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Analyses of tapered fgm beams with nonlocal theory
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Abstract. In the present article bending, buckling and vibration analyses of tapered beams using
Eringen non-local elasticity theory are being carried out. The associated governing differential equations
are solved employing Rayleigh-Ritz method. Both Euler-Bernoulli and Timoshenko beam theories are
considered in the analyses. Present results are in good agreement with those reported in literature. Beam
material is considered to be made up of functionally graded materials (fgms). Non-local analyses for
tapered beam with simply supported - simply supported, clamped - simply supported and clamped - free
boundary conditions are carried out and discussed. Further, effect of length to height ratio on maximum
deflections, vibration frequencies and critical buckling loads are studied. 

Keywords: non local theory; Rayleigh-Ritz method; tapered beam; bending; buckling; vibration and
boundary conditions.

1. Introduction

Most classical continuum theories are based on hyper elastic constitutive relations which assume

that the stress at a point are functions of strains at that point. On the other hand, the non-local

continuum mechanics assumes that the stress at a point is a function of strains at all points in the

continuum. Such theories contain information about the forces between atoms, and the internal

length scale is introduced into the constitutive equations as a material parameter. The non-local

theory of elasticity has been used to study lattice dispersion of elastic waves, wave propagation in

composites, dislocation mechanics, fracture mechanics, surface tension on fluids, etc. Work on

nonlocal elasticity is introduced by Eringen (1972), (1983) and (2002) and Eringen and Edelen

(1972). Peddieson et al. (2003) employed nonlocal continuum model in nanotechnology. Pin et al

(2007) employed nonlocal beam model in carbon nanotubes. Reddy (2007) applied nonlocal

theories and reported bending, buckling and vibration results of beams. Wang and Liew (2007)

applied nonlocal continuum mechanics and conducted static analysis of micro- and nano-structures.

Heireche et al. (2008) employed nonlocal elasticity and studied sound wave propagation in single-

walled carbon nanotubes. Zhou and Chung (2000) studied free vibration of tapered beams. Maalek

(2004) investigated shear deflections of tapered Timoshenko beams. Ece et al. (2007) reported

vibration response of variable cross section beam. Ganesan and Zabihollah (2007a) and (2007b)

conducted parametric study on vibration of tapered beams. They employed higher order finite
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element analysis. Reddy et al. (2000) found relation between bending solutions of classical and

shear deformation beam theories. Reddy and Wang (2000) also discussed relationship between

solutions of the classical and shear deformation plate theories. Liew et al. (2004) studied free

vibration and buckling of shear- deformable plates based on meshfree method. Brown and Stone

(1997) employed Rayleigh-Ritz method and studied composite materials. Leissa (2005) reported

historical bases of Rayleigh-Ritz method. Shames and Dym (2006) reported energy and finite

element methods for various structural mechanics problems. Functionally graded material are found

in applications of high temperature environment. These are discussed by Pradhan et al. (2000),

Pradhan (2005), Pradhan (2008) and Murmu and Pradhan (2008).

The tapered beams are increasingly being used in engineering applications, such as turbine blades,

helicopter blades and yokes, robot arms and satellite antennas. Here stiffness of the structure is

varied along the length of the beam. Nonlocal analysis of tapered beams is important and little work

are available in the literature. Thus in the present work authors have attempted to carry out nonlocal

analyses of tapered fgm beams with various boundary conditions. This work includes bending,

buckling and vibration of the beams.

2. Formulation

2.1 Nonlocal theory

The stress field at a point x in an elastic continuum depends on the strain field at the point (hyper

elastic case) as well as strains at all other points of the body. Eringen 2002 attributed this fact to the

atomic theory of lattice dynamics and experimental observations on phonon dispersion. Thus, the

non-local stress tensor σ at point x is expressed as an integral form over the body 

 (1)

where t is the classical, macroscopic stress tensor at point  in the body and the nonlocal kernel

function  which brings the influence of strain at distant points  to the stress at x.

is the distance in Euclidean norm. µ is a material constant that depends on internal and external

characteristic lengths such as the lattice spacing and wavelength, respectively. The macroscopic

stress ‘t’ at a point x in a Hookean solid is related to the strain ε at the point by the generalized

Hook’s law

 t(x) = C(x) : ε (x) (2)

where C is the fourth-order elasticity tensor and : denotes the double-dot product. The constitutive

Eqs. (1) and (2) together define the non-local constitutive behaviour of a Hookean solid (Reddy

2007). Further, Eq. (1) represents the weighted average of the contributions of the strain field of all

points in the body to the stress field at a point. This represents the integral constitutive relations in

an equivalent differential form as

  (3)
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where . e0 is a material constant. a and l are the internal and external characteristic

lengths, respectively. Using Eqs. (2) and (3), stress resultants are expressed in terms of the strains in

different beam theories. In the local theory the relation of stress resultants and strains are

represented as linear algebraic equations. While in non-local theory the relation of stress resultants

and strains are represented as differential equations. For homogeneous isotropic beams the non-local

behavior is assumed to be negligible in the thickness direction. The constitutive relation for

macroscopic stress take the special relation for beams

, (4)

The axial force-strain relation is given by

 (5)

where . The x-axis is considered along the geometric centroid of the beam. In Euler-

Bernoulli beam theory, the constitutive relation is given by

(6)

where  and . 

