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Abstract. In this paper structural analysis of nonhomogeneous nanotubes has been carried out using
nonlocal elasticity theory. Governing differential equations of nonhomogeneous nanotubes are derived.
Nanotubes include both single wall nanotube (SWNT) and double wall nanotube (DWNT). Nonlocal
theory of elasticity has been employed to include the scale effect of the nanotubes. Nonlocal parameter,
elastic modulus, density and diameter of the cross section are assumed to be functions of spatial
coordinates. General Differential Quadrature (GDQ) method has been employed to solve the governing
differential equations of the nanotubes. Various boundary conditions have been applied to the nanotubes.
Present results considering nonlocal theory are in good agreement with the results available in the
literature. Effect of variation of various geometrical and material parameters on the structural response of
the nonhomogeneous nanotubes has been investigated. Present results of the nonhomogeneous nanotubes
are useful in the design of the nanotubes.
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1. Introduction

Nano sized tubes hold an important area of research for the future structural developments and

design in modern structural engineering due to their novel mechanical properties. These nano-tubes

have got highly promising applications in nanotube-reinforced ultra-strong composites, MEMS/

NEMS devices and smart structures. Since the discovery of carbon nanotubes (CNT) (Iijima 1991)

good amount of research work are being reported in the literature (Thostenson et al. 2001, Ronald

et al. 2007). Conducting experiments with nanoscale size specimens is found to be difficult and

costly. Therefore, development of appropriate mathematical models for CNTs became an important

issue. Generally, three approaches have been developed to model CNTs. These approaches are (a)

atomistic (Ball 2001 and Baughman et al. 2002) (b) hybrid atomistic-continuum mechanics (Bodily

and Sun 2003, Li and Chou 2003) and (c) continuum mechanics. Atomistic approach uses (i)

classical molecular dynamics simulation, (ii) tight binding molecular dynamics and (iii) density

functional models. Atomistic approach is highly computationally intensive and very expensive. In
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hybrid approach CNTs are represented by structural elements. The strain energy is considered to be

equivalent of the steric energy. This hybrid approach is computationally less expensive than the

atomistic approach. Some researchers employed continuum mechanics approach for the analysis of

CNTs. Here single wall carbon nanotubes are modeled by a continuum beam or cylindrical shell

elements. This continuum mechanics approach is ideal in analyzing large scale systems containing

CNTs. For multi walled CNTs a multi beam model has been developed (Yoon et al. 2002, 2003).

For more accurate analysis shear deformation theories of beam have been proposed (Wang et al.

2006, Wang and Vardan 2005, Aydogdu 2008). Eringen (1983, 2002) developed nonlocal elasticity

theory. In this nonlocal elasticity theory scale effect of structures is taken into account. While

classical elasticity theory is indifferent to scale effects. Peddieson (2003) proposed analysis of

nanostructures based on Eringen’s nonlocal elasticity theory. The nonlocal elasticity theory has been

further applied to the static and dynamic analysis of single walled and multi walled CNTs (Wang et al.

2006, Wang and Varadan 2006, Aydogdu 2009, Artan and Tepe 2008, Aydogdu 2009, Pradhan and

Sarkar 2009, Pradhan and Murmu 2009, Pin et al. 2007).

In all these above mentioned work, analysis of the homogeneous nanotubes (CNT) has been

carried out. Seeman (1999) found that nonhomogeneous nanotubes are frequently encountered in

DNA nanotechnology applications. He observed that different proteins are chemically glued to form

nano-architectures of the nanotubes. Rothemund et al. (2004) reported that DNA nanotubes are

similar in size and shape as carbon nanotubes. They suggested that DNA nanotubes could be easily

modified and connected to other structures. Important applications of DNA nanotubes include nano-

wires and nano-pipes. Nonhomogeneous nanotubes can be addressed similar to CNTs. To the

authors’ best knowledge no work has been addressed for the analysis of nonhomogeneous

nanotubes employing continuum mechanics approach. Therefore in the present work bending,

vibration and buckling analysis of nonhomogeneous nanotubes have been carried out and results are

discussed.

