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Transient soil-structure interaction with consistent 
description of radiation damping 
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Abstract. Radiation damping due to wave propagation in unbounded domains may cause a significant
reduction of structural vibrations when excited near resonance. Here a novel matrix-valued algebraic Padé-
like stiffness formulation in the frequency-domain and a corresponding state equation in the time domain
are elaborated for a soil-structure interaction problem with a layered soil excited in a transient manner by
a flexible rotor during startup and shutdown. The contribution of radiation damping caused by a soil-layer
upon a rigid bedrock is characterized by the corresponding amount of critical damping as it is used in
structural dynamics.

Keywords: boundary element method; soil dynamics; frequency-to-time transformation; radiation damp-
ing; soil-structure interaction.

1. Introduction 

There is a wide range of dynamic problems in engineering where infinite or semi-infinite media

are involved. For such systems effects from propagating waves in water, air or elastic solids cannot

be neglected in analysis. 

Fig. 1 shows a typical setup of a soil-structure interaction problem with a rotating machine which

causes transients at startup or shutdown. In this case, waves will emit from the foundation and may

lead to a reduction of the structural response and thus causes a kind of damping called radiation

damping. 

The example of soil-structure interaction above can be treated by splitting the system into two

distinct parts: near field (the structure, which may also include some portion of the soil) and far

field (unbounded soil). This method is taken form substructure technique, which has been

introduced by Vaish and Chopra (1974). Typically, the structure together with an irregular adjacent

soil region is treated by finite element method (FEM) which may behave non-linearly. Extensive

research was conducted to describe the unbounded soil with an analytical or semi-analytical

methods. A comprehensive review of the soil-structure interaction problem particularly with

computational methods is given by Antes and Spyrakos (1996). 

In this paper, an alternative method to represent an unbounded soil in a dynamic analysis is
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presented. A special emphasis is placed on a consistent description of radiation damping in the

time-domain. A main purpose of the developed strategy is to find a formulation applicable to

transient excitation problems. In principle, it is a combination of the boundary element method

(BEM) in the frequency domain to reproduce the far-field and the FEM in the time domain to

analyze the near-field. This alternative procedure avoids the introduction of any artificial non

reflecting boundaries. 

The procedure is based on a rational approximation of the dynamical stiffness of the unbounded

domain in the frequency-domain. Here, discrete values of the dynamical stiffness are interpolated by

means of continuous rational functions. This idea was originally proposed by Wolf (1991, 1994) for

the scalar wave equation only in order to represent the soil by a simple physical model. In a series

of papers Ruge and Trinks (2002, 2003), Ruge et al. (2001, 2006), extended this interpolation by a

continuous rational form of K(ω) to multiple degrees of freedom, and it has been implemented in

the works of Trinks and Ruge (2002a, 2003b, 2002b, 2003a), Trinks et al. (2001a,b), Trinks (2005)

and Zulkifli (2008). 

Hence, the state variables uc(t) (nodal displacements) and the nodal forces fc(t) in the interface are

related by the frequency dependent dynamic stiffness matrix K(ω) assuming a harmonic behavior in

the time domain 

(1)

A set of Kj = K(ωj) found numerically or analytically is then used to establish a matrix-valued

interpolation form of K(ω), that is 

(2)

where Q and P are matrix polynomials

   (3)

with M is the approximation order of the dynamic stiffness.
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Fig. 1 Rotor on a foundation plate resting on the halfspace
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A limited range of ω is used for the approximation process, corresponding with a finite number of

dynamical stiffness matrices. The matrix-valued coefficients of the rational approximation function

are determined by means of a least-square procedure. Explicit details of how to obtained P and Q in

the above equation can be found in Ruge et al. (2001). The dynamic stiffness matrix K(ω) has to be

known either analytically or it must be numerically obtained for each given value of ω. In this

paper, the numerical results for the dynamic stiffness of soil K(ω) is obtained from a Boundary

Element approach in the frequency domain. 

2. BEM in elastodynamics 

In elastodynamics, the Navier differential equation of motion of an isotropic, homogenous

viscoelastic medium is wellknown

(4)

where ρ is the mass density, b is the body force per unit mass, uj is the displacement field, cp is the

propagation speed of longitudinal waves and cs for the transversal waves  

(5)

or in terms of shear modulus G

 (6)

where E is Young’s modulus and ν is Poisson’s ratio. 

