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(1) Introduction to numerical model
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Abstract. This paper introduces an improved modal pushover analysis (IMPA) which can effectively
evaluate the seismic response of multi-span continuous bridge structures on the basis of modal pushover
analysis (MPA). Differently from previous modal pushover analyses which cause the numerical unstability
because of the occurrence of reversed relation between the pushover load and displacement, the proposed
method eliminates this numerical instability and, in advance the coupling effects induced from the direct
application of modal decomposition by introducing an identical stiffness ratio for each dynamic mode at
the post-yielding stage together with an approximate elastic deformation. In addition to these two
introductions, the use of an effective seismic load, calculated from the modal spatial force and applied as
the distributed load, makes it possible to predict the dynamic responses of all bridge structures through a
simpler analysis procedure than those in conventional modal pushover analyses. Finally, in order to
establish validity and applicability of the proposed method, correlation studies between a rigorous nonlinear
time history analysis and the proposed method were conducted for multi-span continuous bridges.

Keywords: bridges; improved modal pushover; identical stiffness ratio; equivalent modal load; elastic
deformed shape.

1. Introduction

When structures are under strong ground motions, nonlinear behavior and large plastic

deformation occurs. To estimate systems’ ultimate enduring loading it is necessary to evaluate the

exact systems’ behavior under such cases. As a part of these efforts, a capacity-based design in the

seismic design code has been adopted. The ATC-40 and FEMA-273 documents contain simplified

nonlinear analysis procedures to determine the displacement demand imposed on a building

expected to deform nonlinearly. However, ATC-40 follows an iterative method requiring analysis of

a sequence of equivalent linear systems to avoid a dynamic analysis of the inelastic system. This

approximate procedure produces substandard results (Chopra and Goel 1999). To improve the

accuracy of results, a capacity-spectrum method that uses the well-known constant-ductility design
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spectrum for the demand diagram commonly referred to as the capacity spectrum method was

developed by Freeman (1998). It conducts a seismic design and assessment on the basis of the

application of an inelastic analysis. As shown in Fig. 1, by plotting the ensuing force-displacement

curve obtained from an inelastic analysis of an idealized structural system, with appropriate

transformations for dimensional consistency, onto a plot representing both the spectral displacement

and accelerations of a composite spectrum, an acceptable deformation limit of structure is determined

and defined as the performance point. The composite spectra represent the demand, whilst the

capacity curve determined from the inelastic push-over analysis of a structure represents the supply

(Elnashai 2001). Accordingly, the seismic design of a structure is conducted to reserve sufficient

ductility while satisfying the demand.

The capacity spectrum method is appealing because it gives a visual representation of the supply-

demand equation and allows simplicity in application. It requires the calculation of the capacity

curve of the total structural system, expressed by a representative capacity curve in multi-degree

degree-of-freedom (MDOF) structures. Among the many numerical methods for determining a

capacity curve, three representative pushover analyses using the equivalent single-degree-of-freedom

(ESDOF) system (Song 2004), the predominant single-degree-of-freedom (PSDOF) system (Usanmi

et al. 2004) and a system in which all degrees of freedom (Chopra and Goel 2002) are popularly

used.

First, a numerical method using ESDOF calculates the seismic response of a total structure using

a representative vibration mode obtained from the force-displacement relationship, determined

through the inelastic finite displacement analysis of a total structure subject to a uniformly

distributed lateral load, as shown in Fig. 2(a). For bridges with a symmetric distribution of pier

stiffness or with stiffer decks relative to piers, the fundamental mode dominates the structural

response, allowing this method to be used reliably. For bridges in which this is not the case,

however, the higher modal effects might be significant, and the accuracy of the pushover analysis

may not be satisfactory (Zheng et al. 2003). On the other hand, a numerical method using PSDOF

is based on the most dominant mode distribution. As all of the analysis procedures from the

application of a lateral load (see Fig. 2(b)) to the pushover analysis are conducted with the most

dominant vibration mode, the same limitations associated with the ESDOF method cannot be

avoided (Krawinkler and Seneviratna 1998). This indicates that these limitations are induced

essentially by ignoring other vibration modes.