 

 

2. Formulation

 

2.1 Nonhomogeneous nanotube

 

Non-homogeneity imparts additional complexity to the analysis of the nanotubes in the following

ways. The material properties viz elastic modulus and density are functions of spatial coordinates.

For the beam structure these variations are assumed be in the axial direction. The internal

characteristic lengths are different for different materials. Thus variation of nonlocal parameter along

the nanotube axial direction needs to be considered. Further different bond lengths will result in

variation of the nanotube diameter. Therefore in the analysis of nonhomogeneous nanotubes

variation of elastic modulus, density, nonlocal parameter and nanotube diameter along the axial

direction are to be taken included. In the present study a nonhomogeneous nanotube is modeled by

nonlocal elastic continuum Euler-Bernoulli beam of annular crossection where elastic modulus,

density, scale factor and diameter of nanotube are assumed to be functions of axial coordinates. For

modeling the double walled nonhomogeneous nanotube multi Euler-Bernoulli beam has been

employed. 

According to Eringen (1983) the nonlocal constitutive behavior of a Hookean solid can be

represented by the following differential constitutive relation
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  (1)

Here e0 is a material constant, ‘a’ and � are external and internal characteristic lengths

respectively. t is the macroscopic stress at a point which is related to strain by generalized Hooke’s

law

  (2)

where C is the fourth order elasticity tensor and ‘:’ denotes the double dot product. The values of e0
and ‘a’ depend on the crystal structure in lattice dynamics and the nature of physics under

investigation. Eringen (1983) proposed the value of e0 to be 0.39 based on a study on the

comparison of Rayleigh surface wave via nonlocal continuum mechanics and lattice dynamics.

Wang and Hu (2005) proposed the value of e0 to be 0.288 in the determination of the dispersion

waves via elastic beam theories and the MD method. ‘a’ being the internal characteristic length,

have been assumed to be has a value of 0.14 nm (length of the C-C bond) by most of the

researchers (Aydogdu 2008, 2009, Lu et al. 2007, Pradhan and Murmu 2009, Wang and Varadan

2006). For further information of the determination of e0 and ‘a’, please refer the work done by

Wand and Wang (2007). It is assumed that nonlocal behavior is significant in axial direction of the

nanotube. Thus, nonlocal constitutive relation mentioned in Eq. (1) takes the following form for an

isotropic Euler-Bernoulli beam.

  (3)

Here, µ = (e0a)2 is the scale factor. E is the elastic modulus. As it is a differential relation, non-

homogeneity can be incorporated in this equation. For nonhomogeneous case this differential

relation (3) takes the following form

  (4)

From the definition of resulting bending moment and strain displacement relation in Euler-

Bernoulli beam

  (5)

  (6)

Using Eqs. (4), (5) and (6) we get following moment-displacement relation

  (7)

 

2.2 Bending Analysis of Single Walled Nanotube (SWNT)

For an Euler-Bernoulli beam acted by distributed load q(x), the equilibrium equation is expressed as 
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 (8)

Differentiating twice Eq. (7) and substituting from Eq. (8), we get the following governing

equation for bending of nonhomogeneous beam

   (9)

 and  are defined in Appendix.

 

2.3 Bending Analysis of Double Walled Nanotube (DWNT)

In the analysis of multi-walled carbon nanotubes multi beam models have been used by various

researchers (Yoon et al. 2003, Ru 2000). Here all concentric single walled carbon nanotubes are

modeled by an individual elastic beam. Displacements of the adjacent tubes are coupled due to van

der Waals forces. The van der Waals forces have been modeled by Winkler-type elastic foundations

whose elastic coefficient are determined by the following expression

 (10)

Rj is the center line radius for the jth tube and ∆ is the length of Carbon-Carbon bond.

In the case of nonhomogeneous nanotube Rj and ∆ are no longer constants but are functions of x

coordinate. So here a variable Winkler elastic foundation modulus C(x) has been used to develop

the governing differential equations for DWNT. Due to the presence of van der Waals forces the

effective vertical distributed load on the tubes can be written as

  (11)

, w1, and w2 denote new effective distributed load, displacement for the first nanotube and

displacement for the second nanotube respectively. C(x) represents variable elastic foundation

modulus. Replacing q(x) by  in Eq. (9) we find the governing equation for tube corresponding

to the displacement w1

 (12)

 and  are defined in the Appendix.