The superscript ‘E’ denotes the quantities associated with Euler-Bernoulli beam theory. In case of

the Timoshenko beam theory we have additional MT and QT terms. The constitutive relation is given

as

, (7)

where . Ks denotes the shear correction factor.  and . 

The superscript ‘T’ denotes the quantities associated with the Timoshenko beam theory (Reddy

2007). 

In the present work deflections, natural frequencies and critical loads for uniform and tapered

beams (Fig. 1) with various boundary condition are calculated. The moment of inertia and cross

section area are changing along the beam axis. 
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 Fig. 1 Schematic of FGM Tapered beam with simply supported boundary condition
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The moment equation for Euler-Bernoulli non-uniform beam theory is written as 

(8)

while moment equation Timoshenko non-uniform beam theory is expressed as 

(9)

Shear force is written as 

(10)

2.2 Bending

Flexural response of the beams are computed by employing Rayleigh-Ritz method. Strain energy

for bending is expressed as 

 (11)

Beam flexural equation is written as 

 (12)

Putting (12) in (11) 

 (13)

Strain energy due to shear force is written as 

 (14)

Work done by uniformly distributed load (UDL) is expressed as 

 (15)

Total potential energy for the Euler-Bernoulli beam with UDL is expressed as 

 (16)

where U is strain energy due to bending. VE is the work done by external force. For purely bending

analysis NE = 0, m0 = 0 and m2 = 0 are incorporated in Eq. (8).

Eq. (8) is rewritten as 

 (17)
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Strain energy for bending 

 (18)

Work done by UDL is expressed as 

 

(19)

In Rayleigh-Ritz Method the component of approximate displacement w is approximated as

functions containing a finite number of independent parameters, These parameters are determined

such that the total potential energy computed on the basis of the approximate displacements is a

minimum. 

For a given structural system, w is assumed as

 (20)

where  are the linear independent parameters and  are the continuous

functions of the co-ordinate x.  satisfy all the kinematics boundary conditions for all

values of the constant . The total potential energy is a function of 

When the system is in equilibrium, 

 (21)

Eq. (21) is satisfied only if 

 (22)

From Eqn (22)  are determined. Incorporating  in Eq. (20) approximate

displacement w is determined.

Similarly beam bending deflections are computed by employing Rayleigh-Ritz method for the

Timoshenko beam. Total potential energy for Timoshenko beam with UDL is expressed as 

 

(23)

For bending analysis of Timoshenko beam NT = 0, m0 = 0 and m2 = 0 are put in Eq. (9) and we

get 

 (24)

Strain energy for bending is 

 (25)

For bending analysis N = 0 and m0 = 0. q is independent of x. Putting these values in Eq. (10) we
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 (26)

Strain energy due to shear force is

 (27)

work done by UDL is written as

 

(28)

In Timoshenko beam approximate displacement w and rotation φ are functions containing a finite

number of independent parameters, These parameters are determined so that the total potential

energy computed on the basis of the approximate displacements is a minimum. w and φ are

expressed as 

 (29)

where  and  are linear independent parameters and  and

 are the continuous functions of the co-ordinate x. All the kinematics boundary

conditions for all value of the constant  and  are satisfied. The total

potential energy is a function of  and . System is in equilibrium implies 

(30)

Eq. (30) is satisfied for arbitrary values of  Thus

 (31)

 

From Eq. (31)  and  are determined and putting these values in Eq. (29)

we get approximate displacement w and rotation φ.

2.3 Buckling

Critical buckling loads are computed by employing Rayleigh-Ritz method. Total potential energy

of the column with Euler-Bernaulli beam theory is expressed as

 

(32)

where  is maximum strain energy for bending and VP is work done due to external load.

For buckling analysis q = 0, m0 = 0, m2 = 0 are put in Eq. (8). 
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Eq. (8) is rewritten as 

 (33)

Maximum strain energy for bending is expressed as 

 

(34)

Work done due to external load is written as 

 (35)

In buckling analysis w is approximated with independent parameters satisfying kinematic

boundary conditions. For maximum total potential energy 

 

(36)

After simplifying Eq. (36) we get

 (37)

where  and .

We have a homogenous system of n number of eqns. For a nontrivial solution the determinant of

the coefficients is equal to zero. Thus we get 

 (38)
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For buckling analysis q = 0 and m0 = 0 are incorporated in Eq. (10). 