Fig. 1 Capacity spectrum method
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Attempts were also made to consider more than a particular vibration mode in a pushover analysis

in order to overcome these limitations, and the modal pushover analysis (MPA) based on structural

dynamic theory was introduced (Chopra and Goel 2004). When using this method, as shown in

Fig. 2(c), the modal capacity curves of a structure are determined by pushover analyses using the

inertia force distribution for each mode. Combining all the modal seismic responses provides a

reasonable estimate of the overall seismic behavior of the structure. This method can be used

effectively in building structures (Chopra and Goel 2002) but it involves two characteristic

drawbacks in a direct application to multi-span continuous bridges. First, unlike building structures

that have typical vibration modes regardless of the number of floors, bridge structures represent

remarkably different capacity curves at every pier, corresponding to each vibration mode due to the

change in the stiffness ratio between the bridge deck and pier (See Fig. 3(a)). This causes the

analysis procedure to become exceedingly complex. Second, the capacity curve, which does not show

the monotonically increasing feature (as is shown in the elastic behavior) may appear (See Fig.

3(b)). This makes it impossible to apply the modal pushover analysis to bridge structures because

the negative work cannot be defined in a structural system.

Accordingly, this paper introduces an improved modal pushover analysis (IMPA) that can be used

effectively even in the analysis of multi-span continuous bridges. As only one pushover curve for

each vibration mode is required and the numerical instability when determining the pushover curve

is removed, all of the procedures related to the determination of capacity curves as well as those

related to the modal superposition are simplified while maintaining the advantages of the modal

Fig. 2 Pushover analyses to determine the capacity curve of a multi-degree of freedom structure
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pushover analysis. The validity of the introduced model is established by comparing the obtained

numerical results of four example bridges with those obtained using a nonlinear time history

analysis. Correlation studies with the modal pushover analysis show the efficiency of the proposed

model.

2. Modal pushover analysis (MPA)

Based on the modal analysis to determine the dynamic response of multi-degree-of-freedom

systems, the modal pushover analysis (MPA) was introduced by Chopra and Goel (2002) and was

applied to multi-story building structures. In addition, many seismic design codes such as ATC-40

and FEMA-274 have adopted this method due to its simplicity in application. The peak response of

a structure due to each vibration mode of the structure can be determined by a pushover analysis

when it is subjected to lateral modal forces distributed over the height of the building according to

its corresponding vibration mode.

A general dynamic equilibrium equation for a Nth-degree-of-freedom system subjected to ground

acceleration  can be expressed as

 
(1)

 
where {u} is the relative displacement to the ground, [m] and [c] are respectively the mass and

damping matrixes of the system, {fs} is the resisting force, and {1} is a vector of order N with each

element equal to unity (Chopra 2001). Additionally, the spatial distribution of the effective

earthquake force {Peff (t)} defined on the right side in Eq. (1) can be interpreted as the sum of the

modal spatial force vector {sn} with the elastic mode shape {φn}. 

(2)

Here,  is a modal participation factor based on the linear-elastic mode shape {φn}
T normalized

with respect to the modal pushover roof displacement urn.
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Fig. 3 Pushover curves in MPA represented in A-D format
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As any set of N independent vectors can be used as a basis for representing any other vector of

order N, the lateral displacement vector {u} can be expanded 

(3)

Here, qn represents the modal amplitude.

Finally, substituting Eq. (3) and its derivatives into Eq. (1), pre-multiplying by {φn}
T, and using

the mass and damping orthogonality of the mode shapes results in the following governing equation

for a SDOF system  

 (4)

In Eq. (4),  is the modal internal resisting force, Dn is the modal displacement

(with  and  representing the modal velocity and acceleration, respectively), Ln is {φn}
T[m]{1}

and ζn and ωn are the modal damping and frequency, respectively. 

Eq. (4) can be solved either by conducting a nonlinear SDOF dynamic time-history analysis or by

using the nonlinear SDOF displacement response spectrum. In order to solve Eq. (4), equivalent

nonlinear SDOF representations of the structure must be defined for the relationship between Fsn

and Dn. This relationship should be determined by a displacement-controlled nonlinear static

analysis of the structure as the structure undergoes displacement  as Dn

increases. However, this type of analysis is not supported by commercially available software.

Therefore, in the modal pushover analysis, a force-controlled pushover analysis is initially

conducted in order to determine the relationship between the base shear and the roof displacement

with force distribution {sn}, which is the only lateral force distribution that can produce

displacements proportional to {φn} according to uncoupled modal response history analysis theory.

This relationship obtained from the pushover analysis of the structure is then converted into an

equivalent SDOF pseudo-acceleration An versus displacement relationship Dn using the following

equation 

 

 (5)

 

In this equation,  represents the effective modal mass. Additional details and assumptions

related to the above formulation can be found in the literature (Chopra and Goel 2002).

