2.2 Solution in the plastic region

For the deformation theory, the following equations must be satisfied

(9)

(10)

where eij is the deviatoric part of the strain tensor. Substituting  and  into Eqs. (9) and

(10) results in

(11)

For a power-law hardening material  where m is the plastic work hardening

exponent and  is the generalized effective strain, the following

equations can be eventually obtained

; (12-1)

;  (12-2)

According to Eqs. (12), it can be known that the function  changes monotonously with the

increase of , which means only one solution exists in . After solving out  and mzx,

the moment can be obtained eventually as follows

 (13)

3. Measuring material length parameter

Firstly, a pure bending beam is investigated to predict the size effects with the solution in this

paper. A power-law hardening material is considered here, with the elastic modulus E = 220 GPa,

Poisson’s ratio ν = 0.31 and the initial yield stress Σ0 = 97 MPa. 

Fig. 2 shows the changes of the normalized moment M/Σ0bh2 with the strain εb at the upper

surface for generalized Tresca yield criterion. In case of h > 10�, the corresponding curves in Fig. 2

will be very close to those for classical elasto-plasticity. When the thickness h is comparative with

�, the size effects become significant and the material turns stiffer as � increases.

Moreover, Fig. 3 compares couple stress theory with classical theory for a cantilever beam. The

dashed line means that the plasticity appears only in the region  where L is the beam
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length. In this case, large deformation may be avoided. The size effects are also significant when

the material length parameter is � = h/2.

Together with the solution in this paper, Fig. 2 and Fig. 3, respectively, can be applied to

determine the material length parameter in couple stress theory for the pure bending beam and the

cantilever beam.
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Fig. 2 The normalized moment M/Σ0bh2 versus the
surface strain εb = κh/2 with m = 0.2

Fig. 3 The surface strain εb along the axial direction
x for a cantilever beam. The beam thickness
is h = 1 µm, the force applied at the free end
is F = 0.6N, and the plastic work hardening
exponent is m = 0.1




