
Structural Engineering and Mechanics, Vol. 32, No. 5 (2009) 667-683 667

FE model updating based on hybrid genetic algorithm 
and its verification on numerical bridge model

Dae-Sung Jung† and Chul-Young Kim‡

Department of Civil and Environmental Engineering, Myongji University,

San 38-2, Nam-dong, Yongin-si, Gyeonggi-do 449-728, Korea

(Received July 24, 2007, Accepted June 24, 2009)

Abstract. FE model-based dynamic analysis has been widely used to predict the dynamic
characteristics of civil structures. In a physical point of view, an FE model is unavoidably different from
the actual structure as being formulated based on extremely idealized engineering drawings and design
data. The conventional model updating methods such as direct method and sensitivity-based parameter
estimation are not flexible for model updating of complex and large structures. Thus, it is needed to
develop a model updating method applicable to complex structures without restriction. The main objective
of this paper is to present the model updating method based on the hybrid genetic algorithm (HGA) by
combining the genetic algorithm as global optimization method and modified Nelder-Mead’s Simplex
method as local optimization method. This FE model updating method using HGA does not need the
derivation of derivative function related to parameters and without application of complicated inverse
analysis methods. In order to allow its application on diversified and complex structures, a commercial
FEA tool is adopted to exploit previously developed element library and analysis algorithms. Moreover,
an output-level objective function making use of measurement and analytical results is also presented to
update simultaneously the stiffness and mass of the analysis model. The numerical examples demonstrated
that the proposed method based on HGA is effective for the updating of the FE model of bridge
structures.

Keywords: hybrid genetic algorithm; finite element model updating; genetic algorithm; simplex
method; modal properties.

1. Introduction

Finite element (FE) model-based dynamic analysis has been widely used to predict the dynamic

characteristics of civil structures. However, the results obtained from FE analysis often differ from

the experimental results. This disparity is due to both modeling errors and measurement errors.

Modeling errors are caused by uncertainties in geometry, boundary conditions, variation of material

properties, ignorance of nonlinear effect, discretization, and other simplifications. If measurement

errors can be controlled by applying high-accuracy sensors, reliable DAQ systems, and well-

developed signal processing tools, the difference should be generally reduced through FE model

updating procedure. In civil engineering, the derivation of an accurate FE model to predict the
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dynamic behavior, to identify the structural damage and to perform the assessment of the structure

is essential for structural dynamic modification (SDM) as well as for damage detection, system

identification (SI), and structural health monitoring (SHM).

Several approaches on structural model updating have been proposed and developed in the past 30

years. Conventional model updating methods can be generally classified into two categories: direct

method such as optimal matrix updating and iterative method such as modal sensitivity-based

parameter estimation. These methods are well reviewed by Imregun and Visser (1991) and

Mottershead and Friswell (1993). Direct methods directly update the elements of stiffness and mass

matrices at one-step procedure. Direct method proposed by Baruch and Bar-Itzhack (1978) assumes

that the mass matrix is correct while the measured eigenvectors are updated by minimizing the

weighted Euclidean norm of the difference between the measured and the analytical eigenvectors

subjected to the orthogonality constraints. The error matrix method proposed by Sidhu and Ewins

(1984) is another direct technique that aims at estimating the error in both mass and stiffness

matrices. The updated eigienvectors are then used to update the stiffness matrix. The directly

updated elements of the mass and stiffness matrices have no physical meaning, although the

resulting updated matrices can exactly reproduce the measured modal data. And the sparseness,

positive-definiteness and symmetry of the updated stiffness and mass matrices cannot be guaranteed.

Therefore, it has been shown that direct methods are not appropriate for model updating.

Iterative parametric updating method typically involves the use of the sensitivity of the parameters

to find structural changes such as stiffness or masses. For the eigensensitivity-based FE model

updating method, the relationship between the perturbation in the updating parameters and the

difference between the measured data and analytical results from the FE model can be represented

by a sensitivity matrix (Friswell and Mottershead 1995). Iterative updating methods have been

studied by many researchers such as Farhat and Hemez (1993), Friswell and Mottershead (1995),

Maia and Silva (1997), Levin and Lieven (1998a), Fritzen et al. (1998). Eigenvalues and

eigenvectors as updating parameters are generally used to construct an objective function. The use

of eigendata sensitivity for analytical model updating was first proposed by Collins et al. (1974).

Chen and Garba (1980) used matrix perturbation technique. The research on the effect of the second

order sensitivities was investigated by Kim et al. (1983). Lin et al. (1995) proposed to employ both

the analytical and the experimental modal data for evaluating sensitivity coefficients with the

objective of improving convergence and widening the applicability of the method. Imregun et al.

