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Simulation of earthquake records using combination of 
wavelet analysis and non-stationary Kanai-Tajimi model 
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Abstract.  This paper is aimed at combining wavelet multiresolution analysis and nonstationary Kanai-
Tajimi model for the simulation of earthquake accelerograms. The proposed approach decomposes
earthquake accelerograms using wavelet multiresolution analysis for the simulation of earthquake
accelerograms. This study is on the basis of some Iranian earthquake records, namely Naghan 1977, Tabas
1978, Manjil 1990 and Bam 2003. The obtained results indicate that the simulated records preserve the
significant properties of the actual accelerograms. In order to investigate the efficiency of the model, the
spectral response curves obtained from the simulated accelerograms have been compared with those from
the actual records. The results revealed that there is a good agreement between the response spectra of
simulated and actual records.

Keywords: earthquake ground motion; simulation; non-stationary model; wavelet analysis; Kanai-Tajimi
model.

1. Introduction 

Seismic design of structures requires a dynamic analysis procedure either response spectrum or

time- history. The major drawback of response spectrum analysis lies in its inability to obtain time

information of the structural responses. Such information is sometimes necessary in achieving a

satisfactory design.

In many cases, structures’ house equipment is sensitive to floor vibrations during an earthquake. It

is sometimes necessary to develop the floor response. In addition, in designing critical or major

structures such as power plants, dams, and high-rise buildings, the final design is usually based on

the complete time-history analysis. To provide input excitations for structural models in sites with

no strong ground motion data, it is necessary to generate artificial accelerograms.

The modeling and simulation of earthquake ground motion signals are important in structural

earthquake engineering and may significantly facilitate the study of structural behavior under

seismic excitation. The main difficulty in modeling such signals stems from their strongly non-

stationary nature.
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Due to the complex nature of the formation of seismic waves and their travel path before reaching

recording station, a stochastic approach may be most suitable for generating artificial accelerograms.

To this purpose, different stochastic models, both stationary and non-stationary, have broadly been

used in literature to simulate earthquake ground motions. The stationary filtered white noise model

of earthquake ground motion of Kanai and Tajimi has attracted considerable attention, and was

extensively used in random vibration analysis of structures (Kanai 1957, Tajimi 1960). More recent

models were suggested to include the non-stationary variations in amplitude and frequency content

by Fan and Ahmadi (1990) and Refooei et al. (2001).

The recently developed wavelet analysis has emerged as a powerful tool to analyze temporal

variations in frequency content. Newland (1994) applied wavelets to analyze vibration signals, and

developed special wavelets and techniques for engineering purposes. Ghodrati Amiri et al. (2008,

2007, 2006), Suarez and Montejo (2007, 2005), Rajasekaran et al. (2006), Hancock et al. (2006),

Mukherjee and Gupta (2002a, 2002b) and Iyama and Kuwamura (1999) developed the wavelet

analysis for generating artificial earthquake accelerograms. Using wavelet theory, Ghodrati Amiri et al.

(2007, 2006) aimed at generating many artificial records compatible with the same spectrum. Also,

Ghodrati Amiri et al. (2008) proposed a method of generating accelerograms from response spectra

based on neural network and wavelet transform.

In this paper, first, the fundamentals of wavelet analysis are introduced. Then, the nonstationary

Kanai-Tajimi model is explained. Next, an effective method for the generation of artificial

accelerograms for an arbitrary site with at least one existing earthquake record is presented. Specific

examples of Naghan 1977, Tabas 1978, Manjil 1990 and Bam 2003 earthquakes are illustrated in

detail. It is shown that the generated accelerograms preserve the time dependent frequency content

of the original records. The response spectra curves for the generated earthquakes are also compared

with those of the original records and their results are discussed.

2. Wavelet analysis

The continuous wavelet transform is defined as

(1)

where a and b are scale and translation parameters, respectively and  is the complex conjugate of

ψ. The basis function ψ is represented as

(2)

Eq. (1) can be represented as

(3)

Therefore, continuous wavelet transform is a collection of inner products of a signal f (t) and the

translated and dilated wavelets . 

The main idea of discrete wavelet transform is the same as that of continuous wavelet transform.

