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Abstract. A method for vibration analysis of asymmetric shear wall and Thin walled open section struc-
tures is presented in this paper. The whole structure is idealized as an equivalent bending-warping torsion
beam in this method. The governing differential equations of equivalent bending-warping torsion beam are
formulated using continuum approach and posed in the form of simple storey transfer matrix. By using the
storey transfer matrices and point transfer matrices which consider the inertial forces, system transfer matrix
is obtained. Natural frequencies can be calculated by applying the boundary conditions. The structural prop-
erties of building may change in the proposed method. A numerical example has been solved at the end of
study by a program written in MATLAB to verify the presented method. The results of this example display
the agreement between the proposed method and the other valid method given in literature.
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1. Introduction

Number of methods, such as finite element method, has been developed for analyses of buildings.

The continuum model is very simple and efficient method used in static and dynamic analysis of

shear wall-frame buildings. 

There are numerous studies (Rosman 1964, Heidebrecht and Stafford Smith 1973, Basu et al.

1979, Bilyap 1979, Balendra et al. 1984, Stafford Smith and Crowe 1986, Nollet and Stafford Smith

1993, Zalka 1994, Li and Choo 1996, Toutanji 1997, Miranda 1999, Mancini and Savassi 1999,

Hoenderkamp 2000, 2001, 2002, Kuang and Ng 2000, 2008, Wang et al. 2000, Swaddiwudhipong et

al. 2001, Zalka 2001, 2003, Miranda and Reyes 2002, Zalka 2002, Potzta and Kollar 2003, Tarjan

and Kollar 2004, Savassi and Mancini 2004, Boutin et al. 2005, Miranda and Taghavi 2005, Reinoso

and Miranda 2005, Georurgoussis 2006, Michel et al. 2006, Rafezy et al. 2007, Kaviani et al. 2008,

Laier 2008, Meftah and Tounsi 2008, Savassi and Mancini 2008, Zalka 2008, Rafezy and Howson

2008, Bozdogan and Ozturk 2008, Bozdogan 2008) in the literature regarding continuum method. 

Rosman (1964) proposed a continuum medium method for a pair of high rise coupled shear walls.

Heidebrecht and Stafford Smith (1973) derived the differential equations of system for buildings

with uniform stiffness along the height and then obtained closed-form solutions to uniform and
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triangular static lateral load distributions.

Zalka (2001) derived simplified expressions for the circular frequency of wall-frame buildings.

Kuang and Ng (2000) considered the problem of doubly asymmetric structures; in which the motion

is dominated by shear walls. For the analysis, the structure was replaced by an equivalent uniform

cantilever whose deformation was coupled in flexure and warping torsion. An approximation

method for estimating floor acceleration demands in multistory buildings subjected to earthquake

ground motions has been developed in a recent study by Miranda and Taghavi (2005). The dynamic

properties of multistory buildings were approximated by using equivalent continuum model

consisting of a flexural cantilever beam and a shear cantilever beam that were assumed to be

connected by an infinite number of axially rigid members in the proposed method. The

dimensionless parameter, which controls the degree of overall flexural and overall shear

deformations, was presented in the simplified model of buildings. In a companion paper (Taghavi

and Miranda 2005), the accuracy of the methodology was evaluated by comparing the results of the

approximation method with the computed response by using detailed finite element analyses for the

case of the two generic buildings; and then the results were compared to recorded accelerations for

the case of the four instrumented buildings. 

Rafezy and Howson (2008) proposed a global approach to the calculation of natural frequencies

of doubly asymmetric, three dimensional, multi bay, and multi storey frame structures. It was

assumed that the primary frames of the original structure ran in two original directions and that their

properties may have varied in a step-wise fashion at one or more storey levels. The structure

therefore divided naturally into uniform segments according to changes in section properties.

A typical segment was then replaced by an equivalent shear-flexure-torsion coupled beam; whose

governing differential equations were formulated by using continuum approach and posed in the

form of a dynamic member stiffness matrix.

Kuang and Ng (2008) derived the governing equation and the corresponding eigenvalue problem

of asymmetric frame structures using continuum assumption. A theoretical method of solution was

proposed and a general solution to the eigenvalue equation of the problem was presented for

determining the coupled natural frequencies and associated mode shapes based on the theory of

differential equations. 