Although this method gives good estimations for the entire seismic response of building structures,

several limitations exist in a direct application to bridge structures related to the following

disadvantages: (1) according to classical modal analysis theory (Nickell 1976), it is impossible to

superpose modal responses of nonlinear structures due not only to the coupling phenomenon that

exists between the governing differential equations for the N modes but also as a result of the

changes in the vibration properties of the structure. In other words, the use of {sn} as the modal

lateral force distribution vector is not based on nonlinear theory (i.e., is not unique); (2) in order to

define the relationship between Fsn and Dn in each vibration mode, the modal pushover analysis

procedure requires as many static pushover analyses of the structure as the number of modes

considered; (3) as a possible limitation of the modal pushover analysis procedure, reversal in the

pushover load versus displacement relationships of the structure under higher-mode lateral force

distributions is possible, resulting in an unstable solution (see Fig. 3(b)); and (4), finally, if nonlinear
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SDOF displacement response spectra (in place of dynamic time-history analyses) are used to solve

Eq. (4), the use of different response spectrum may be needed for each mode, as nonlinear response

spectra depend on the post-yield stiffness ratio of the structure, which would be different for each

vibration mode.

3. Improved modal pushover analysis (IMPA)

 

If it is possible to assume that a time-dependent coefficient α(t) exists that satisfies the

relationship between the time variant stiffness [k(t)] and the initial elastic stiffness matrix [k0] as

[k(t)] = α(t)[k0] and, in addition, that satisfies the relationship between a time variant natural

frequency ω(t) and initial elastic natural frequency ω0 as ω(t)2 = α(t)  regardless of the modes, the

mode shape {φ 0} defined in the elastic region would not vary after yielding, as shown in Eq. (6),

and implying that the mutual coupling effect among the vibration modes would not occur, as non-

diagonal terms in the governing equation of motion multiplied by {φ 0}
T become zero. Therefore,

the introduction of this assumption makes it possible to divide the governing equation of motion for

a Nth-degree-of-freedom system into independent N governing equations defined at each vibration

mode. This uncoupled characteristic remains even after the structure yields (see Eq. (4)). Here, as

shown in Fig. 4, α(t) denotes the post-yield stiffness ratio in the modal pushover curve defined in

the A-D domain.

(6)

Here, an additional assumption needs to be introduced. If a pushover analysis for bridge structures

is conducted on the basis of classical elastic theory, the deformation shape developed by the

application of a lateral load would not change and would instead become enlarged in proportion to

the magnitude of the applied load. In effect, in this case, the deformation shape changes and shows

a different configuration compared to that obtained in the elastic stage as any one of piers starts to

yield. Nevertheless, to maintain the assumed relationship of [k(t)] = α(t)[k0] even after the yielding of a

pier, the deformation shape obtained after the structure yields must be adjusted to the approximated

ω0

2

k t( )[ ] ω
2
m[ ]–( ) φ{ } α t( ) k0[ ] ω0

2
m[ ]–( ) φ0{ } 0 φ{ } φ0{ },∴,= =

Fig. 4 Pushover curves defined in A-D format in IMPA
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elastic deformation that maintains the elastic deformation shape. Fig. 5 shows an example that defines

the approximated elastic deformation for a four-span continuous bridge structure with equal span lengths. 

In Fig. 5, ue,pier describes an upper-bound elastic deformation shape at which one of the piers just

starts to yield (pier 2 in this example bridge), and upier describes the inelastic deformation obtained

when the entire structure reaches the fully plastic stage. Therefore, the approximated elastic

deformation of the rth pier ua,pier_r can be defined as 

 (7)

Here, ue,pier_r denotes the upper-bound elastic deformation shape of the rth pier and is a coefficient that

satisfies  in which m represents the number of piers. Finally, the use

of α(t) and ua,pier calculated by Eq. (7) instead of upier at the yielding stage makes it possible to

maintain the basic assumptions adopted in the MPA effectively, even at the yielding stage. This

leads to a simpler analytical procedure compared to that conducted in the conventional MAP, as the

stiffness ratio α(t) at each pier has the same value and maintains consistency regardless of the

change in the vibration modes.

As mentioned previously, a direct application of the conventional MPA to multiple continuous

bridges requires multiple pushover analyses in order to allow for the effects by higher vibration

modes and may represent the displacement reversal (described as the negative work in Fig. 3(b)),

which makes it impossible to continue the structural analysis at the yielding stage. Therefore, this

paper introduces a solution procedure to remove all of these defects. First, an equivalent load

distribution that can develop a monotonically increasing capacity curve at all piers without any

displacement reversal is proposed. 