In discrete wavelet transform the signals can be represented by approximations and details. The
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detail at level j is defined as

(4)

where Z is the set of positive integers and cDj,k is wavelet Coefficients at level j which is defined as 

(5)

The approximation at level j is defined as

(6)

where cAj,k is scaling Coefficients at level j which is defined as 

(7)

Finally, the signal f (t) can be expressed by 

(8)

Since each Dj(t) has a range of particular out of which the intensity is zero, an assumption is

introduced here that the original function f (t) is decomposed into a series of Dj(t)’s exclusively in

the frequency domain; in other word, each Dj(t) has non-zero components only in an exclusive

range of frequency. This assumption is not theoretically exact but is justified later from an

engineering practice viewpoint. The exclusive range of frequency of Dj(t) is denoted as follows 

Frequency range of level j = [ f1j, f2j]  (9)

or

Period range of level j = [T1j, T2j] (10)

From the nature of discrete wavelet transform that Dj(t) has components of half frequency of

Dj+1(t) (Benedetto and Frazier 1994), f1j, f2j, T1j and T2j are expressed as follows

 (11)

 (12)

where ∆t is the time step of digital data of f(t).

3. Overview on Generalized Kanai-Tajimi model

The Kanai-Tajimi model for ground acceleration (Kanai 1957, Tajimi 1960) has been widely used

in the analysis of engineering structures under earthquake excitation. In its original form, the ground
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acceleration is idealized as a stationary random process, having a spectral density function 

(13)

This model corresponds to the acceleration of a mass, supported by liner spring and dashpot in

parallel, whose base is undergoing a broad-band acceleration. The three parameters in Eq. (13) are

ξg, ωg site dominant damping coefficient and frequency, and G0, the constant power spectral

intensity of bedrock excitation. In practice, these parameters need to be estimated from the local

earthquake records and geological features. Kanai-Tajimi power spectral density function may be

commented as corresponding to an ‘ideal white noise’ excitation at bedrock level filtered through

the overlaying soil deposits at a site. The most serious disadvantages of the original Kanai-Tajimi

model is to consider the behavior of earthquake as a stationary random process. An improved

version of the model was introduced by Fan and Ahmadi (1990) to capture the non-stationary

feature of real earthquake records. This generalized non-stationary Kanai-Tajimi model is described

in Eqs. (14) and (15) 

(14)

(15)

where Xf is filtered response, ωg(t) is time dependent ground frequency, ξg(t) is effective ground

damping coefficient,  is output ground acceleration, and e(t) is amplitude envelope function. In

Eq. (14), n(t) is a stationary Gaussian white noise process with the parameters in Eq. (16).

(16)

where E[] stands for expected value, and δ( ) is Dirac delta function. Eqs. (14) to (16) provide

filtered white noise stochastic time series with appropriate frequency content and amplitude

modulation for ground acceleration during earthquake.

4. Modeling method

This paper present the use of the discrate wavelet transform and nonstationary Kanai-Tajimi

model for the simulation of earthquake accelerograms. This procedure decomposes earthquake

accelerograms using wavelet multiresolution analysis for the simulation of earthquake

accelerograms. In this method, the earthquake accelerogram is decomposed into a series of Dj(t),

since each Dj(t) has non-zero components only in an exclusive range of frequency. Next, each Dj(t)

is simulated with the nonstationary Kanai-Tajimi model. Finally, the simulated record using

summation of Dj(t) is determined.

If it is assume that ag(t) is an accelerogram for simulation, accelerogram can be expressed by

details using discrete wavelet transform. The wavelet coefficients at level j are

(17)
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then, the detail at level j determines 

(18)

After the decomposition of earhquake accelerogram using wavelet analysis, the model parametres

should be determined. In this method, time-varying parameters for dynamic version of Kanai-Tajimi

model are considered. In order to estimate the time-dependency of the filter parameters, at least one

recorded accelerogram is needed. For this purpose, the ‘Moving-Time-Window’ technique (Fan and

Ahmadi 1990) has been employed. This method is based on the assumption that a non-stationary

process can approximately be assumed to be stationary within a time-window with appropriate size.

