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amounts and history load on soil response
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Abstract. The soil response calculation is described, by which, threw the fictive path of stress, the
stress-deformation diagrams are determined, considering the nonlinear soil behavior. The calculation are
lead incrementally, by which is shown that in the presented soil model (modified Cam Clay), considering
the influence of overconsolidated soil pressure OCR, the number of calculation steps may, but not
necessarily, have a sufficient influence on the value of failure load and definite soil deformation. The
simplicity and the practicalness of the procedure, the enables modeling the complex relations in soil.
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1. Introduction 

By the plasticity theory (Chen and Han 1988), the ideal elastic-plastic material is defined, also as

the material with increase (hardening) or decrease (softening) of stress by reaching the liquid limit,

with no consider if the issue is a linear or nonlinear law (Kanvinde et al. 2001).

The total material deformation is consisted of elastic and plastic components

(1)

The elastic deformation component may be computed by the temporary amounts of stress and

materials deformation module

(2)

The value and direction of the elastic deformation component εp depends on the criteria of relief,

the defined relief surface f, also as the acquired law of material behavior. If the observed condition

of stress is in the relief surface, only elastic deformations take place. The material in that area is

idealistically elastic and the Hooks law is valid. By progressively increasing the load, the stress

condition reaches the relief surface and generation of elastic and plastic deformations take place at

the same time. If it is assumed that the direction of the flow law is defined with the vector h, then

the following term for the incremental value of plastic deformation may be wrote
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(3)

λ is a scalar size and defines the scalar value of material plastic deformation, and is determined

from the stress condition at the relief surface. The h vector is a stress condition function and is

defined as a gradient of plastic potential scalar function g, so one may be wrote  

(4)

The direction of plastic flow is always perpendicular to the surface of plastic potential, defined by

plastic potential function g. The classic approach of the scalar field g determination, for ideal

elastic-plastic materials, is the assumption that the plastic flow takes place in a direction that causes

maximum work dissipation due to the activation of plastic deformations (plastic work). The

mentioned work component is the irreversible part of total work developed by the cycles of load

and relief.

The result of this assumption is that the vector of incremental plastic deformation must be

perpendicular to the incremental stress vector. The stress condition is defined at the relief surface,

which means that the incremental stress vector is in fact the tangent to the relief surface. 

By other words, the vector of incremental plastic deformation is perpendicular to the relief

surface, and in that case, the plastic potential function is also the function of material relief, that is,

g = f. This kind of liquid law, where g = f, is called the associative liquid law. In the case when g ≠ f,
that is an no associative liquid law. For the ideal-plastic materials the associative liquid law

maximizes the work developed on plastic deformations, while for the materials with increasing

(hardening) or decreasing (softening) that can, but doesn’t necessarily need to be in case.

2. The critical state model (CAM CLAY MODEL)

The Mohr-Coulomb law defines failure only threw the state of stress in the soil, not considering

the value of deformation at failure. Threw the model of critical state (Atkinson and Bransby 1978,

Wood 1990), it is possible to define the deformations in soil at soil failure, also as defining the real

diagrams of stress-deformation.

For the stress state in the device for three-axis shear ( ) the value of the middle normal

effective stress p', and stress deviator q the following may be wrote

(5)

(6)

The suitable deformations (volume εp and deviation εp) are determined from the condition of

equality of total work, in no dependence of the choice of stress invariants

 (7)
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The relation between q i p' threw the parameters of Mohr-Coulombs model c and ϕ

 (9)

The term (9) presents the Mohr-Coulombs law in q − p' plane. If the influence of cohesion is

neglected, then the following term may be wrote 

(10)

The term (10) defines the line of critical state (LKS) in q − p' plane, that defines the state of soil

failure. In the plane e-lnp' the line of critical state has a gradient λ and is parallel to the line of

isotropic compression (LIK) (Fig. 2), where is e-pore coefficient. The line of isotropic relief, also as

the repeated load in the plane e-lnp' has a gradient κ.