Bozdogan (2008) proposed the Transfer Matrix method for lateral static and dynamic analyses of

wall-frame buildings. Step changes of properties along the height of the structure were allowed in

none of the studies with the exception of Rafezy and Howson’s and Bozdogan’s papers.

A method for vibration analysis of non uniform asymmetric shear wall and thin walled open

structures is suggested in this study. The following assumptions are made in this study; the behavior

of the material is linear elastic, small displacement theory is valid, P-delta effects are negligible, the

flexural rigidity center at each floor thus lies on vertical line through the height of structures, the

shear deformations of walls are negligible, the storey mass acts on the storey (floor) level and the

floor system is rigid in its plane.

2. Analysis 

2.1 Transfer matrix method

The computations become more tedious and the possibility of making errors increases as the
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number of constants to be determined by the use of boundary conditions increases in various

engineering problems. Therefore, ways of reducing the number of constants to a minimum are

sought and the method of transfer matrix method makes this possible. The main principle of this

theory, which is applied to problems with one variable, is to convert all the boundary value

problems into problems of initial values. Thus new constants that may result from the use of

intermediate condition are eliminated. Therefore, it can be stated as a method of expressing the

equations in terms of the initial constants and this method makes no distinction between the so

called determinate and indeterminate problems of elastomechanics (Inan 1968). Transfer matrix

method is an efficient and easily computerized method and it also provides a fast and practical

solution since the dimensions of the matrix for elements and system never changes (Pestel and

Leckie 1963).

Fig. 1 Plan of a general asymmetric shear wall and Thin Walled Structures
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2.2 Physical model

Fig. 1 shows a typical floor plan of asymmetric, three dimensional shear wall structures (Kuang

and Ng 2000). Shear wall structures ignoring shear deformations, demonstrate Bending-warping

torsional beam behavior. The differential equation of this equivalent bending-warping torsional

beam can be initially written. 

2.3 Storey transfer matrices 

Under the horizontal loads governing equations of i.th storey can be written as 

 (1)

 

(2)

 (3)

where ui and vi are the lateral deflections of the flexural center, respectively, θi is the torsional

rotation of the floor plan about flexural rigidity at the given height, and zi is the vertical axis of

each storey.

(EI)xi, (EI)yi and (EI)xyi are the equivalent flexural rigidity of the storey for wall structures in x, y

and xy directions and can be calculated as follows (Kuang and Ng 2000, Rafezy and Howson 2008)

(4)

(EI)wi are the warping stiffness of i.th storey and can be calculates as follows (Kuang and Ng 2000)

 (5)

where  and  are the coordinates at the location of the center of flexural rigidity of the j-th bent

at i-th storey in coordinate system  and EIwoc is the warping torsional stiffness of a core

about its own shear centre. 

 and  are the coordinate of shear center and can be calculated as follows (Kuang and Ng

2000)
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When Eqs. (1), (2) and (3) are solved with respect to the z, ui(z) and vi(z) and θi(z) can be

obtained as follows

(8)

(9)

(10)

where c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12 are integral constants.

By using Eqs. (8), (9) and (10), the rotation angles in x and y direction (ui' , vi' ), the rate of twist

(θi' ), Bending Moments in x and y directions (Mxi, Myi) and bi-moment (Mwi), Shear forces in x and

y direction (Vxi, Vyi) and torque (Ti) for i.th storey can be obtained as follows

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Eq. (20) shows the matrix form of Eqs. (8)-(19)
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(20)

At the initial point of the storey for zi = 0, Eq. (20) can be written as;

 (21)

The vector in right-hand side of Eq. (21) can be shown as follows

(22)

When vector c is solved by implementing Eq. (21) and substituted in Eq. (20), then Eq. (23)

would be obtained.
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 (23)

 

Ti represents the storey transfer matrix for z = hi in Eq. (23).

The storey transfer matrices obtained from Eq. (23) can be used for the dynamic analysis of

asymmetric shear wall and thin walled open structures. Therefore, when considering the inertial

forces in the storey levels, the relationship between the ith and the (i+1)th stories can be shown by

the following matrix equation

(24)

where, mi is the mass of the ith storey and ω are the natural frequencies of the system and  is the

inertial radius of gyration; and can be calculated as (Kuang and Ng 2000, Rafezy and Howson

2008)

(25)
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(26)

(27)

where the coordinate ( ) is the location of the geometric center C in the coordinate system

( ).