(1995a, 1995b) conducted several studies using analytical and experimental data to evaluate the

effectiveness on the frequency response function data. Recently, Wu and Li (2006) proposed a two-

stage eigensensitivity-based FE model updating procedure for structural parameter identification and

damage detection for Phase II of the IASC-ASCE benchmark steel frame structure. Unlike the

direct method, the sensitivity-based parameter updating method offers the advantage to identify the

parameters that might influence directly the dynamic characteristics of the structure such as material

and geometrical properties and boundary conditions. Moreover, this method secures the sparseness

and positive-definiteness of the stiffness and mass matrices together with the preservation of their

symmetry. However, it is required to derive the sensitivity matrix related to all the updating

parameters. Generally, the sensitivity matrix is computed assuming that the change of each dynamic

property is linear for infinitesimal variations of the parameters. The problem is that, in reality,

responses like the mode shapes are unavoidably extremely nonlinear and non-continuous. Since

previous model updating methods needed inverse analysis, their applicability remained limited to a

very few types of structures. Thus, it is needed to develop a model updating method applicable to
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complex structures without restriction.

Recently, the improved FE model updating methods using parameter optimizing method such as

genetic algorithm (GA) and non-parametric updating method such as neural network were suggested

by Box (1965), Mares and Surace (1996), etc.. Levin and Lieven (1998b) employed the GA and

simulated annealing (SA) algorithm independently in model updating for a beam and a flat plate

wing structure. Zimmerman et al. (1999) investigated the GA-based approach for FE model

topology and parameter adjustment. Modak and Kundra (2000) proposed a model updating method

to solve a constrained nonlinear optimization problem. A simulated example of the simply

supported beam and the laboratory-tested reinforced concrete beam were applied. Kim and Park

(2004) introduced a multi-objective optimization technique, Parato GA, to model updating. The

emphasis of this technique was on the selection of updating parameters. Jaishi and Ren (2006)

proposed the use of modal flexibility residual for damage detection by finite element model

updating which the Trust Region Newton method was used as a sensitivity-based iterative method.

Research on structural model updating method using hybrid optimization method considered two

optimization methods was studied by Rafiq et al. (2005). They utilized a genetic algorithm and

regression analysis in order to predict the behavior of masonry panels. Also, merits and defects of

the traditional sensitivity method, neural network method and genetic algorithm through comparison

of numerical results of a real 5-story steel frame from limited modal test data were investigated by

Zhu and Hao (2006). Raphael and Smith (2003) suggested Probabilistic Global Search Lausanne

(PGSL) and have been applied to practical engineering tasks such as design, diagnosis and control.

Saitta et al. (2005) introduced a system identification methodology that made use of data mining

techniques to improve the reliability of identification. They used the generation of a population of

candidate models as an important aspect of a suggested methodology. Also, Ian Smith’s group in

EPFL has been working on this subject for many years. Especially, Kripakaran and Smith (2008)

introduced model filtering method using measurement-interpretation cycles as a cost effective way

to determine the correct behavioral model for a structure. And they investigated the damage

identification of railway truss bridge using the multiple model system identification. Although there

are many papers on model updating methods based on optimization methods, they are mainly

focused on simple structures, and natural frequencies and mode shapes were generally used to

derive an optimal objective function.

The main objective of this paper is to present the model updating method based on the hybrid

genetic algorithm (HGA) by combining the genetic algorithm as global optimization method and

modified Nelder-Mead’s simplex (NMS) method as local optimization method. Boundary constraints

and stopping condition were included in the modified NMS method in order to guarantee a solution

of problem in the variable range. This FE model updating method using hybrid optimization method

does not need the derivation of derivative function related to parameters and without application of

complicated inverse analysis methods. In order to allow its application on diversified and complex

structures, a commercial finite element analysis tool is adopted to exploit previously developed

element library and analysis algorithms. Moreover, an output-level objective function making use of

measurement and analytical results is presented to update simultaneously the stiffness and mass of

the analysis model. Several examples are introduced to verify numerically the proposed method and

demonstrate its applicability in bridge models. The effect of measuring error is also considered as

random noise and its effect is investigated.
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2. Theoretical background

2.1 Methodology of FE model updating based on hybrid genetic algorithm

In this paper, the HGA for FE model updating of bridge model consists of the genetic algorithm

and modified NMS method. The GA was first developed by Holland (1975) and the NMS was

presented by Nelder and Mead (1965). The GA, which is a global optimization method, is a

stochastic method searching randomly for the solution in the whole given domain. The modified

NMS method, which is a local optimization method, is a deterministic method searching directly for

Fig. 1 Flowchart of the HGA based FE model updating method
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the solution through comparison of the objective function at location nearby the given starting point.

Even if both methods present different search patterns, these methods do not require the use of

derivative functions and can be applied for multiple updating variables. In HGA, the GA process

first determines the starting point to search optimum solution. In the next step, the modified NMS

method as the local search method is used. Only a starting point obtained in the GA is used in the

modified NMS method, and it has its own search pattern. Finally, the final optimum solution is

determined in the modified NMS method. The HGA can find much more accurate solutions within

given boundaries and decrease the search time.

In the HGA based FE model updating method, the optimization algorithm illustrated in Fig. 1

exploits the gads toolbox of MatLAB (2006), and the adopted finite element analysis program is the

commercially available ABAQUS (2007).