For the total incremental volume and deviation deformation (sum of elastic and plastic

component) due to increment activeness of average main stress ∆p', and stress deviator ∆q, the

following may be wrote 

total volume deformation (11)
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Fig. 1 State of stress on a sample in the device for three-axis shear

Fig. 2 The lines of critical states (LKS) and isotropic load (LIK), load removal and repeated load
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 total deviation deformation (12)

In undrained conditions the total volume change is zero, which means that for a volume

deformation the following term is valid

      (13)

The deviator component of total incremental deformation will be determined by acquire the relief

plane, and the associative liquid law. In that case the total increment of plastic deformation is

perpendicular to the relief plane. In the modified Cam Clay model (Wood 1990) the relief plane is

set by the following term 

      (14)

where  over-consolidated stress, and the other marks according to the previous terms. 

After deriving the term (14), for the load increments  i  term (15) may be wrote in a

differential mode for a normal on the relief plane 

      (15)

If the term (15) is wrote in a function of plastic deformation increments (Fig. 3) then the term for

plastic deviator deformation increment is

  (16)

That way, by the known plastic volume deformation increment, and temporarily stress condition,

the plastic incremental component of deviator deformation is gained.

The elastic component of deviator deformation is gathered from the following term using Hooks

law for valid invariants of stress and deformation 

(17)
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Fig. 3 The direction of total plastic deformation increment 
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2.1 Consolidated Isotropic Drain test (CID) 

The initial elastic deformation, that is also the total deformation for the initial load increment,

develops till reaching the relief ellipse

      (18)

The line at gradient 3:1 determines the variation q in function of p' in q − p' plane, and represents

a mutual line of total and effective stresses. The suitable values of volume deformation, in differ

from the term in (Budhu 2000) for the first increment are (according to the marks on Fig. 4)

       (19)

      (20)

      (21)

where 

The total volume deformation for the first load increment is now 

      (22)
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Fig. 4 Volume deformation calculation in CID test
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When all components of incremental volume deformations are known, one is able to, threw the

terms (16) i (17) determine the components of deviator incremental deformations. The total deviator

deformation for the first step is 

      (23)

The components, also as the total values of volume and deviator deformations, for all load

increments to failure, are calculated according to the proportional analogy with the shown terms.

The real load increment is calculated threw suitable stresses. The direction of incremental volume

load is gained by separating to the direction of isotropic load and relief with known values of

average stresses.

By progressive load increase one reaches the failure of average stresses pf' , with a suitable value

of porosity factor, that is, the final failure deformation. In that way the real value of variation of the

total volume deformation till failure is calculated. 

2.2 Consolidated undrain test (CIU)

At the CIU test there is no variation of volume while applying load, which means that the change

of total deformation is preformed only by the deviator components. The line of total stresses no

longer matches with the line of effective stresses, as it was in CID test.

A failure occurs by progressive decreasing the average normal stress p' all to the failure values

, with increasing the stress deviator qf to failure, which is shown on Fig. 5. At the CID test the
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e∆ εq1∆+=

pf′

Fig. 5 The stress and deformation path in the CIU test 
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variation of volume is characteristic, while at the CIU test the variation of pore pressure value while

load applying is competent.

The average failure stress  is determined from the term

(24)

where eΓ is the value of the porosity coefficient on the critical state line in the e-lnp' plane for pf' = 1

and equals

      (25)

When the initial value of average stress  is known, its possible, with the chosen value of

increment increase ∆p', to lead the calculation till the failure value . If the following term is

generally

      (26)

And if  is an over-consolidated stress for , then it can be shown that for undrained

conditions the following term for over-consolidated stress for  is valid 

      (27)

The value of stress deviator q for a known average normal stress is determined for the term (14)

based on the condition stress state on the relief ellipse. From the term (20) the elastic volume

deformation increment is determined, which is equal to the plastic volume deformation increment.