Eq. (10) is rewritten as 

 (42)

Strain energy due to shear force is written as 

 (43)

Work done due to external load is expressed as 

 (44)

w and φ are approximate functions with independent parameters satisfying kinematic boundary

conditions. For maximum total potential energy

(45)

After simplification, we get

 (46)

where  and .

Thus we have a homogenous system of n number of eqns. For a nontrivial solution the

determinant of the coefficients is equal to zero. Thus we get 

 (47)

From Eq. (47) critical buckling load P is determined.
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Vibration frequencies of the beams are computed by employing Rayleigh-Ritz method. Total
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 (48)
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variation . Maximum kinetic energy is expressed as 

(50)

For vibration analysis in Eq. (8) q = 0 and N = 0 are considered and Eq. (8) is rewritten as 

 (51)

Maximum value of potential energy is expressed as 

 (52)
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For vibration analysis q = 0 and N = 0 are incorporated in Eq. (10). Eq. (10) is rewritten as 

 (59)

strain energy due to shear force is written as 

 (60)

w and φ are approximate function with independent parameter that satisfy kinematic boundary

conditions. For maximum total potential energy 

 (61) 

After simplifying Eq. (61) we get

 (62)

where  and 

We have a homogenous system of n number of equations. For a nontrivial solution the

determinant of the coefficients is equal to zero. Thus we get 
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From Eq. (63) frequency ω is determined.

2.5 FGM beam 

FGM are made by mixing two or more different materials. Most of the FGM are being used in
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material property Pi is expressed as a function of the environment temperature T(K) 
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 (66)

 

For example, metal and ceramic materials are mixed to form the FGM beam. Average volume

fraction of the metal and ceramic materials is calculated by simple integration of the distribution

over a domain. Different problems of interest have different expressions of volume fractions. For

bending problems of beam, plates and shells the volume fractions of metal (Vm) and ceramic (VC)

materials are defined as

(67) 

where z is the thickness co-ordinate  and h represents the beam thickness. Rn is the

power law exponent . Here volume fraction of the metal material (Vm) varies from

100% to 0% as z varies from −h/2 to h/2. Similarly volume fraction of the ceramic material (VC)

varies from 0% to 100% as z varies from −h/2 to h/2. For various Rn values the average volume

fractions of metal (Vm) and ceramic (VC) materials are depicted .The Young’s modulus and Poisson’s

ratio of a FGM beam made up of two different materials are expressed as

 (68)

3. Results and discussions 
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Employing Euler-Bernoulli theory (EBT) and Timoshenko beam theory (TBT) for CF and SS
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Table 1 Non-dimensional maximum deflection at free end  in clamped - free  uniform
beam

L/h µ

 Peddieson
et al. 2003

Present result
% of 

difference

EBT EBT TBT EBT

100

0.0 0.1250 0.1250 0.1250 0.000

0.5 0.1225 0.1225 0.1225 0.000

1.0 0.1200 0.1200 0.1200 0.000

1.5 0.1175 0.1175 0.1175 0.000

2.0 0.1150 0.1150 0.1150 0.000

2.5 0.1125 0.1125 0.1125 0.000

3.0 0.1100 0.1100 0.1100 0.000

3.5 0.1075 0.1075 0.1075 0.000

4.0 0.1050 0.1050 0.1050 0.000

4.5 0.1025 0.1025 0.1025 0.000

5.0 0.1000 0.1000 0.1000 0.000

Table 2 Comparison of non-dimensional maximum center deflection  in simply
upported - simply supported uniform beam