The governing equation for the second tube can be obtained by interchanging w1 and w2 in the

previous equation and setting q(x) and all its derivatives equal to zero. It should be noted that I(x)

should be modified for the second nano-tube according to its diameter.

 

2.4 Vibration analysis SWNT

 

For free vibration we have the following equation for equilibrium
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 (13)

ρ(x) and A(x) denote density of the material and area of cross section, respectively. Differentiating

twice Eq. (7) and substituting in Eq. (13), we get the following governing equation for vibration of

nonhomogeneous beam

 (14)

 and  are defined in the Appendix. The above equation is converted to an

eigenvalue problem by assuming the periodic function

  (15)

Substituting Eq. (15) into Eq. (14), we have

 

(16)

 and  are defined in the Appendix.

 

2.5 Vibration analysis of DWNT

With the similar argument as in the case of the bending, the new inertia force due to the presence

of the Winkler elastic foundation representing van der Waals interaction, becomes

 (17)

Replacing the old inertia force by this new one and using Eqs. (7) and (13), we obtain the

governing equation for vibration of DWNT 

 

  (18)

 and  are defined in Appendix. Eq. (18)

represents governing equation for one tube corresponding to the displacement w1. For the other tube

governing equation can be obtained by interchanging w1 and w2 in Eq. (18) and modifying A(x) and

I(x) according to its diameter. Considering the periodic relation mentioned in Eq. (15) we obtain the

corresponding eigen-value equation for Eq. (18)

 (19)
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where  and  are defined in Appendix. For the other

tube corresponding equation can be obtained by interchanging w1 and w2 in Eq. (19) and modifying

A(x) and I(x) according to its diameter.

 

2.6 Buckling analysis SWNT

The equilibrium equation for buckling of an Euler-Bernoulli beam under axial compressive load P

is given by

 

 (20)

Differentiating twice Eq. (7) and substituting from Eq. (20) we get governing equation for

buckling of nonhomogeneous nanotube

(21)

  and  are defined in the Appendix.

 

2.7 Buckling analysis DWNT

For buckling of double walled nanotube the equilibrium equation including the effect of van der

Waals forces becomes

 

 (22)

Using Eqs. (7) and (22) the governing differential equation corresponding to tube with

displacement w1 becomes

 (23)

 and  are defined in the Appendix. Equation

corresponding to other tube can be obtained by interchanging w1 and w2 in Eq. (23) and modifying

I(x) according to its diameter.

 

2.8 Boundary conditions

 

All four classical boundary conditions have been considered in the analysis. These are (i) Simply

supported - Simply supported (S-S) (ii) Clamped – Free (C-F) (iii) Clamped – Simply supported (C-

S) and (iv) Clamped – Clamped (C-C). As we are solving fourth order differential equations (Eqs.

9, 16, 21) on w we need four boundary conditions in w in each case. The displacement and stress

boundary conditions associated with S-S, C-F, C-S and C-C cases are listed in Table 1.

Here L denotes the length of the beam. To get four boundary conditions on w we must convert the

stress boundary conditions to corresponding displacement boundary conditions. However for C-C
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so no need of any conversion. The conversion from stress to displacement boundary conditions

must be done by suitable stress-strain relationship given by nonlocal elasticity theory. We can use

the moment-displacement relationship of Eq. (7) to get these nonlocal boundary conditions.