The time-window should be sufficiently short to capture the rapid changes in frequency content;

however, it should be long enough to be able to account for the stable estimation of parameters and

the ability to capture significantly low frequency components. In this study, the optimal window

size is selected on the basis of frequency content of earthquake using a trial and error method. In

the current study, ξgj(t) is assumed to be a constant, and the time-evolution of ωgj(t) and ej(t) are

determined using the following procedure:

Using a time-window that moves from the beginning to the end of Dj(t), the standard deviation of

the envelope function within each time window is calculated as follows

 (19)

This value is assigned to the center point of each time window. Then, a smooth algebraic time

function σaj(t) is fitted to the time variation of the standard deviation. Next, the amplitude envelope

function is defined as

(20)

where, C0j is a constant that is used to normalize the mean intensity of the synthetic accelerograms

to the intensity of original record.

The time dependent ground frequency function is determined using the properties Dj(t). Each Dj(t)

has non-zero components only in an exclusive range of frequency. For this reason, the time

dependent ground frequency function at level j then is suggested as

 (21)

where f1j and f2j are frequency range of level j.

After determine the parameters of model, the nonstationary Kanai-Tajimi model is used to

simulate the Dj(t)

(22)

(23)

where, Xfj and  are filtered response and output ground acceleration at level j, respectively.

Afterwards,  can be determined using the solutions of the Eqs. (22) and (23) for all of levels.
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Finally, the simulated record may be obtained by summation of 

(24)

where ags is the simulated record. 

5. Synthetic records 

 

The proposed model is used to produce artificial records for several Iranian earthquake

accelerograms with different characteristics. The considered earthquake events were Naghan 1977,

Tabas 1978, Manjil 1990 and Bam 2003.

In this reserach, earthquake ground acceleration has been decomposed by discrete wavelet

transform to level 8. In order to identify the model parameters, a time-window that moves from the

beginning to the end of Dj(t) has been applied. As stated previously, the window size should be

selected in such a way that it captures the time evolutions of the significant frequency content and

the amplitude of the record. The used values of ground damping coefficients ξgj(t) were 0.35, 0.35,

0.3 and 0.35 for Naghan, Tabas, Manjil and Bam earthquakes, respectively (Refooei et al. 2001).

For the sake of white noise process generation, a constant power spectral intensity of G0 = 1 cm2/s3

and time interval of ∆t = 0.02 s were used. For each record, ensembles of 700 samples were

generated and the value of C0 was determined in a way that the expected total energy of synthetic

accelerograms became equal to that of original record within the predetermined duration.

An ensemble of 50 synthetic accelerograms was generated and statically studied for each

earthquake. It should be noted that records have been decomposed with db-10 wavelet (the other

wavelets could be applied). Figs. 1 to 4 show the comparison between the accelerograms of the

actual Naghan, Tabas, Manjil and Bam earthquakes and the synthetically generated records.

Statistical response spectra of the synthetic accelerograms have also been compared with those of

the actual records. Figs. 5 to 8 compare the pseudo-acceleration response spectra and the related

statistics for the ensemble of 50 simulated accelerograms with those for the actual records.
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Fig. 1 Artificial (top) and actual (bottom) earthquake ground motion accelerograms of Naghan record
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Fig. 2 Artificial (top) and actual (bottom) earthquake ground motion accelerograms of Tabas record

Fig. 3 Artificial (top) and actual (bottom) earthquake ground motion accelerograms of Manjil record

Fig. 4 Artificial (top) and actual (bottom) earthquake ground motion accelerograms of Bam record
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Fig. 5 Comparison between pseudo-acceleration response spectra of original and generated accelerograms for
Naghan earthquake

Fig. 6 Comparison between pseudo-acceleration response spectra of original and generated accelerograms for
Tabas earthquake

Fig. 7 Comparison between pseudo-acceleration response spectra of original and generated accelerograms for
Manjil earthquake
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Traditional measures of earthquake energy input are as follows:

• Root mean square of the strong phase of the ground acceleration 

• Maximum energy response of a single degree-of-freedom system subjected to ground motions

with no damping 

• Fourier amplitude spectrum

Zhou and Adeli (2003) proposed Eq. (25) for wavelet energy spectrum to represent the time-

frequency evolution of earthquake energy input

 (25)

where the coefficients Ca,b are obtained by applying the continuous Mexican hat wavelet transform

to the ground acceleration ag(t) as follows 

 (26)

In Eq. (26), a is used for the scaling parameters to distinguish it from the ground acceleration ag.