L/h µ
(Reddy 2007)  Present result  % of difference

EBT TBT EBT TBT EBT TBT

 100

0.0 1.3130 1.3134 1.3021 1.3025 0.8317 0.8322

0.5 1.3809 1.3813 1.3646 1.3650 1.1818 1.1822

1.0 1.4487 1.4492 1.4271 1.4275 1.4924 1.4994

1.5 1.5165 1.5170 1.4896 1.4900 1.7751 1.7818

2.0 1.5844 1.5849 1.5521 1.5525 2.0399 2.0462

2.5 1.6522 1.6528 1.6146 1.6150 2.2770 2.2888

3.0 1.7201 1.7207 1.6771 1.6775 2.5010 2.5123

3.5 1.7879 1.7886 1.7396 1.7400 2.7026 2.7189

4.0 1.8558 1.8565 1.8021 1.8025 2.8947 2.9103

4.5 1.9236 1.9244 1.8646 1.8650 3.0682 3.0882

5.0 1.9914 1.9923 1.9271 1.9275 3.2299 3.2540

 10

0.0 1.3130 1.3483 1.3021 1.3343 0.8317 1.0398

0.5 1.3809 1.4210 1.3646 1.3968 1.1818 1.7044

1.0 1.4487 1.4937 1.4271 1.4593 1.4924 2.3043

1.5 1.5165 1.5664 1.4896 1.5218 1.7751 2.8486

2.0 1.5844 1.6391 1.5521 1.5843 2.0399 3.3445

2.5 1.6522 1.7118 1.6146 1.6468 2.2770 3.7983

3.0 1.7201 1.7845 1.6771 1.7093 2.5010 4.2152

3.5 1.7879 1.8572 1.7396 1.7718 2.7026 4.5994

4.0 1.8558 1.9299 1.8021 1.8343 2.8947 4.9547

4.5 1.9236 2.0026 1.8646 1.8968 3.0682 5.2841

5.0 1.9914 2.0754 1.9271 1.9593 3.2299 5.5951

ŵ w EI/qL
4

( )=[ ]

ŵ 10
2

w EI/qL
4

( )×=[ ]
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Non-dimensional maximum deflections are computed for the uniform beam with CS boundary

condition and results are listed in Table 3. In case of CS uniform beam deflection is observed to be

increasing with increase in non-local parameter and inclusion of Timoshenko beam theory. This is

due to the fact that beam stiffness for CS boundary condition is inversely proportional to the

nonlocal parameter. For the increase of nonlocal parameter from 0 to 5 there is an increase of 51

percent, increase of 34 percent and decrease of 20 percent in maximum deflections for SS, CS and

CF uniform beams, respectively. Nonlocal effect is found to be in increasing order for CF, CS and

SS boundary conditions. 

3.2 Buckling of column
 

Nonlocal critical buckling loads for SS, CS and CF columns are computed as mentioned in Eqs.

(38 and 47). Column configurations are assumed as mentioned in numerical example of sub section

3.1. The SS column results are listed Table 4. From this table one could observe that present results

are in good agreement with those reported in Reddy (2007). Small difference in results is observed

for higher values of nonlocal parameter and thick beams. This is attributed to the shear force effect

in thick beams. In case of SS column critical buckling load is observed to be decreasing with

increase in non-local parameter. Thus in case of SS beam the beam stiffness is found to be inversely

Table 3 Non-dimensional maximum deflection  in clamped - simply supported
uniform beam

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 0.5389 0.5421 0.5849 0.7094

0.5 0.5565 0.5596 0.6030 0.7288

1.0 0.5742 0.5771 0.6211 0.7482

1.5 0.5918 0.5946 0.6392 0.7676

2.0 0.6094 0.6121 0.6573 0.7870

2.5 0.6271 0.6296 0.6754 0.8063

3.0 0.6447 0.6471 0.6935 0.8257.

3.5 0.6623 0.6646 0.7116 0.8451

4.0 0.6800 0.6821 0.7297 0.8645

4.5 0.6976 0.6996 0.7478 0.8839

5.0 0.7152 0.7171 0.7659 0.9033

ŵ 10
2

w EI/qL
4

( )×=[ ]

Table 4 Comparison of non-dimensional critical buckling loads  in simply  supported -
simply supported uniform beam 

L/h µ
(Reddy 2007)  Present result  % of Difference

EBT TBT EBT TBT EBT TBT

 100
0.0 9.8696 9.8671 9.8696 9.8621 0.0001 0.0511

0.5 9.4055 9.4031 9.0094 9.0033 4.2110 4.2523

 10
0.0 9.8696 9.6227 9.8696 9.6227 0.0001 0.0002

0.5 9.4055 9.1701 9.0094 8.7789 4.2110 4.2658

P P
cr

L
2

/EI( )×=[ ]
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proportional to non-local parameter.

Non-dimensional critical buckling loads are computed for the uniform beam with CS and CF

boundary conditions. Results are listed in Tables 5, 6, respectively. In case of CS uniform beam

critical buckling load is observed to be decreasing with increase in non-local parameter and

inclusion of Timoshenko beam theory. This is due to the fact that beam stiffness for CS boundary

condition is inversely proportional to the nonlocal parameter. While, in case of CF uniform beam

critical buckling load is observed to be increasing with increase in non-local parameter and

inclusion of Timoshenko beam theory. This is due to the fact that beam stiffness for CF boundary

condition is directly proportional to the nonlocal parameter.

For the increase of nonlocal parameter from 0 to 5 there is an decrease of 63 percent and increase

of 5 percent in critical buckling loads for CS and CF uniform columns, respectively. Nonlocal effect

is found to be in increasing order for CF and CS boundary conditions. 