Given that the applied seismic load {Peff} in Eq. (1) is proportional to  

 (see Eq. (2)), the effective seismic load {P} applied to the structure for the pushover analysis can

be defined as a linear combination of each modal force effect: , where γ is

the proportional loading factor and αn is a weighting factor reflecting the contribution of each

modal effect. In addition, the pushover analysis is based on the static analysis, implying that the

acceleration and damping components  and , respectively, become zero in Eq. (4). Thus, the

remaining components in the governing equation can be rewritten as
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Fig. 5 The inelastic and approximated displacement of a four-span bridge
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(8)

If the pseudo acceleration at the elastic stage is defined as Ano, the relationship of 

can be obtained. This relationship assumed to be approximately satisfied up to the yielding stage.

The uniformly distributed effective seismic load {P} can then be expressed by

(9)

The sequential application of this load {P} with a monotonic increase of the proportional loading

factor produces an inelastic force-displacement relationship, as shown in the results of the pushover

analysis (see the continuous line in Fig. 6(a)). Correlation of this relationship with Eq. (7) (see the

dotted line in Fig. 6(a)) and conversion to an A-D relationship then follow, in which the

corresponding pseudo acceleration An in Fig. 6(b) is represented by An = Anoγ. In particular, as shown

in Fig. 6(b), the slope of the relationship between An and Dn in the elastic stage represents , the

modal displacements Dny corresponding to the initial yielding of structure. D0, which corresponds to

the ultimate loading, can be determined by 

(10)

Here, γy and γ0 denote the proportional loading factors determined at the beginning of the structural

yielding and failure processes, respectively.

Additionally, the post-yielding stiffness ratio α must be determined to define the unique

relationship between An and Dn, as was assumed in IMPA. Using the relationships in Eq. (10), the

displacements of the rth pier,  and  corresponding to the initial yielding and ultimate loading

stage, respectively, can be calculated by superposing all of the modal yield and ultimate displacements.
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Fig. 6 Converting the inelastic load-displacement relationship to an A-D relationship
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(11)

The displacements  and  calculated by Eq. (11) must then be identical to the corrected

displacements ury and ua,ro, respectively, in Fig. 6(a). This determines the load-displacement

relationship obtained from the pushover analysis. Therefore, the equality of both components

(ury =  and ua,ro = ) leads to the following relationship of the constant post-yielding stiffness

ratio (see Eq. (12)). This equation also shows that the ratio α can be obtained directly from the

inelastic pushover curve.

(12)

The solution procedure for the introduced IMPA is described here as a sequence of steps: 

(1) Conduct sequential pushover analyses with an increase of the proposed load distribution in

Eq. (9) up to the collapse of structure.

(2) Determine the proportional loading factors γ corresponding to the structural yielding and collapse.

(3) Adjust the finally obtained inelastic deformation upier to an approximated elastic deformation

ua,pier (see Fig. 5) according to the criterion in Eq. (7).

(4) Determine the modal pushover curve from the result of Steps (2) and (3).

(5) Calculate the post-yielding stiffness ratio α using Eq. (12).

(6) Find the modal ultimate displacement Dn0 by solving the time history in Eq. (4) or by using

the capacity spectrum method for a SDOF system.

(7) Calculate the ultimate displacement of a MDOF system by superposing the modal

displacements.

 

4. Numerical studies

4.1 Numerical examples and ground accelerations

In order to establish the validity and applicability of the proposed procedure in IMPA, correlation

studies between a nonlinear time history analysis (Lakshmanan et al. 2009) and IMPA were

conducted. To study the typical structural behavior according to the change in various influencing

factors, such as the symmetry and the stiffness ratio of a super-structure to a pier, four four-span

continuous RC bridge models were investigated. As shown in Fig. 8, B12 represents a symmetrical

configuration of the sub-structures, while B22 and B32 are unsymmetrical arrangements of the

lengths of the piers. In advance, B42 has a sub-structure that is identical to that of B32, except that

the stiffness of the superstructure is assumed to be one-tenth that of B32. The connections between

the super-structure and the pier and the weight density of the structure, γ = 2.3 ton/m3, are assumed.