Conversion of  for S-S boundary condition:

Using Eqs. (7) and (8) and putting x = 0,

  (24)

Conversion of  for S-S, C-F, C-S boundary conditions:

Using Eqs. (7) and (8) and putting x = L,

  (25)

Conversion of  for C-F boundary condition:

Differentiating Eq. (7), substituting in Eq. (8) and putting x = L we obtain,

 

  (26)

Thus we get four boundary conditions on w for all the boundary conditions considered in the

present analysis.
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3. GDQ Method

 

The governing equations for bending, vibration and buckling of nonhomogeneous SWNT are

presented in Eqs. (9), (16) and (21), respectively. Further, the governing equations for bending,

vibration and buckling of nonhomogeneous DWNT are presented in Eqs. (12), (19) and (23),

respectively. These equations have been solved by the differential quadrature method (DQM) as

introduced by Bellman et al. (1972). The DQ method has been proved to be an efficient numerical

technique for the solution of initial and boundary value problems. Bert et al. (1988) first employed

this method to solve structural mechanics problems. This method has also been applied

successfully to a variety of structural problems (Bert and Malik 1996, Shu 2000). The fundamental

concept of DQ method is to approximate the partial derivative of a function with respect to a

space variable at a grid point by the weighted linear sum of the function values at all grid points in

the whole domain. In the present case the computational domain for the problem is 0 ≤ x ≤ L. So

we have

 

 (27)

N is the number of grid points. g is the function to be approximated.  are DQ weighting

coefficients which can be calculated from the coordinates of the grid points as follows

  (28)
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By applying DQ rule to Eqs. (9), (16) and (21) we obtain following discretized formulation for

Eqs. (9), (16) and (21), respectively.

 

 (34)

 

 

 (35)

  (36)

 etc. denote values of  … at the grid coordinate

(Xi). These contain first or higher order derivatives of elastic modulus, scale coefficient etc. which

can be computed numerically by applying DQ approximation for derivatives. It should be noted that
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computations fifteen grid points are employed. This also reveals the efficiency of DQ method in

analyzing nonhomogeneous nanotubes.

At first, bending, vibration and buckling results are obtained by employing local elasticity theory.

These results are compared with those obtained by employing distributed transfer function method

(DTFM) (Yang 2005) for all four boundary conditions. After this validation, bending, vibration and

buckling results are obtained employing nonlocal elasticity theory. These results are also compared

with corresponding results available in literature. Further, nonhomogeneous solutions with nonlocal

elasticity theory are obtained. Various variations of elastic modulus, nonlocal parameter, density and

diameter of nanotube along the axial direction are included in the investigation.

 

4.1 Validation of beam results with local theory 

Beam with following parameters is considered for the analysis. E = 1 N/m2, L = 1 m, A = 1 m2,

q = 1 N/m, ρ = 1 kg/m3 and I = 1 m4. Maximum deflections, natural frequencies and 

(37)

Employing the classical local elasticity theory bending, vibration and buckling results are

obtained. The non-dimensional maximum deflection ( ), natural frequencies ( ) and critical

buckling loads ( ) are listed in Tables 2-4, respectively. These results are compared with DTFM

(Yang 2005) results. It is observed that present DQM results are in good agreement with results

obtained employing DTFM.

  

ŵ w
EI

qL
4

-------- f̂, fL
2 ρA

EI
------- and P̂cr Pcr

L
2

EI
-----= = =

ŵ f̂

P̂cr

 Fig. 1 Convergence study of differential quadrature method with various grid points 

Table 2 Non dimensional deflection ( ) of beams

 Boundary condition
 Non dimensional max. deflection 

( ) (Yang 2005)
 Non dimensional max. deflection 

( ) (Present)

 S-S  0.0130  0.0130 

 C-F  0.1240  0.1249 

 C-S  0.0054  0.0054 

 C-C  0.0026  0.0026

ŵ

ŵ ŵ
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4.2 Validation of beam results with nonlocal theory

 

Reddy (2007) obtained bending, vibration and buckling solutions of simply supported beams with

nonlocal elasticity theory. Peddieson et al. (2003) obtained bending solution for cantilever beam

employing nonlocal elasticity theory. Wang et al. (2006) employed nonlocal elasticity theory and

obtained buckling solutions for columns with S-S, C-F and C-C boundary conditions. All these

above mentioned solutions (Reddy 2007, Peddieson et al. 2003, Wang et al. 2006) are analytical in

nature. But in the present analysis DQ method is employed because of complexity of the governing

differential equations for nonhomogeneous naotubes. Material properties and geometrical

dimensions of the beams are assumed to be same as mentioned above mentioned researchers.