Table 5 Non-dimensional critical buckling loads  in clamped-simply supported uniform
column

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 21.7050 21.5844 20.0970 16.7875

0.5 17.9782 17.8799 16.7247 14.0205

1.0 15.4984 15.4102 14.4570 12.1371

1.5 13.7005 13.6168 12.8026 10.7529

2.0 12.3238 12.2418 11.5307 9.6893

2.5 11.2289 11.1467 10.5161 8.8446

3.0 10.3332 10.2498 9.6845 8.1552

3.5 9.5844 9.4990 8.9881 7.5794

4.0 8.9475 8.8596 8.3949 7.0891

4.5 8.3980 8.3073 7.8827 6.6648

5.0 7.9183 7.8246 7.4353 6.2931

Table 6 Non-dimensional critical buckling loads  in clamped-free uniform column

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 2.4897 2.4672 2.4488 2.3940

0.5 2.5481 2.5301 2.5104 2.4517

1.0 2.6105 2.5971 2.5759 2.5131

1.5 2.6774 2.6688 2.6460 2.5785

2.0 2.7493 2.7457 2.7211 2.6484

2.5 2.8269 2.8286 2.8019 2.7233

3.0 2.9111 2.9183 2.8892 2.8039

3.5 3.0027 3.0157 2.9840 2.8911

4.0 3.1029 3.1221 3.0873 2.9856

4.5 3.2132 3.2391 3.2006 3.0887

5.0 3.3354 3.3685 3.3258 3.2019

P P
cr

L
2

/EI( )×=[ ]

P P
cr

L
2

/EI( )×=[ ]
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3.3 Vibration of beam 

Nonlocal fundamental frequencies for SS, CS and CF beams are computed as mentioned in Eqs.

(45 and 63). Beam configurations are assumed as mentioned in numerical example of sub section

3.1. The fundamental frequencies for SS beam are listed Table 7. From this table one could observe

that present results are in good agreement with those reported in Reddy (2007). Small difference in

results is observed for higher values of nonlocal parameter and thick beams. This is attributed to the

shear force effect in thick beams. In case of SS beam natural frequency is observed to be decreasing

with increase in non-local parameter. Thus in case of SS beam the beam stiffness is inversely

proportional non-local parameter.

Non-dimensional fundamental frequencies are computed for the uniform beam with CS and CF

boundary conditions. Results are listed in Tables 8, 9, respectively. In case of CS uniform beam

fundamental frequency is observed to be decreasing with increase in non-local parameter and

inclusion of Timoshenko beam theory. This is due to the fact that beam stiffness for CS boundary

Table 7 Comparison of non-dimensional fundamental natural frequencies  in simply
supported - simply supported uniform beam 

L/h  µ
(Reddy 2007)  Present result  % of difference

EBT TBT EBT TBT EBT TBT

 100

0.0 9.8696 9.8683 9.8745 9.8706 0.05005 0.02331

0.5 9.6347 9.6335 9.4297 9.4266 2.12752 2.14792

1.0 9.4159 9.4147 9.0543 9.0518 3.84010 3.85472

1.5 9.2113 9.2101 8.7306 8.7286 5.21848 5.22850

 10

0.0 9.8696 9.7454 9.8745 9.7482 0.05005 0.02842

0.5 9.6347 9.5135 9.4297 9.3279 2.12752 1.95081

1.0 9.4159 9.2973 9.0543 8.9708 3.84010 3.51188

1.5 9.2113 9.0953 8.7306 8.6612 5.21848 4.77279

ϖ ω1L
2

ρA/EI=[ ]

Table 8 Non-dimensional fundamental frequencies  in clamped - simply supported
uniform beam

 µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 15.4252 15.4141 14.9345 13.7532

0.5 14.6405 14.6330 14.2450 13.2736

1.0 14.0137 14.0102 13.6871 12.8719

1.5 13.4968 13.4966 13.2223 12.5287

2.0 13.0674 13.0627 12.8268 12.2313

2.5 12.6798 12.6896 12.4848 11.9707

3.0 12.3650 12.3646 12.1856 11.7405

3.5 12.0804 12.0784 11.9213 11.3529

4.0 11.7997 11.5975 11.6861 11.1891

4.5 11.5673 11.3940 11.4758 11.0421

5.0 11.3579 11.2108 11.2869 10.9103

ϖ ω1L
2

ρA/EI=[ ]
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condition is inversely proportional to the nonlocal parameter. While, in case of CF uniform beam

fundamental frequency is observed to be increasing with increase in non-local parameter and

inclusion of Timoshenko beam theory. This is due to the fact that beam stiffness for CF boundary

condition is directly proportional to the nonlocal parameter.

For the increase of nonlocal parameter from 0 to 5 there is decrease of 26 percent and increase of

5 percent in natural frequencies for CS and CF uniform beams, respectively. Nonlocal effect is

found to be in increasing order for CF and CS boundary conditions. 