The exact harmonic solution  in the time-domain transforms the motion

Eq. (4) into the frequency-domain 

(7)

In the absence of body forces, the domain Eq. (7) can be expressed as surface equation by using

Somigliana’s Identity based on Betti’s reciprocal theorem

(8)

 

where ξ is the source point where a unit force is applied and x is the observation point at the

surface Γ. uj and pj are the physical displacements and surface traction in the j direction.  and 

correspond to the fundamental solutions in the j direction due to point load applied in the i

direction. Details of these fundamental solutions in elastodynamics can be found in Bausinger and

Kuhn (1987), Andersen and Jones (2001) and Beskos (1987). 

The integral equation for a point on the surface Γ can be derived from Eq. (8)

 (9)
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The above integrals are in the sense of Cauchy principal values; when Γ is assumed to be smooth

at ‘ξ’ then cij simplifies to cij(ξ) = δij. For any other surface geometry at the source point, other

values of cij(ξ) are obtained. Discussion of the values of cij(ξ) for various surface conditions can be

found in Hartmann (1981).

In order to solve the boundary integral equations numerically, the boundary has to be discretized

into a series of elements over which displacements and traction are written in terms of their values

at a series of nodal points. The displacement and traction fields are interpolated over each element

using a set of shape functions, which are also used to approximate the geometry. 

Rewriting the Eq. (9) in a discretized form creates a system of linear algebraic equations

 (10)

where NE is the number of boundary elements in the domain and  is an element shape

function. In this paper, all of the soil surfaces were discretized into nine-node Lagrange element

with quadratic shape functions presented in Cook et al. (1989). 

Altogether N source points generate a global matrix equation for the entire domain

(11)

The matrix  stores the (3 × 3) matrices C(ξ) for each of the observation nodes along the

diagonal. Introducing , the Eq. (11) can be written like 

(12)

where the matrices H and G have to be calculated for each value of ω, since the fundamental

solution depends on the frequency. 

The integration process is accomplished with a standard Gauss-Legendre quadrature if the source

point does not lie in the element. Matrix G contains terms with singularities of type 1/r when the

source point lies in the element. To overcome this situation, Li et al. (1985) proposed a method

based on a transformation of the integration area. 

Matrix H contains terms with singularities of type 1/r2 when the observation point coincides with

the source point. This situation is treated with a rigid body assumption for a closed, interior domain

where no traction appear on any part of the surface. For a halfspace problem with no closed domain

an artificial, enclosing boundary (enclosing elements) is constructed (Ahmad and Banerjee 1988). 

3. Transformation into the time-domain 

The description in the frequency domain is established by means of (2) and (3)

(13)

In order to achieve a pure linear formulation with respect to (iω) instead of the rational form in

(13), a special algebraic splitting process is introduced. In a first step the fraction in Eq. (13) is
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replaced by a linear part  and a strictly proper rational function of reduced order

(14)

The matrices S0, S1 and Ri are obtained by comparing coefficients at powers of (iω). The

remaining rational part is taken to define an additional variable . This definition for  is

formulated in ‘inverse manner’ as the next step

(15)

The splitting process outlined in (14) is repeated, and the improper fractional part in (15) is

replaced with a subsequence linear part 

(16)

(17)

Again, the splitting process outlined above is repeated. The new additional variable  in (17) is

replaced with a subsequence linear part 

(18)

                               

   

with R(1)(ω) and R(2)(ω) in Eq. (18) represented below 

The splitting process procedure is repeated until only a strictly proper part remains whose

denominator polynomial is a linear function. Details of this explicit process can be found in Ruge

et al. (2001). 
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Finally, with NK indicating the order of the dynamic stiffness matrix K(ω), this splitting process

results in a strictly linear system of order (M + 1) × NK. It can be formulated in the spectral-domain

as well as in the time-domain. 