When the components of incremental volume deformation are known, the incremental plastic

deviator deformation is defined by using the term (16). The axial deformation equals the deviator

deformation 

      (28)

The pore pressure is determined as a horizontal distance between the line of total stress at gradient

3:1 (TN) and the curve of effective stresses (EN).

      (29)

      (30)

3. Numerical examples

Using the presented terms, an algorithm is made which enables an analysis of the soil response

according to the critical condition model (modified Cam Clay) for a proizvoljna stress variation

path.

A calculation is lead for normally and lightly consolidated soil samples, that is, for OCR ≤ 2 for

undrained soil conditions, according to the accepted numerical model. Considering the values OCR

≤ 2, the curves without residual values of stress deviators are calculated, that is, failure occurs with
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the first reach of line critical conditions. For the drained conditions the limit value is OCR ≤ 6/(3-

M), due to the line gradient (3:1) of total and effective stresses. 

The calculation in both cases is lead close to value of relief limit (i.e., 0.99×pf) due to numerical

instability in the surround of the relief point, where generating movement with no load increase

takes place. As a solution, one looks for a standard diagram of stress-deformation q-ε1 where ε1 = εq

+ εp/3, and the relation diagrams of axial deformation ε1 and volume deformation εp or the axial

deformation and pore pressure ∆u relation, depending on that if the issue is drained or undrained

state. 

The calculation is lead for n = 2, 5, 10, 20, 50 i 100 steps, and for OCR = 1, 1.5, i 2.0, while for

the undrained state also for OCR=2.0×3/(3-M) > 2, because it is neccesery M < 3. For example, it

the following soil parameters are set, also as the values of initial pore coefficient and over-

consolidated stress:

λ = 0.25, κ = 0.05, ϕ ' = 28o, ν = 0.3, eo = 0.85, pc'  = 300 kN/m2

Fig. 6 shows the results of the deviation failure calculation for various calculation steps for

OCR=1.5 in CID test. The relief for the minimum number of steps takes place at the failure value

≈60% of the value of failure deviator reached with the maximum number of steps. The failure

deviator value is equal in al calculation steps, but the deformation values at smaller steps become

unacceptably great by reaching the limit values of deviator stress, therefore they are compared with

the failure deformation gathered with the maximum number of steps.

At the CIU test the influence of the initial elastic deformation (Fig. 7) for all analysed values for

the number of calculation steps is notable. The initial value at the ellipse relief and failure stress

deviator value don’t differ much. The absolute value of the stress deviator is smaller comparing to

the CID test, which is also for the deformation value, due in case for the deformation values, the

absolute deformation is a result of the distortion component only (the volume component is zero).

In generally, with a greater value of initial elastic deformation comparing to the final deformation

or analogy, with a greater ratio of the initial (at the first relief ellipse) and the final value of the

Fig. 6 Diagrams q-ε1 for CID test and OCR=1.5, for
various increments load amounts

Fig. 7 The q-ε1 diagrams for the CIU test and
OCR=1.5, for different amounts of load
increments 
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stress deviator, the influence of the number of calculation steps to the final result is smaller.

The position of the initial value of the relief deviator (intersection of the line 3:1 and the relief

ellipse at the CID test or the intersection of the vertical line for the same initial value of average

stress and relief ellipse for CIU test) depends on the OCR value.

The Fig. 8 shows the relation of the number of calculation steps and normalized value of failure

deviator with a stress failure deviator for a maximum number of calculation steps (100 steps).

For the value of OCR=6/(3-M) at CID test the influence of the number of steps can be  neglect.

Even at the initial elastic deformation, a relief occurs, because the intersection of the initial relief

ellipse is at the same time the value of failure stress deviator, therefore the sample acts as an ideal

elastic-plastic. By gradual decrease of the OCR value, the increase deviation is notable. For the CID

test, no matter of the OCR value, very good results may be gained with 20 steps (5% of the total

load), where its notable that the results are in the 5% of final value. 