3.4 Bending of fgm tapered beam 

 

Following parameters are considered in the analyses of the fgm beam. Length L = 10.0 m, width

b = 1.0 m and thickness h0 = 0.1 m, 1.0 m and 2.0 m. Thickness h = h0(1 + (x/L)) is assumed to be

varying linearly along the beam length. Moment of inertia and cross-section area are expressed as I1

= I0(1 + (x/L)) m4 and A1 = A0(1 + (x/L)) m2, respectively. Shear correction factor k = 5/6 is

considered in the analysis. Silicon Nitrate (Si3N4)as ceramic and stainless steel (SUS304) are

assumed to constitute the fgm beam. Power index Rn = 1.0 and UDL q = 1 N/m are considered.

Material properties of Silicon Nitrate and stainless steel are as follows

Table 9 Non-dimensional fundamental frequencies  in clamped - free uniform beam

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 3.5168 3.5160 3.4981 3.4428

0.5 3.5322 3.5312 3.5137 3.4593

1.0 3.5479 3.5468 3.5297 3.4761

1.5 3.5639 3.5627 3.5461 3.4933

2.0 3.5803 3.5790 3.5629 3.5110

2.5 3.5972 3.5957 3.5800 3.5291

3.0 3.6144 3.6128 3.5976 3.5477

3.5 3.6321 3.6303 3.6157 3.5667

4.0 3.6503 3.6483 3.6342 3.5863

4.5 3.6689 3.6667 3.6532 3.6064

5.0 3.6880 3.6856 3.6727 3.6272

ϖ ω1L
2

ρA/EI=[ ]

Properties of Silicon Nitride(Si3N4) and Stainless Steel(SUS304)

Materials properties P0 P-1 P1 P2 P3

Si3N4

E (Pa) 348.43×109 0 −3.070×10−4 2.160×10−7 −8.946×10−11

ν 0.2400 0 0 0 0

α (/K) 5.8723×10−6 0 9.095×10-4 0 0

κ (W/mK) 13.723 0 −1.023×10−3 5.466×10−7 −7.876×10−11

SUS304

E (Pa) 201.04×109 0 3.070×10−4 −6.534×10−7 0

ν 0.3262 0 −2.002×10−4 3.797×10−7 0

α (/K) 12.33×10−6 0 8.086×10−4 0 0

κ (W/mK) 15.379 0 −1.264×10−4 2.092×10−2 −7.223×10−10



Analyses of tapered fgm beams with nonlocal theory 827

Present flexural response computation is extended to the tapered fgm beams. Non-dimensional

maximum deflections for SS, CS and CF boundary conditions are being computed and listed in

Tables 10-12, respectively. 

From Tables 10-12 following observations are made. In case of SS and CS tapered beam

maximum deflection is observed to be increasing with increase in non-local parameter. When

Timoshenko beam theory is included maximum deflection is found to increase with decrease in

length to height ratio for SS, CS and CF boundary conditions. In case of CF boundary condition the

deflection of the tapered beam is observed to be decreasing with increase in non-local parameter.

For the increase of nonlocal parameter from 0 to 5 there is an increase of 48 percent, increase of 30

percent and decrease of 18 percent in maximum deflections of SS, CS and CF tapered beams,

Table 10 Non-dimensional maximum center deflection  in simply supported - simply
supported fgm tapered beam

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 0.8810 0.8866 0.9086 0.9749

0.5 0.9235 0.9285 0.9504 1.0167

1.0 0.9659 0.9703 0.9922 1.0585

1.5 1.0084 1.0122 1.0340 1.1003

2.0 1.0509 1.0540 1.0758 1.1421

2.5 1.0933 1.0958 0.1176 1.1839

3.0 1.1358 1.1376 1.1295 1.2257

3.5 1.1783 1.1795 1.2013 1.2675

4.0 1.2208 1.2213 1.2431 1.3093

4.5 1.2631 1.2631 1.2849 1.3511

5.0 1.3047 1.3049 1.3267 1.3929

Table 11 Non-dimensional maximum deflection  in clamped - simply supported  fgm tapered
beam

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 0.3853 0.3892 0.4118 0.4781

0.5 0.3972 0.4012 0.4242 0.4911

1.0 0.4089 0.4133 0.4365 0.5040

1.5 0.4207 0.4253 0.4488 0.5170

2.0 0.4324 0.4374 0.4612 0.5299

2.5 0.4441 0.4494 0.4735 0.5429

3.0 0.4558 0.4615 0.4858 0.5559

3.5 0.4675 0.4736 0.4982 0.5688

4.0 0.4793 0.4856 0.5105 0.5818

4.5 0.4910 0.4977 0.5229 0.5948

5.0 0.5027 0.5097 0.5352 0.6077

ŵ 10
2

w EI/qL
4

( )×=[ ]

ŵ w EI/qL
4

( )=[ ]



828 S. C. Pradhan and A. Sarkar

respectively. Nonlocal effect is found to be in increasing order for CF, CS and SS boundary

conditions. 