(19a)

(19b)

where the system matrices are strictly banded 

, (20)

4. Numerical example 

A coupled system with gyroscopic rotors, foundation plate and soil is discussed as a practical

example. The rotor with a 4 [m] shaft’s length as shown in Fig. 2 is considered an unbalance

excitation source and is supported by bearings mounted on the concrete foundation plate. The

bearing stiffness and damping coefficients are provided by Lund and Thomsen (1978) which are

presented in Suarez et al. (1992). These coefficients are taken as constant values independent of the

spin speed of the rotor. Details of the rotor properties are shown in Tables 1 and 2. Here, rds and hds

are disk’s diameter and thickness, respectively. Jp and Jr are the disk’s moment inertia about the

rotation axis x and any other axis in the disk plane (y, z), respectively. 

Aû iω( )Bû f̂=
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Fig. 2 Side view of gyroscopic rotor on a soil layer over a rigid bedrock
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The coupling interface between soil and foundation plate is treated as an elastic connection. The

rotor and the foundation plate are resting on a soft clay soil layer with depth d = 5.0 [m] over rigid

bedrock as shown in Fig. 2. This soft clay soil parameters are shear modulus G = 2.1 × 106 [N/m2],

mass per volume ρ = 1500 [kg/m3] and poisson ratio ν = 0.44. The foundation plate properties are

Young’s modulus E = 2.1 × 1010 [N/m2], poisson’s ratio νpl = 0.2 and mass ρpl = 2450 [kg/m3].

The foundation plate size is 8 × 6 [m2] with thickness h = 68 [cm]. The problem discretization

mesh is shown in Fig. 3 and is built from 232 isoparametric elements with 930 nodes.

The soil dynamical stiffness K is established by means of an approximation of order M = 4,

(21)
K Q[ ] 1–

P[ ]≈

   Q0 iωQ1 … iω( )4
Q5+ + +[ ]

1–

P0 iωP1 … iω( )5
P6+ + +[ ]=

Table 1 Properties of rotor in Fig. 2

Poisson’s ratio ν 

Young’s Modulus E 

Shear Modulus G
Mass ρ
Shaft diameter rsh 

= 
=
=
= 
= 

0.3 
2.08 × 1011 [N/m2]
7.99 × 1010 [N/m2] 
7806 [kg/m3] 
0.19 [m] 

Bearing stiffness coefficients [N/m]: 
 = 1.8305 × 108, = 1.0977 × 108 

Bearing damping coefficients [N s/m]:
= 5.4139 × 106,  = 2.1294 × 106 

Table 2 Disk’s properties of rotor in Fig. 2

Disk rds [m] hds [m] m [kg] Jp [kg m2] Jr [kg m2] ε [m] 

D1 0.435 0.125 580.052 54.880 28.195 5.75 × 103 

D2 0.650 0.160 1657.773 350.205 178.639 1.05 × 102 

D3 0.650 0.160 1657.773 350.205 178.639 1.05 ×102 

Kyy

b
Kzz

b

Dyy

b
Dzz

b

Fig. 3 Elastic foundation plate of rotor in Fig. 2 on a soft clay soil mesh



54 Ediansjah Zulkifli and Peter Ruge 

The least square process uses 76 input values of K(ωj) as a result of the boundary element

method. The boundary element method is performed in the frequency range from ω1 = 0.0 [rad/s] to

ω76 = 75.0 [rad/s] with the increment of ∆ω = 1.0 [rad/s]. 

The resulting soil dynamical stiffness and its corresponding approximation at the center of the

coupling interface (node 1) is shown in Fig. 4. The approximation results at the other coupling

interface locations (nodes 6 and 12) are shown in Fig. 5. The soil dynamical stiffness approximation

can be judged as ‘good’ with this order M = 4, since the resulting boundary element method

dynamical stiffness itself are already ’wavy’ curves. 

4.1 Rotor-shaft system 

Fig. 6 shows the positive directions of rotations and moments of the rotor-shaft for a single rigid-

disk rotor system with a gyroscopic moment My (Gasch et al. 2002) around the y axis. The angular

velocity  arises when the rigid-disk rotates with angular velocity  = −Ω. 