In particular, as the nonlinear behavior of a bridge due to earthquake loading is concentrated on the

pier, and exact evaluation of the resisting capacity of the piers is a prerequisite for the seismic

analysis of the bridge; the resisting capacity of a pier is calculated on the basis of the assumption

that a total of 198D29 reinforcing bars with a yielding stress of fy= 4000 kg/cm2 are uniformly

embedded in a section. The sectional properties and configuration of each bridge are shown in
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Figs. 7 and 8, respectively.

Generally, due to the relatively strong bending stiffness of a super-structure in the longitudinal

direction, the longitudinal behavior of a multi-span bridge under earthquake loading is does not

differ from the equivalent single-degree-of-freedom behavior, implying that the seismic behavior of

bridge structures is dominantly affected by the structural response in the transverse direction.

Therefore, this paper concentrates primarily on a comparison of structural responses in the

transverse direction. Moreover, to simulate the nonlinearity in a pier effectively, as it is concentrically

developed at the end region connected to the foundation, the plastic hinge length is taken into

account. The obtained nonlinear moment-curvature relationships for each pier are then idealized as a

bi-linear relationship; the corresponding material properties to an idealized moment-curvature

envelope curve can then be determined, as shown in Table 1. 5% Rayleigh damping is used, and the

hysteretic behavior according to the application of earthquake loading is evaluated on the basis of

Fig. 7 Section details for example bridge (unit: m)

Fig. 8 Geometry of example bridges (unit : m)
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the bi-linear stiffness degrading model introduced by Takeda et al. (1970), as this model effectively

simulates the structural responses of RC structures.

Linear and nonlinear analyses of the multi-span bridges were conducted using the Opensees

program. To verify the effectiveness of the introduced method (IMPA), the structural responses

according to the four different approximated methods of ESDOF, PSDOF, MPA and IMPA were

calculated and compared with the reference response obtained from the nonlinear time history

analysis. For these correlation studies, seven artificial ground accelerations were used, as shown in

Table 2. They were developed by adjusting the maximum acceleration to 1.0G. These ground

motion records were scaled to a peak ground acceleration of 1.0g; they are referred to as EQ1 to

EQ7 alphabetically. 

4.2 Comparison to established methods

Correlation studies between the proposed method IMPA and the established methods of ESDOF,

PSDOF and MPA were conducted with the objective of establishing the applicability and validity of

the proposed method. Bridges B32 and B42, which have the largest unsymmetrical configuration of

piers among the example structures in Fig. 8, were selected, and a ground acceleration of EQ4

(Northridge) in Table 2 was adopted in the nonlinear analysis, as a reassessment of conventional

seismic design procedures and careful consideration of uncertainties were undertaken after the great

amount of structural damage caused by this earthquake (Bozorgnia and Bertero 2004).

Table 1 Material in an idealized moment-curvature relationship

 Flexural Stiffness (EI)  Yielding curvature (φy)  Post yield stiffness ratio (α)

 39805.6 MN-m  0.0036  0.0001

Table 2 Artificial ground accelerations

 No.  EQ 1  EQ 2  EQ 3  EQ 4  EQ 5  EQ 6  EQ 7

 Earthquake  California  El Centro  Mexico City  Northridge  San Fernando  San Francisco  Taft

 Year  1933  1940  1985  1994  1971  1957  1952

 Comp.  S07E  S00E  SCTS00E  CHAN3  N76W  S09E  EW

Fig. 9 Load-displacement and A-D relationships of B32 constructed by ESDOF
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Fig. 10 Load-displacement and A-D relationships of B32 constructed by PSDOF

Fig. 11 Load-displacement and A-D relationships of B32 constructed by MPA
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As mentioned earlier, the relationship between An = Fsn/Ln and Dn can be determined by converting

the load-displacement relationship obtained by applying the load distribution defined at each

method. Figs. 9 to 11 show the load-displacement relationship of F − u and the corresponding

relationship between An = Fsn/Ln and Dn according to ESDOF, PSDOF and MPA, respectively. In the

case of PSDOF, a load distribution s2 was used to determine the load-displacement relationship, as

the effective modal mass of the second mode is nearly 58.3% larger than those of the other modes.

A comparison of ESDOF and PSDOF with MPA shows that MPA requires more complicated

solution procedures for the seismic analysis of bridges because the capacity curves for each mode at

each pier (nine different curves in B32 with three piers) must be determined due to the different

post-yielding stiffness ratios of these curves. Furthermore, as a possible limitation in a direct

application of MPA to multi-span continuous bridges, the load versus the displacement relationships

of the structure may represent the displacement reversal, as shown in Figs. 11(b) and (f) under

higher-mode lateral force distributions.