3.5 Buckling of fgm tapered column

Non-dimensional critical buckling loads for SS, CS and CF boundary conditions of the tapered

fgm columns are being computed and listed in Tables 13-15, respectively. 

From Tables 13-15 following observations are made. In case of SS and CS tapered columns

critical buckling load is observed to be decreasing with increase in non-local parameter. This

buckling load decreases with decreases in length to height ratio for SS, CS and CF boundary

conditions. In case of CF tapered column critical buckling load is observed to be increasing with

increase in non-local parameter. For the increase of nonlocal parameter from 0 to 5 there is decrease

Table 12 Non-dimensional maximum deflection  in clamped - free fgm tapered beam 

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 0.1059 0.1081 0.1090 0.1118

0.5 0.1039 0.1061 0.1070 0.1098

1.0 0.1020 0.1042 0.1051 0.1079

1.5 0.1001 0.1022 0.1032 0.1059

2.0 0.0982 0.1003 0.1012 0.1040

2.5 0.0962 0.0984 0.0993 0.1021

3.0 0.0943 0.9650 0.0974 0.1002

3.5 0.0924 0.0945 0.0955 0.0982

4.0 0.0904 0.0926 0.0935 0.0963

4.5 0.0885 0.0907 0.0916 0.0944

5.0 0.0866 0.0887 0.0897 0.0924

ŵ w EI/qL
4

( )=[ ]

Table 13 Non-dimensional critical buckling loads  in simply supported - simply  supported
fgm tapered column

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 15.4037 14.7933 14.3475 13.1360

0.5 13.9459 13.4942 13.0887 11.9958

1.0 12.7826 12.4417 12.0713 11.0685

1.5 11.8268 11.5687 11.2271 10.2956

2.0 11.0238 10.8298 10.5122 9.6391

2.5 10.3374 10.1942 9.8969 9.0729

3.0 9.7423 9.6402 9.3605 8.5785

3.5 9.2203 9.1520 8.8877 8.1423

4.0 8.7579 8.7178 8.4671 7.7538

4.5 8.3448 8.3286 8.0899 7.4053

5.0 8.0149 7.9773 7.7495 7.0906

P P
cr

L
2

/EI( )×=[ ]
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of 48 percent, decrease of 64 percent and increase of 58 percent in critical buckling load for SS, CS

and CF tapered columns, respectively. Nonlocal effect is found to be in increasing order for CF, SS

and CS boundary conditions. 

3.6 Vibration of fgm tapered beam

Present beam vibration computation is extended to tapered beams. Non-dimensional fundamental

frequencies for SS, CS and CF boundary conditions are being computed for the fgm beam and

results are listed in Tables 16-18, respectively. 

From Tables 16-18 following observations are made. In case of SS and CS tapered beams

vibration frequency is observed to be decreasing with increase in non-local parameter. In case of CF

Table 14 Non-dimensional critical buckling loads  in clamped - simply supported fgm
tapered column 

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 31.2600 29.4225 27.6641 23.4871

0.5 25.8038 24.5714 23.1572 19.6518

1.0 22.1765 21.2914 20.0991 16.9998

1.5 19.5491 18.8875 17.8553 15.0799

2.0 17.5394 17.0323 16.1240 13.6370

2.5 15.9426 15.5472 14.7398 12.5005

3.0 14. 6376 14.3258 13.6035 11.5664

3.5 13.5476 13.2998 12.6511 10.7767

4.0 12.6212 12.4234 11.8396 10.0971

4.5 11.8226 11.6644 11.1386 9.5050

5.0 11.1360 10.9995 10.5260 8.9840

Table 15 Non-dimensional Critical buckling loads  in clamped - free fgm tapered  column

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 4.0265 4.0023 3.5948 3.4568

0.5 4.1635 4.1102 3.6942 3.5482

1.0 4.3127 4.2266 3.8006 3.6458

1.5 4.4761 4.3526 3.9152 3.7503

2.0 4.6561 4.4896 4.0388 3.8626

2.5 4.8556 4.6394 4.1728 3.9835

3.0 5.0788 4.8040 4.3188 4.1144

3.5 5.3308 4.9861 4.4786 4.2565

4.0 5.6187 5.1892 4.6548 4.4114

4.5 5.9527 5.4177 4.8503 4.5811

5.0 6.3471 5.6776 5.0692 4.7682

P P
cr

L
2

/EI( )×=[ ]
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cr

L
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Table 16 Non-dimensional fundamental frequencies  in simply supported - simply supported
fgm tapered beam

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 9.8747 9.8645 9.3385 8.0601