The equation of motion of this rotor-shaft for a single rigid-disk system with a constant angular

acceleration  can be found in textbooks like (Genta 1995)

ϕ· z ϕ· x

ϕ·· x β=( )

Fig. 4 Soil stiffness approximation at the center of coupling interface (node 1). Soil properties: G = 2.1 × 106

[N/m2], ρ = 1500 [kg/m3] and ν = 0.44. Rigid bedrock at depth d = 5 [m] 
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Fig. 5 Soil stiffness approximation at node 6 and node 12 at the coupling interface. Soil properties: G = 2.1 ×
106 [N/m2], ρ = 1500 [kg/m3] and ν = 0.44. Rigid bedrock at depth d = 5 [m]
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, (22)

(23)

Subscripts sh and ds in (22) denote for shaft element and disk element, respectively. The values cij

in the above equation describe stiffnesses of the shaft element

, with � = shaft’s length. 

The right side of Eq. (22) is caused by the eccentricity ε between the center of gravity of the rigid

disk (C) and the center of the shaft element (B) as shown in Fig. 6. 

The rotor in Fig. 2 is accelerated by a constant angular acceleration β = 1.75 [rad/s2] with respect

to time as shown in Fig. 7 and thus generates unbalanced excitations for the foundation plate. The

rotor’s constant operating spin speed is Ω = 17.5 [rad/s] ≈ 167 [rpm] in the interval t1 ≤ t ≤ t2. The

rotor is mounted on the foundation plate by bearings at nodes 13 and 14 which are shown in
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Fig. 6 Shaft with a single rigid-disk with positive rotations and moments

Fig. 7 Disk angular acceleration β with respect to time
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Fig. 3(b). Details ϕ,  and  due to the angular acceleration β with respect to time as shown in

Fig. 7 are described in appendix A. 

The equation of motion of the rotor-foundation-soil problem in this example can be written as 

(24)

where  is the angular velocity of rotor due to a constant angular acceleration β.  is the total

rotor unbalanced load from rigid disks element, i.e., the right side matrix of Eq. (22) for each rigid

disk of rotor. 

A more detailed representation of Eq. (24) contains the displacements ucp in the coupling

interface, the additional variables v and the displacements ur of the rotor. In addition, the second

order system in (24) is expanded to a first order system by additional state variables 

(25)

 

(26)

where 

A and B: matrices of the soil system, 

Kpl : bending plate stiffness matrix,

C : bending plate mass matrix,

Kr : rotor stiffness matrix,

Gr : rotor gyroscopic matrix,

Mr : rotor mass matrix. 

The foundation plate in this paper is analyzed by using Mindlin’s plate theory presented in Cook

et al. (1989). The consistent mass matrix of the bending plate element is defined as 

(27)

where  and N are plate mass per volume and shape functions of the quadratic Mindlin plate

element, respectively. 

Rearranging (25) and (26) yields the rotor-foundation-soil equation of motion

(28)

Expanding the rotor equation of motion in (28) with the additional matrices from the rotor

bearings leads to the final rotor-foundation-soil equation of motion in a state space form
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(29)

where Kb and Db are the stiffness and damping matrix of the bearing support between rotor-shaft

and the foundation respectively.

The stiffness and damping matrices of the rotor bearing support are
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Fig. 8 Vertical displacement u3 at mass center level of elastic plate due to rotor excitation with β = 1.75 [rad/
s2]. Soil properties: G = 2.1 × 106 [N/m2], ρ = 1500 [kg/m3] and ν = 0.44. Rigid bedrock at depth d = 5
[m].
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The structure response due to an unbalance rotor load is determined by solving the Eq. (29) in the

time domain due to the load frβ in the Eq. (24)

(32)

The resulting vertical displacements at the foundation plate mass center are shown in Fig. 8. Here,

the results are shown only at some plate nodes. These nodes are at the center of plate (node 1), at

the plate corner (node 6), at the rotor bearing mountings (nodes 13 and 14) and at the plate edge in

y axis direction (nodes 4 and 23). 

The displacements amplitude at the rotor constant operating speed (10[s] < t ≤ 30[s]) is checked

by solving Eq. (32) due to a load  which is the unbalanced load due to the constant rotational

speed Ω = 17.5 [rad/s]

(33)

where the equation of motion of the rotor-shaft for a single rigid-disk system with a constant

angular velocity Ω is taken from Genta (1995)

(34)

The right side of the matrix Eq. (33) for each single disk i reads 

with (35)

The resulting displacement amplitudes are shown in Table 3. 