In contrast, the introduced method, IMPA, which requires only one pushover analysis with the

proposed load distribution, produces an appropriate capacity curve representing a monotonically

increasing feature without any displacement reversal, even in higher modes. Fig. 12 shows the load-

displacement relationship for pier 1 and the converted corresponding A− D relationship in B32. As

mentioned above, IMPA produces identical A-D relationships to those in Fig. 12(b) with other piers,

in spite of the different load-displacement relationship from that in Fig. 12(a), due to the application

of the uniformly distributed effective seismic load {P} in Eq. (9) and the introduction of the

constant post-yielding stiffness ratio α in Eq. (12). As the converted A−D relationships at the other

piers will be identical to that of pier 1, it becomes possible to estimate the seismic responses of the

other piers with the use of the capacity curve for pier 1.

Based on the converted A−D relationships determined by the four different methods (including

IMPA), nonlinear time history analyses were conducted using Opensees to compare the relative

validity and accuracy of each method. In contrast to other methods, however, MPA does not allow a

time history analysis to be conducted over the elastic range due to the displacement reversal in the

converted A−D relationship at the post-yielding stage (see circle in Figs. 15(a) and 15(c)). As

shown in Fig. 13, the ESDOF result is in very good agreement with the result of the nonlinear time

history analysis (NHA) for the unsymmetrical bridge B32. This is consistent with established

research result that shows that ESDOF gives feasible predictions when the level of stiffness of the

Fig. 12 Load-displacement and A-D relationships of B32 constructed by IMPA
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super-structure is relatively higher than that of the sub-structures (Usanmi et al. 2004). In contrast,

PSDOF in Fig. 14, which considers only one representative mode, is not in good agreement with

the nonlinear time history analysis result, especially in piers 2 and 3, as the other modes also have a

strong effect on the response, as does the representative mode in the case of an unsymmetrical

bridge such as bridge B32.

Fig. 15 shows the nonlinear time history response of B32 calculated by MPA. In spite of a more

rigorous method compared to the previous two methods of ESDOF and PSDOF, the analysis by

MPA is interrupted at piers 1 and 3 after approximately five seconds due to the displacement

reversal in the converted A−D relationship. These interrupted points are marked as circles in

Figs. 15(a) and Fig. 15(c). Although the response of pier 2 can be estimated using the method of the

Fig. 13 Time history response of B32 using ESDOF
(Northridge EQ) 

Fig. 14 Time history response of B32 using PSDOF
(Northridge EQ) 
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nonlinear time history, a modification of the procedure is required for a robust analysis. Finally, a

comparison was also made for the responses of bridge B32 as obtained using the proposed method

and the nonlinear time history analysis (NHA). The result of this comparison is shown in Fig. 16.

The results of the proposed method are in good agreement with the nonlinear time history analysis,

apart from an insignificant error at pier 2. This result implies that the proposed method (IMPA) can

be applied effectively to calculate the time history responses for unsymmetrical bridge structures

when the stiffness of the superstructure is greater than that of the sub-structure.

To compare the effectiveness and validity of each method, an additional correlation study was

conducted for bridge B42, in which the stiffness levels of the sub-structure piers are much greater

than that of the super-structure. The nonlinear time history responses determined by each method

Fig. 15 Time history response of B32 using MPA
(Northridge EQ) 

Fig. 16 Time history response of B32 using IMPA
(Northridge EQ) 



230 Kwak, Hyo Gyoung and Shin, Dong Kyu

are shown in Figs. 17 to 20 together with the reference responses obtained from an exact time-

history analysis (NHA) of the entire structure. As shown in these figures, PSDOF and MPA cannot

estimate the nonlinear time history response for the unsymmetrical bridge B42. In particular, in spite

of the fairly satisfactory agreement with the data of bridge B32, ESDOF cannot effectively simulate

the nonlinear time history response of bridge B42 (see Fig. 17). On the other hand, as shown in

Fig. 20, the proposed method is in good agreement with the nonlinear time history response of

bridge B42. A careful investigation based on a comparison of the numerical results resulted in the

following observations: (1) when ESDOF is applied to a bridge with a relatively weak super-

structure stiffness, such as bridge B42, a successful estimation cannot be expected; (2) PSDOF can

be applied only to a symmetrical bridge; (3) occasionally, the use of MPA is impossible when

Fig. 17 Time history response of B42 using ESDOF
(Northridge EQ) 

Fig. 18 Time history response of B42 using PSDOF
(Northridge EQ) 
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analyzing a bridge that shows displacement reversal in the capacity curve for a higher mode, but

(4), the proposed procedure IMPA can be used effectively to predict the nonlinear seismic response

of bridges regardless of any restrictions associated with the bridge configuration.