At Fig. 9, similar as Fig.  8, the calculation results are shown, but for the CIU test. It’s notable

that there is a significantly lesser sensitivity of failure stress deviator at the number of steps and

almost independently of the OCR values. The maximum deviation is 20%, for the minimum

number of steps. The calculation with 20 load steps shows results with deviation in limits ≈2%. 

The Fig. 10 shows curves q-ε1 with 100 steps for various  OCR for CID test. The decrease of

maximum stress deviator values occur with smaller OCR, which is a result of sample tritrturation

due to its isotropic relief (increase of pore coefficient), but only for a new load which is not

isotropic. In case of a repeated isotropic load, the sample would be stiffer, because the pore

coefficient change would occur on the line of isotropic relief and repeated load (gradient κ in e-lnp'

diagram). For OCR=6/(3-M) it is notable that the sample acts as ideal elastic-platic.

It’s similar to the CIU test (Fig. 11), but now with a significant smaller mutual difference in the

final deviator stress values, with a curve form with rapid relief (closer to the ideal elastic-plastic

diagram).

Fig. 12 shows the common view of normed failure stress deviators for CID and CIU tests. The

deviation at the CIU test are significantly lesser comparing to the CID test and don’t reach over

20% of the maximum OCR. The deviations at CID test are greater and they reach ≈70% comparing

Fig. 8 The diagrams of the influence of the number
of steps for various OCR on the value of
failure deviator in CID test 

Fig. 9 The diagrams of influence of number of steps
for various OCR on the value of failure
deviator in CIU test 
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to the minimum OCR value.

The increment load size has a great influence on the final load-deformation soil diagram,

especially in cases where the dominant plastic deformations take place form the start of load

applying till the sample failure. It has been shown that, regardless to the drained or undrained

conditions, for the stress path, where the vertical axis of the initial relief ellipse intersects the line of

critical conditions in the point of final failure stress deviator value, the increment load apply amount

may be neglect. 

In that case failure occurs immediately after the initial elastic deformation and the material

performs as an ideal elastic-plastic one.

In generally, it may be said that the undrained soil state is less sensitive to the number- of

calculation steps. On the presented examples, the maximum deviator stress deviation in the

undrained test was 20% comparing to the value of failure deviator for 100 steps, while for the

drained sample the maximum deviation was 50%. For the value of increment of 5% of the total

Fig. 10 The stress-deformation diagrams q-ε1 for
various OCR at CID test 

Fig. 11 The stress-deformation diagrams q-ε1 for
various OCR at CIU test

Fig. 12 The common view for normed failure stress deviators for CID and CIU tests 
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load (20 steps), satisfactory good results for CID test can be gained, while for the CIU test the

necessary number of steps for the same accuracy is even less. The influence of the load history,

expressed threw the OCR, is significant due to the change of position of the initial load in the q-p'

diagram, and in that way significant to the influence to the final shape of the stress-load diagram,

and to accomplish results with satisfactory accuracy.

The presented procedure for the soil response calculation, where the material unlinear soil on an

acceptable accurate way, is involved. The calculation results may be used independently or the

calculation results can be the input values for the existing commercial programs, where for the input

values are used, for example, the hyperbolic curves of Duncan-Chang-s model (Hard Soil in Plaxis

program) or parameters of Cam Clay model (in Geo Sigma program or Soft Soil in Plaxisu). The

work presents the results of the test simulation calculation in the three-axis device for the standard

tests, although the modelling in all stress directions is possible, with a condition of knowing the soil

parameters of the accepted model, including the pore coefficient. Its also possible to lead direct

compares of the calculation results by the shown model and the results of the gained commercial

programs. In that case it is necessary to know the mutual differences in the assumptions of the

analysed models.
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