0.5 9.4293 9.4212 8.6444 7.8283

1.0 9.0539 9.0475 8.3638 7.6208

1.5 8.7295 8.7242 8.1151 7.4330

2.0 8.4455 8.4412 7.8921 7.2619

2.5 8.1934 8.1898 7.6904 7.1049

3.0 7.9671 7.9641 7.5065 6.9600

3.5 7.7622 7.7597 7.3379 6.8256

4.0 7.5753 7.5733 7.1822 6.7004

4.5 7.4038 7.4021 7.1822 6.5833

5.0 7.2455 7.2441 7.0379 6.4733

Table 17 Non-dimensional fundamental frequencies  in clamped - simply  supported fgm
tapered beam

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 14.8665 14.6892 13.6500 11.2741

0.5 14.0837 13.9216 13.0414 10.9565

1.0 13.4570 13.3057 12.5391 10.6774

1.5 12.9378 12.7947 12.1136 10.4291

2.0 12.4970 12.3604 11.7463 10.2061

2.5 12.1159 11.9847 11.4244 10.0043

3.0 11.7816 11.6550 11.1390 9.8203

3.5 11.4852 11.3624 10.8835 9.6516

4.0 11.2197 11.1005 10.6530 9.4963

4.5 10.9803 10.8642 10.4436 9.3526

5.0 10.7630 10.6497 10.2524 9.2192

Table 18 Non-dimensional fundamental frequencies  in clamped - free fgm tapered beam

µ
EBT TBT TBT TBT

L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 3.6461 3.6328 3.1088 2.6870

0.5 3.6643 3.6453 3.1189 2.6945

1.0 3.6830 3.6581 3.1292 2.7020

1.5 3.7021 3.6710 3.1396 2.7097

2.0 3.7218 3.6842 3.1502 2.7174

2.5 3.7420 3.6977 3.1610 2.7253

3.0 3.7627 3.7114 3.1720 2.7333

3.5 3.7841 3.7254 3.1832 2.7414

4.0 3.8061 3.7397 3.1946 2.7496

4.5 3.8288 3.7543 3.2061 2.7579

5.0 3.8523 3.7692 3.2179 2.7664

ϖ ω1L
2

ρA/EI=

ϖ ω1L
2

ρA/EI=

ϖ ω1L
2

ρA/EI=
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tapered beam vibration frequency is observed to be increasing with increase in non-local parameter.

This vibration frequency decreases with decrease in length to height ratio for SS, CS and CF

boundary conditions. For the increase of nonlocal parameter from 0 to 5 there is decrease of 27

percent, decrease of 28 percent and increase of 6 percent in vibration frequencies for SS, CS and

CF tapered beams, respectively. Nonlocal effect is found to be in increasing order for CF, CS and

SS boundary conditions.

4. Conclusions

Effect of nonlocal parameter on the structural response is sensitive to the applied boundary

conditions and Timoshenko beam theory. In case of SS and CS beam deflection is observed to be

increasing with increase in non-local parameter and inclusion of Timoshenko beam theory. In case

of CF uniform beam deflection is observed to be decreasing with increase in non-local parameter

and inclusion of Timoshenko beam theory. 

In case of SS and CS columns critical buckling loads are observed to be decreasing with increase

in non-local parameter and inclusion of Timoshenko beam theory. In case of CF column critical

buckling load is observed to be increasing with increase in non-local parameter and inclusion of

Timoshenko beam theory.

In case of SS and CS beams vibration frequencies are observed to be decreasing with increase in

non-local parameter and inclusion of Timoshenko beam theory. In case of CF beam vibration

frequency is observed to be increasing with increase in non-local parameter and inclusion of

Timoshenko beam theory.

Effect of nonlocal parameter is larger on bending and buckling than in vibration of beams. Effect

of nonlocal parameter in case of CF boundary condition is substantially less than those for SS and

CS boundary conditions. Further, effect of nonlocal parameter in case of CF boundary condition is

opposite in nature as compared to those for SS and CS boundary conditions.
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Notation

ai : arbitrary constant
A : area of cross section
b : width of beam
E : modulus of elasticity
G : modulus of rigidity
h : height of beam
I : moment of inertia
k : shape factor
L : length of beam
M : bending moment
ni : integer value
N : axial load
P : concentrated load
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Pcr : critical buckling load
Tmax : maximum kinetic energy
ui : displacement
U : strain energy due to bending
VE : work done by external force
VS : potential energy due to shear
w : transverse deflection of beam
ω : natural frequency
ΠP : total potential energy
ρ : density of material
Pi : material properties
Vfi : volume fraction
Vm : volume fraction of metal
Vc : volume fraction of ceramic
Efgm : elastic modulus of fgm beam 
ρfgm : density of fgm beam
γfgm : Poisson ratio of fgm beam
T(K) : temperature in Kelvin
Pfgm : material prorerty of fgm
σxx : bending stress
εxx : bending strain
τxy : shear stress
εxy : shear strain
ϕ(x) : rotation due to shear
µ : nonlocal parameter
m2 : rotary inertia
κfgm : thermal conductivity of fgm beam
z : thickness of fgm beam
Rn : power law index of fgm beam