The Mexican hat wavelet is used as the basis wavelet function ψ in Eq. (26). The constant π is

included in Eq. (25) for the Mexican hat wavelet so that the Parseval’s theorem can be extended to

include the wavelet transform.

The wavelet energy spectra of the actual and artificial accelerograms are shown in Figs. 9 to 12

(MATLAB 1999). According to these figures, the evolutions of the frequency content with time of

the actual and generated accelerograms are comparable. 

Finally, pseudo-acceleration response spectra and the related statistics for the ensemble of 50

simulated accelerograms have been obtained using propsed model in this paper the model presented

by Rofooei et al. (2001) for the following earthquakes records: Naghan’s, 1977; Tabas’, 1978; and

Manjil’s, 1990. The results are illustrated in Figs. 13 to 15. As it is shown, the pseudo-acceleration

response spectra obtained by the proposed model are closer to actual earthquake records compared

to Rofooei model. Therefore, the performance of the proposed method using wavelet transform and

generalized Kanai-Tajimi model was evaluated by comparison with the other model. It was
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Fig. 8 Comparison between pseudo-acceleration response spectra of original and generated accelerograms for
Bam earthquake
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Fig. 9 Wavelet energy spectrum of actual (left) and artificial (right) earthquake accelerograms of Naghan
record

Fig. 10 Wavelet energy spectrum of actual (left) and artificial (right) earthquake accelerograms of Tabas
record

Fig. 11 Wavelet energy spectrum of actual (left) and artificial (right) earthquake accelerograms of Manjil
record
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Fig. 12 Wavelet energy spectrum of actual (left) and artificial (right) earthquake accelerograms of Bam record

Fig. 13 Comparison between pseudo-acceleration
response spectra of original and generated
accelerograms with other model for Naghan
earthquake 

Fig. 14 Comparison between pseudo-acceleration
response spectra of original and generated
accelerograms with other model for Tabas
earthquake

Fig. 15 Comparison between pseudo-acceleration response spectra of original and generated accelerograms
with other model for Manjil earthquake
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concluded that the time domain characteristics and the response spectra of the generated

accelerograms are similar to the original recorded accelerograms. Hence, the proposed model can be

used in the simulation of earthquake accelerograms for time history analysis of linear and nonlinear

structures.

6. Conclusions

In this study, a model has been developed on the basis of Kanai-Tajimi model and wavelet

multiresolution analysis to generate artificial accelerograms in an arbitrary site with at least one

existing earthquake record. The presented approach is on the basis of using the generalized Kanai-

Tajimi model to include the non-stationary evaluation of amplitude and dominant frequency of

ground motion and properties of wavelet transform. The study considers four Iranian earthquakes

with different characteristics, namely Naghan 1977, Tabas 1978, Manjil 1990 and Bam 2003. It is

shown that the time characteristics and the response spectra obtained from of generated

accelerograms are similar to that obtained from original recorded accelerograms. The efficiency and

applicability of the model have been studied using comparison of the obtained results from actual

and simulated records. Moreover, the proposed model has been compared with the presented model

by Rofooei et al. (2001). The results revealed that the obtained results by proposed model in this

paper are closer to actual records compared to Rofooei model.
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Notation

Aj : Approximation at level j
a : Scale parameter
ag(t) : Ground acceleration 
b : Translation parameter
C0 : Constant
C(a, b) : Continuous wavelet transform coefficients
cA : Scaling coefficients 
cD : Wavelet coefficients 
Dj : Detail at level j
δ () : Dirac delta function
E : Earthquake energy input
E[] :  value 
e(t) : Amplitude envelope function
f : Frequency
n(t) : A stationary Gaussian white noise process
ξg : Site dominant damping coefficient
ξg(t) : Effective ground damping coefficient
PSA : Pseudo-acceleration response spectrum
G : Spectral density function
G0 : Constant power spectral intensity of bedrock excitation
σ : Standard deviation
σa(t) : A smooth algebraic time function is fitted to the time variation of the Standard deviation
T : Period
t : Time
tw : Time-window size
φ (t) : Scaling function
Xf : Filtered response

: Output ground acceleration
y : Basis function 
ψ* : Complex conjugate of ψ
ω : Frequency
ωg : Site dominant frequency
ωg(t) : Time dependent ground frequency

X
··
g