Present results of bending, vibration and buckling for all classical boundary conditions are listed in

Tables 5-7, respectively. In these tables present results are compared with those available in the

literature. From these tables one could observe that the present results are in good agreement with

corresponding results reported in the literature. Present deflection results for CS and CC boundary

conditions, frequency results for CS, CC and CF boundary conditions and critical loads for CS

boundary conditions are new. These results for the above specific boundary conditions are not

available in literature. From Table 5 it is observed that the maximum deflections for CC, CS, SS

 

Table 3 Non dimensional natural frequencies ( ) of beam

 Boundary condition  Mode no.
 Non-dimensional natural 

freq. ( ) (Yang 2005)
 Non-dimensional natural 

freq. ( ) (Present)

 S-S  1  9.8690  9.8696

 2  39.5570  39.4784

 3  89.0040  88.8249

 C-F  1  3.5231  3.5160

 2  22.0340  22.0345

 3  61.8208  61.6999

 C-S  1  15.4490  15.4182

 2  50.0650  49.9648

 3  104.4560  104.2471

 C-C  1  22.3730  22.3733

 2  61.7960  61.6728

 3  121.1450  120.9021

Table 4 Non-dimensional critical buckling loads ( )of beam 

 Boundary condition
 Non-dimensional critical buckling 

load ( ) (Yang 2005)
 Non-dimensional critical buckling 

load ( ) (Present)

 S-S    9.8696  9.86960

 C-F    2.4670  2.47490

 C-S  20.1900  20.1907

 C-C  39.4800  39.4784

f̂

f̂ f̂

P̂cr

P̂cr P̂cr
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Table 5 Non dimensional deflections ( ) of the beam with non nonlocal theory of elasticity 

 Nonlocal 
parameter 

(µ)

 Boundary 
condition

 Non-dimensional 
max. deflection ( ) 

(Reddy 2007) 

Non-dimensional 
max. deflection ( ) 

(Peddieson et al. 
2003)

 Non-dimensional 
max. deflection 

 [Present]

 0.5   S-S   0.0756   ----  0.0755 

 C-F  ----  0.1250  0.1249 

 C-S  ----  ----  0.0237 

 C-C  ----  ----  0.0026

 1.0  S-S  0.1382  ----  0.1380 

 C-F  ----  0.3750  0.3749 

 C-S  ----  ----  0.0422 

 C-C  ----  ----  0.0026

Table 6 Non-dimensional natural frequencies ( ) of the beam with non nonlocal theory of elasticity 

Nonlocal 
parameter

Boundary 
condition

Mode no.
 Non-dimensional 
natural frequency 
( ) (Reddy 2007)

Non-dimensional 
natural frequency 

( ) (Present)

0.5 S-S 1   4.0489  4.0513

2  8.6643  8.6689

3  13.1743 13.1809

C-F 1 ----  2.2498

2 ----  11.9413

3 ----  49.8439

C-S 1 ----  5.8851

2 ----  10.6399

3 ----  15.2169

C-C 1 ----  8.2756

2 ----  12.4545

3 ----  17.4647

1.0 S-S 1  2.9919  2.9936

2  6.2019  6.2051

3  9.3674  9.3720

C-F 1 ----  1.1236

2 ----  7.1276

3 ----  25.7857

C-S 1 ----  4.3182

2 ----  7.6211

3 ----  10.8302

C-C 1 ----  6.0566

2 ----  8.895400

3 ----  12.45250

ŵ

ŵ
ŵ

ŵ

f̂

f̂ f̂
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and CF boundary conditions are in increasing order. From Table 6 it is observed that the natural

frequencies for CF, SS, CS and CC boundary conditions are in increasing order. From Table 7 it is

observed that the critical loads for CF, SS, CS and CC boundary conditions are in increasing order.

Further from Tables 5-7 it is observed that increase in nonlocal parameter leads to increase in

deflection and decrease in natural frequency and critical buckling load. This is attributed to the fact

that increase in nonlocal parameter decreases the effective stiffness of the nanotube.