Good agreements are achieved between the resulting amplitudes shown in Table 3 and the

displacement amplitudes of the system at rotor constant angular velocity shown in Fig. 8. 

The corresponding damping ratio D of the system can roughly determined from the resulting

vertical displacement due to an impulse load. Here, a vertical constant load F = 107 [N] acting at the

center of plate with a duration of 0.05 [s] is treated. The resulting vertical displacement at the center

of plate (node 1) is shown in Fig. 9. 
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Table 3 Vertical amplitudes  of rotor displacements at constant angular velocity

Nodes 01 04  06 13 14 23 

 (×10−03) [m] 0.1159 0.1235 0.1409 0.1050 0.1262 0.1015 

A
u
3

A
u
3



Transient soil-structure interaction with consistent description of radiation damping 61

Fig. 9 Vertical displacement u3 at mass center level of elastic plate due to a vertical constant load F = 107 [N]
with a duration of 0.05 [s]. Soil properties: G = 2.1 × 106 [N/m2], ρ = 1500 [kg/m3] and ν = 0.44. Rigid
bedrock at depth d = 5 [m]

Fig. 10 u3 Amplitude [m] of the rotor in Fig. 2 at various conditions. Soil properties: G = 2.1 × 106 [N/m2],
ρ = 1500 [kg/m3] and ν = 0.44
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The logarithmic decrement Λ from the adjacent peak displacements z1 and z2 (marked by ‘x’) in

Fig. 9 reads 

Hence, the damping ratio D becomes 

The next important aspect that is presented here is the influence of the soil layer with respect to

radiation damping. This influence is shown by comparing the rotor amplitudes for assuming a rigid

soil with the rotor amplitudes for an elastic foundation-soil system. In order to do this, the same

gyroscopic rotor of this example is analyzed on various soil depths. Here, the bearing damping

coefficient of the rotor  and  are reduced to 0.54139 × 105 [N s/m] and 0.21294 × 105 [N s/m],

respectively, in order to pronounce the soil radiation damping effect. 

Fig. 10 compares the rotor amplitudes for the situation mentioned above. This figure clearly

shows the radiation damping effect due to soil presence in the rotor-foundation-soil system. 

Obviously, there is a continuous increase of radiation damping when changing from a rigid soil

model to a halfspace model. 

5. Conclusions

The established rational approximation method in Ruge et al. (2001) has been elaborated for

coupled system with multiple degrees of freedom. Hence, the coupling between different degrees of

freedom is fully preserved. The matrix-valued coefficients of the rational approximation function are

determined by means of a least-square procedure. Here, a least-square algorithm for multiple

degrees of freedom has been implemented and yields a satisfactory result, particularly concerning

the numerical performance. An accurate representation of the soil elastic dynamical stiffness

resulting from the boundary element method has been achieved using degrees of rational

approximation M = 4. 

The time-domain representation is achieved by splitting the rational force-displacement into a

series of linear functions in the frequency-domain corresponding with first order differential

equations in the time-domain. This splitting process has been demonstrated as numerically effective

and in addition is characterized by a fully explicit process. 

The concept presented in this paper has been successfully used to represent a rotor-foundation-soil

problem in a three-dimensional dynamical soil structure interaction analysis for a transient excitation

caused by startup and shutdown. The coupling interface between foundation and soil is modeled by

a deformable plate. The method presented in this paper demonstrates its performance to deal with

this kind of problem which is involving unbounded domains. The important aspect from this rotor-

foundation-soil example is the contribution of the radiation damping to the behavior of the system,

particularly the rotor response, which is clearly illustrated in Fig. 10. Here, the vertical rotor

amplitudes are reduced due to the soil presence in the system, the most reduced amplitudes is given

by a soil halfspace. The amount of radiation damping increases with increasing thickness of the soil

layer. 
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A Disk angular acceleration β with respect to time
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Fig. 11 Disk angular acceleration β with respect to time.
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t = t2: 

Time interval C 
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