Dynamic transfer matrix can be shown as Tdi. 

(28)

The displacements - internal forces relationship between the base and the top of the structure can

be found as follows

(29)
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When boundary conditions are considered for Eq. (29) for the nontrivial solution of

, Eq. (30) can be attained

(30)

The values of ω, which set the determinant to zero, are natural frequencies of the asymmetric wall

building.

3. Process of computation

The process of the computation for transfer matrix method is presented step by step as below: 

1) The equivalent rigidities of each storey are calculated by using the geometric and material

properties of the structure. 

2) Storey transfer matrices are calculated for each storey by using equivalent rigidities. 

3) System transfer matrix (Eq. (29)) is obtained with the help of storey transfer matrices and

inertia forces effecting to the storey levels with the procedure told in section 3. 

4) The nontrivial equation is obtained by using Eq. (30) as a result of the application of the

boundary conditions. 

5) The angular frequencies and relevant periods are found with the help of a method obtained

from numerical analysis. 

6) The modes are found with the help of angular frequency and Eq. (24). 

7) The effective mass ratio and participation factor is found by using the modes. 

8) With the help of the acceleration and displacement spectrums, obtained from an earthquake

record or design spectrum from codes, the displacement and internal forces are found by using

effective mass and participation factor.

4. Numerical example

A numerical example has been solved by a program written in MATLAB to verify the presented

method in this part of the study. The results are then compared with those given in the literature. 

Example 1. 

A typical asymmetric building braced by shear-walls and angle type thin- walled open section

structure (Fig. 2) (Meftah and Tounsi 2008) is analyzed as an example. The structure has 25 storeys

with total height H = 75 m, and floor dimensions L = 24 m and B = 24 m. The thickness of of the

shear wall and thin walled angle cross sections ia 0.3 m. An elastic modulus E = 25000 MN/m2, the

weight per unit volume of building is 25 kN/m2 and the mass density per unit length is m = 106.056

td TdnTdn 1– Tdn 2– …Td1=

f =

t 7,7( ) t 7 8,( ) t 7 9,( ) t 7 10,( ) t 7 11,( ) t 7 12,( )

t 8 7,( ) t 8 8,( ) t 8 9,( ) t 8 10,( ) t 8 11,( ) t 8 12,( )

t 9 7,( ) t 9 8,( ) t 9 9,( ) t 9 10,( ) t 9 11,( ) t 9 12,( )

t 10 7,( ) t 10 8,( ) t 10 9,( ) t 10 10,( ) t 10 11,( ) t 10 12,( )

t 11 7,( ) t 11 8,( ) t 11 9,( ) t 11 10,( ) t 11 11,( ) t 11 12,( )

t 12 7,( ) t 12 8,( ) t 12 9,( ) t 12 10,( ) t 12 11,( ) t 12 12,( )
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t/m. The structural properties are given in Table 1. The natural frequencies calculated by this

method are compared with the results in the reference (Meftah and Tounsi 2008). The results are

presented in Table 2.

Fig. 2 A typical asymmetric building braced by shear-walls and angle type thin- walled open section structure
(Meftah and Tounsi 2008)

 Table 1 Structural Properties of Asymmetric Shear Wall 
 and Angle Typed thin Walled Structures 

Structural Properties of Asymmetric Shear Wall and 
Angle Typed Thin Walled Building

(EI)x 2521.125*103 MNm2

(EI)y 1441.8*103 MNm2

(EI)xy 623.2*MNm2

(EI)w 221983*103 MNm4

xc 6.94 m

yc 3.971 m

m 324.33 kNm/sn2

rm 12.646 m2
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5. Conclusions

This paper presents a method for vibration analysis of asymmetric shear wall and thin walled

open structures. The whole structure is idealized as an equivalent bending-warping torsion beam in

this method. The governing differential equations of equivalent bending-warping torsion beam are

formulated using continuum approach and posed in the form of simple storey transfer matrix. By

using the storey transfer matrices and point transfer matrices which consider the inertial forces,

system transfer matrix is obtained. Natural frequencies can be calculated by applying the boundary

conditions. Example solved in this study shows that results obtained from the proposed method are

in close agreement with the solution which was developed in literature. The structural properties of

building may change in the proposed method and different numerical examples can also be solved.

The proposed method is simple and accurate enough to be used both at the concept design stage

and for final analyses.
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