 

4.3 Nonhomogeneous nanotubes

Young’s modulus, nonlocal parameter, density and diameter of the nanotubes are assumed to vary

along the axial direction. These parameters are expressed as 

(38)

 and d0 are assumed to be the values of elastic modulus, nonlocal parameter, density and

diameter at left end (x = 0).  and d0 are considered to be 1 TPa, 0.0136 nm2 and 2.3 gm/

cm3 and 0.7 nm, respectively. Length (L) and wall thickness (t) of the nanotubes are considered to

be 35 nm and 0.35 nm, respectively. In Eq. (38) α equals to 1, 2 and 3 represent linear, quadratic

and cubic variations of the parameters, respectively. Eighty per cent variation of diameter (d),

Young’s modulus (E), nonlocal parameter (µ) and density (ρ) has been assumed in the

nonhomogeneous analysis. SS boundary condition is considered for the nanotubes. Non-dimensional

maximum deflections, natural frequencies and critical buckling loads are defined as follows

(39)

These non-dimensional parameters are computed employing DQ method for S-S boundary

condition. Effect of linear, quadratic and cubic variation of individual parameters has been

investigated. Inter relation of these parameters are also investigated. Effect of linear, quadratic and

cubic variation of elastic modulus for bending, vibration and buckling are shown in Figs. 2-4,

respectively. From these Figs. it is observed that maximum deflection decreases with increase in

nonhomogeneous parameter. While natural frequency and critical load increase with increase in
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Table 7 Non-dimensional critical buckling loads ( ) of the beam with non nonlocal theory of elasticity

Nonlocal 
parameter

Boundary 
condition

Non-dimensional critical 
buckling load

 ( ) ( Wang et al. 2006)

Non-dimensional critical 
buckling load

 ( ) (Present)

0.5 S-S 1.6627 1.6630

C-F 1.1041 1.1052

C-S -------- 1.8197

C-C 1.9035 1.9036

1.0 S-S 0.9079 0.9080

C-F 0.7114 0.7115

C-S -------- 0.9528

C-C 0.9753 0.9753

P̂cr

P̂cr P̂cr
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Fig. 2 Variations of non-dimensional maximum deflec-
tions ( ) with nonhomogeneous parameter (k)
for linear, quadratic and cubic variations of
elastic modulus 

w
Fig. 3 Variation of non-dimensional fundamental

natural frequencies ( ) with nonhomogeneous
parameter (k) for linear, quadratic and cubic
variations of elastic modulus

f 

Fig. 4 Variation of non-dimensional critical buckling
loads ( ) with nonhomogeneous parameter
(k) for linear, quadratic and cubic variations
of elastic modulus

Pcr

Fig. 5 Variations of non-dimensional maximum deflec-
tions ( ) with nonhomogeneous parameter
(k) for linear, quadratic and cubic variations
of nonlocal parameter

w

Fig. 6 Variations of non-dimensional fundamental
natural frequencies ( ) with nonhomogeneous
parameter (k) for linear, quadratic and cubic
variations of nonlocal parameter 

f 
Fig. 7 Variations of non-dimensional maximum critical

buckling loads ( ) with nonhomogeneous
parameter (k) for linear, quadratic and cubic
variations nonlocal parameter

Pcr
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nonhomogeneous parameter. Further maximum deflection, natural frequency and critical load show

greater rate of change for linear variation of nonhomogeneous parameter as compared to quadratic

and cubic variations.

Similarly effect of linear, quadratic and cubic variation of nonlocal parameter for bending,

vibration and buckling are shown in Figs. 5-7, respectively. From Figs. 5-7, one could observe that

variation of nonlocal parameter has little effect on bending, vibration and buckling of

nonhomogeneous nanotubes. So it can be concluded that though nonlocal parameter is considered to

be an important factor for analysis of nano-structures, for nonhomogeneous nanotubes an average

constant value of nonlocal parameter can be considered for various nanotube applications and

designs. This could reduce substantially the complexity of the formulation and computational effort.

In Fig. 8 effect of density on the vibration response of nanotubes has been shown. In this Fig.

natural frequency shows greater rate of change for linear variation of nonhomogeneous parameter as

compared to quadratic and cubic variations.