4.3 Verification of IMPA

To verify the general validity and effectiveness of IMPA and MPA, additional numerical analyses

were conducted for symmetric bridge B12 and asymmetric bridge B22 using seven earthquake

ground accelerations. When using MPA, the negative work due to displacement reversal in the

capacity curve for a higher mode cannot be overcome, even in the case of symmetric bridge B12.

Accordingly, for a possible analysis of bridge with MPA, the capacity curves for these modes are

Fig. 19 Time history response of B42 using MPA
(Northridge EQ) 

Fig. 20 Time history response of B42 using IMPA
(Northridge EQ) 
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assumed to be perfectly plastic after yielding, as these modes can no longer resist a supplemental

load. Tables 3 and 4 show the determined characteristics of the capacity curves for the two bridges

B12 and B22 when MPA and IMPA, respectively, are used. Based on these capacity curves, SDOF

nonlinear time history analyses using Eq. (4) were conducted for each mode considered, and the

obtained results were then superposed in order to estimate the maximum displacement (destimated).

Finally, the estimated maximum displacements were compared to the maximum displacement

(dcalculated) calculated from the MDOF nonlinear time history analysis using Opensees and the results

were used as a reference solution. Figs. 21 and 22 show the relative error-rates determined by

(destimated− dcalculated)/dcalculated. As the response of pier 1 is identical with that of pier 3, as shown in

Fig. 12, due to the symmetricity in the configuration of bridge B12, the result of pier 3 is abbreviated.

The mean square roots of the square sum of the relative error at each pier were calculated using

both the MPA and IMPA methods by Eq. (13), and the obtained error rates are presented in Fig. 23.

From this figure, it can be observed that the error rate of the unsymmetrical bridge B22 is greater

 

 

Table 3 Characteristic of the A-D relationship using MPA

 Example  Pier  Mode
 Stiffness

( )

 Modal yielding 
displacement 

(Dny)

Post yield 
stiffness ratio 

(α)

B12

1

1st mode 13.254 0.1773

0.323

2 0.369

3 0.323

1

3rd mode 65.629 0.5725

0.485

2 Assuming perfect 

3 0.485

B22

1

1st mode 15.363 0.1699

0.325

2 0.420

3 0.516

1

2nd mode 45.770 0.1761

0.325

2 0.414

3 Assuming perfect 

1

3rd mode 90.225 0.1074

0.391

2 Assuming perfect 

3 0.851

Table 4 Characteristic of A-D relationship using IMPA

 Example  Mode
 Stiffness

( )
 Modal yielding 

displacement (Dny)
Post yield 

stiffness ratio (α)

B12
1st mode 13.254 0.1562

0.350
3rd mode 65.629 0.0677

B22

1st mode 15.363 0.1299

0.4072nd mode 45.770 0.0678

3rd mode 90.225 0.0429

ω
n

2

ω
n

2
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than that of the symmetrical bridge B12. Moreover, the error rates of IMPA are nearly identical to

those of MPA in the symmetrical bridge B12 but are lower than those of MPA in the unsymmetrical

bridge B22, showing that IMPA is more stable and effective. If the assumption of perfect plastic

behavior at the yielding stage, introduced in MPA to remove the displacement reversal, is

Fig. 21 Relative error rate in B12

Fig. 22 Relative error rate in B12
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maintained, the stability and applicability of IMPA in bridge structures will be enhanced.

(13)

5. Estimation of seismic performance through Capacity Spectrum Method (CSM)

In addition to the SDOF nonlinear time history analysis the capacity spectrum method on the

basis of the A-D relationship can also be used to evaluate the seismic response of bridge structure.

In this case, the use of the capacity spectrum method requires a demand curve as well as a capacity

curve. If established demand curves, systematically constructed on the basis of the post-yielding

stiffness ratio α ranging from zero to 10% and represented in terms of the Ay−D relationship

(Miranda and Bertero 1994, Nassar and Krawinkler 1991) in place of the A−D relationship can be

used, only the construction of the capacity curve makes it possible to evaluate the maximum

seismic response. However, as shown in Tables 3 and 4, the range of the post-yielding stiffness ratio

exceeds 0.1 in typical bridge structures constructed in practice. Accordingly, the demand curves,

newly constructed through the SDOF nonlinear time history analysis of the bridge under

Error Rate MSRSS( ) 1

NEQ

---------
Relative Error( )n

NHA( )n

--------------------------------------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

2

n 1=

NEQ

∑=

Fig. 23 Average error rate for each bridge 

Fig. 24 Estimation of the performance point for pier 1 of B22 using MPA
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consideration here, are used in this paper.  