Effects of diameter of the nanotube on bending, vibration and buckling are shown in Figs. 9-11,

Fig. 8 Variations of non-dimensional fundamental
natural frequencies ( ) with nonhomogeneous
parameter (k) for linear, quadratic and cubic
variations of density 

f 

Fig. 9 Variations of non-dimensional maximum deflec-
tions ( ) with nonhomogeneous parameter
(k) for linear, quadratic and cubic variations
of diameter

w

Fig. 10 Variations of non-dimensional fundamental
natural frequencies ( ) with nonhomogeneous
parameter (k) for linear, quadratic and cubic
variations of diameter

f 
Fig. 11 Variations of non-dimensional critical buckling

loads ( ) with nonhomogeneous parameter
(k) for linear, quadratic and cubic variations
of diameter 

Pcr
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respectively. From these Figs. it is observed that maximum deflection decreases with increase in

nonhomogeneous parameter. While natural frequency and critical load increase with increase in

nonhomogeneous parameter. Further maximum deflection, natural frequency and critical load show

greater rate of change for linear variation of nonhomogeneous parameter as compared to quadratic

and cubic variations. Effects of linear variation of elastic modulus, nonlocal parameter and diameter

on bending, vibration and buckling has been shown in Figs. 12-14, respectively. From Fig. 12 it is

observed that maximum deflection decreases with increase in nonhomogeneous parameter for linear

variation of elastic modulus and nanotube diameter. Further it can be found that linear variation of

diameter has stronger influence on the maximum deflection than the linear variation of elastic

modulus. 

From Fig. 13 it is observed that natural frequency increases with increase in nonhomogeneous

parameter for linear variation of elastic modulus and nanotube diameter. While natural frequency

decreases with increase in nonhomogeneous parameter for linear variation of density of nanotube.

Further it can be found that linear variation of diameter has stronger influence on the natural

frequency than the linear variation of elastic modulus. From Fig. 14 it is observed that critical

buckling load increases with increase in nonhomogeneous parameter for linear variation of elastic

Fig. 12 Variations of non-dimensional maximum
deflections ( ) with nonhomogeneous
parameter (k) for linear variation of elastic
modulus (E), nonlocal parameter (µ) and
diameter (d) 

w

Fig. 13 Variations of non-dimensional fundamental
natural frequencies ( ) with nonhomogeneous
parameter (k) for linear variation of elastic
modulus (E), nonlocal parameter (µ), density
(ρ) and diameter (d) 

f 

Fig. 14 Variations of non-dimensional critical buckling loads ( ) with nonhomogeneous parameter (k) for
linear variation of elastic modulus (E), nonlocal parameter (µ) and diameter (d)

Pcr
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modulus and nanotube diameter. Further it can be found that linear variation of diameter has stronger

influence on the critical buckling load than the linear variation of elastic modulus. Maximum

deflection, natural frequency and critical buckling load are observed to be most sensitive to change in

nanotube diameter, while these are observed to be insensitive to the change in nonlocal parameter.

5. Conclusions

In this work, formulation and solutions methods are developed for nonhomogeneous single walled

and double walled nanotubes. Nonlocal theory has been implemented to take the scale effect into

account. Present results are validated with the results available in the literature for homogeneous

nanotubes. Effect of linear, quadratic and cubic variations of nanotube Young’s modulus, nonlocal

parameter, density and diameter on the structural response of the nonhomogeneous nanotubes is

studied. It is observed that maximum deflection decreases with increase in nonhomogeneous

parameter. While critical load increases with increase in nonhomogeneous parameter. Further

maximum deflection, natural frequency and critical load show greater rate of change for linear

variation of nonhomogeneous parameter as compared to quadratic and cubic variations. It has been

observed that the variation of nonlocal parameter along the length has little effect on the structural

response of nonhomogeneous nanotubes. While variations of diameter, elastic modulus and density

of the nanotubes have substantial effect on the response of the nanotubes. The formulation, solution

methods and numerical solutions presented in this paper will be helpful for engineers who are

designing nano-electromechanical devices containing nonhomogeneous nanotubes. Extension of the

present research work to incorporate shear deformation theories is under development.
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