Figs. 24 to 26 show the capacity spectrum method (CSM) for determining the maximum

displacement of B22 using MPA. The maximum modal displacements Dn0, in which the demand

curve and the capacity curve cross each other while satisfying the consistent ductility, are marked

with circles. These figures explain is the difficulty with which MPA calculates the maximum modal

displacement, as the inelastic demand curves must be reconstructed when the stiffness ratio α changes.

Fig. 25 Estimation of the performance point for pier
2 of B22 using MPA

Fig. 26 Estimation of the performance point for pier
3 of B22 using MPA
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Compared to MPA, however, the IMPA procedure is relatively simple because this method

requires the construction of only one set of demand curves corresponding to each vibration mode as

a result of the constant stiffness ratio. As an example, bridge B22 has a constant stiffness ratio of

0.407 (see Fig. 27). Specifically, unlike MPA, which requires nine sets of demand curves due to the

different ratio, IMPA requires only three sets of demand curves in the case of bridge B22. After

determination of the maximum displacement Dn0 in each example in Figs. 24 to 27, the modal

maximum displacement at pier r can be calculated by  and the maximum

displacement at pier r ((upier, r)max in Table 5.) can then be obtained through the modal combination

rule by SRSS. From Table 5 which shows the obtained maximum displacements at each pier, it can

be observed that both the MPA and IMPA methods can effectively estimate the maximum

displacement of B22, although IMPA shows a slight difference at pier 1 compared to the reference

value by NHA. This difference, however, appears to be negligibly small. Nonetheless, as an

approximate method, IMPA can be used with greater effectiveness compared to MPA in bridge

structures as it requires only one pushover analysis to determine the capacity curve and the

construction of one set of inelastic demand curves corresponding to the specific constant post-yield

stiffness ratio. Furthermore, the proposed method is more stable and does not experience

displacement reversal in the capacity curve for a higher mode. 

urno ΓnφrnDn0=

Fig. 27 Estimation of the performance point of B22 using IMPA

Table 5 Estimated maximum displacements of B22 through CSM (unit: m)

Pier mode
NHA MPA IMPA

(Upier_r)max Dn0 (Upier_r)max Dn0 (Upier_r)max

1

1st mode

0.114

0.369

0.112

0.364

0.1052nd mode 0.216 0.192

3rd mode 0.137 0.131

2

1st mode

0.316

0.363

0.311

0.364

0.3072nd mode 0.215 0.192

3rd mode 0.151 0.131

3

1st mode

0.445

0.361

0.444

0.364

0.4452nd mode 0.226 0.192

3rd mode 0.135 0.131
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6. Conclusions

This paper focuses on the introduction of improved modal pushover analysis (IMPA) that can

estimate the seismic performance of a multi-span bridge structure. Through correlation studies

between the proposed method (IMPA) and the established methods of ESDOF, PSDOF and MPA

for typical bridges, the following conclusions were obtained: (1) ESDOF has limitations when

estimating the seismic performance of a bridge with a low-stiffness super-structure, and both

PSDOF and ESDOF may increase incidence of numerical error when predicting the structural

response of an unsymmetrical bridge. On the other hand, the conventional MPA occasionally

produces displacement reversal in the modal pushover curve for a higher mode, which makes a

seismic analysis of bridge impossible; (2) unlike the previously established methods of ESDOF,

PSDOF and MPA, the proposed method of IMPA can be used effectively to estimate the seismic

performance of all bridge structures regardless of the bridge configuration. Furthermore, an

introduction of a constant post-yield stiffness ratio together with an approximated elastic deformation

makes it possible to remove the coupling effect between each vibration mode and clarifies that the

proposed method is based on more robust theory; (3) the proposed method is simpler than most

established methods, as it requires only one pushover analysis and one set of demand curves despite

the fact that it considers all of the vibration modes; finally, (4) the proposed method can be used

effectively to estimate the seismic performance of multi-span continuous bridge structures through a

SDOF time history analysis and/or the capacity spectrum method. Nevertheless, additional

parametric studies and/or more improvement in the solution procedure may be required before IMPA

is applicable to bridges with relatively large nonsymmetrical configurations.
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