2.2 Genetic algorithm

The GA, which is a stochastic search technique, is based on principles of evolutionary theory such

as natural selection and evolution. This algorithm has more flexible and faster convergence

characteristics than gradient-based methods with a single-point search because the objective function

can be defined with a multitude of design variables. In GA the term chromosome typically refers to

a candidate solution to a defined problem, and fitness is the objective function value of the

candidate solution. Most GA start with an initial randomly generated population of n chromosomes.

The size of the population is generally related to the problem under consideration. The length of

each chromosome is the dimension of the solution space, where the component of a chromosome is

the gene. Then the calculation of the fitness of each chromosome in the population, which is called

evaluation, is performed. The Darwinian principles of reproduction, survival of the fittest, crossover,

and mutation are used to create a new offspring population from a parent population (Hao and Xia

2002).

Generally, the process of genetic algorithm has four stages such as reproduction, selection,

crossover, and mutation. Through this process, the next generation is generated. The process is

repeated until a convergence result can be obtained. More information on GA can be found in

research papers (Mares and Surace 1996, Holland 1975, Godberg 1989, Friswell and Mottershead

1998). 

2.3 The modified Nelder-Mead’s simplex method

Since its publication in 1965, the Nelder-Mead “simplex” algorithm has been one of the most

widely used methods for nonlinear unconstrained optimization. In this paper, a simplex method was

used at secondary search step. The simplex method, thus falls in the general class of direct search

methods, is a local search technique that uses the evaluation of the current set of data to determine

the promising search direction. A simplex (n+1 vertices) is defined by a number of points equal to

one more than the number of dimensions (n variables) of the search space. The next simplex is

replaced by simplex operators (reflection, contraction, expansion, and shrink) until the best vertex is

satisfied with a specific convergence or stopping condition. The optimization or iteration is

terminated when the condition of optimum is achieved.

However, the general objective function contains the constraint conditions and the design variables

are constrained to a limited range (xmin≤ x≤ xmax), and it is not easy for the general simplex
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algorithm to achieve this. Therefore, in order to satisfy the above restriction, the modified Nelder-

Mead’s simplex method by Yang et al. (2005) as follows was used in this paper:

• If xmax≤ xr or xmin≥ xr, then the value of xr is replaced by xmin or xmax. This process will guarantee

that xr can not go out of the boundaries.

• If xr cannot satisfy the constraint conditions, then xw is replaced by the second-worst point in the

original simplex. This process is similar to the contraction because they are almost the same in

the resulting simplex, where xw and xr indicate the worst point in the simplex and a new point

generated by reflecting, expanding and contracting, respectively.

In addition, the weighting factors of simplex operators proposed by Barton and Ivey (1996) were

considered in this paper. The value of weighting factor on reflection, contraction, expansion, and

shrink operator are 1.0, 0.5, 2.0, and 0.5, respectively. The stopping condition on iterative process

was also used as follows which have been proposed by Dennis and Woods (1987).

(1)

where, (2a)

(2b)

where  is relative difference between the evaluation value of the kth simplex, φk and k-1th

simplex, , and εs is the convergence tolerance.  indicates the Euclidian norm of the kth

worst point on the simplex x. ∆k is the maximum value of the Euclidian norm on the simplex x.

2.4 Formulation of the objective function 

In FE model updating method, the optimization objective function enables accurate expression of

the relationship between the actual structure and the analytical model. This function shall be

expressed in terms of measurable physical quantities describing exactly the behavioral

characteristics of the structure. In order to allow the application of a commercial finite element

analysis tool, an output-level objective function using measured data and analytical results is

presented. As shown in Eq. (3), the objective function suggested for the FE model updating method

using HGA is formulated as a linear combination of fitness functions related to static deflections,

natural frequencies and mode shapes in Eqs. (4a) to (4c). Particularly, the fitness function related to

mode shapes adopts the values of the normalized modal difference (NMD) proposed by Waters

(1995).
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,  (number of measuring points) (4c)

In Eqs. (4a) to (4c), fitness1( f ), fitness2(φ) and fitness3(u) stand respectively for the fitness

functions related to natural frequencies, mode shapes and static deflections, respectively. The

superscripts e and a are corresponding to the experimental results and analytic results of the

updating model, respectively. uj is the static displacement at jth measuring point, and fi is the natural

frequency of ith mode. In addition, αi, βi and γj are the weighting factors of fitness functions related

to the ith mode and jth measuring point. A value of 1.0 is adopted for all weighting factors in this

paper. The normalized modal difference (NMD) can be expressed as follows, where, the modal

assurance criterion (MAC) is defined by Allemang and Brown (1982).

(5)

 (6)

where  is the experimental mode shape that is paired with the ith analytical mode shape .

The proposed objective function does not exploit the sensitivity function relative to the updating

parameters or system matrices as was done in previous model updating methods. 

3. Numerical verification by 10 DOFs spring-mass model

3.1 10 DOFs spring-mass model

A 10 DOFs spring-mass model, originally used by Rad (1997) as shown in Fig. 2, is employed to

investigate the use of the HGA method for FE model updating. The best combination of the fitness

functions is evaluated by case studies and an analytical investigation is made to study convergence

criteria and the effect of noise.

It is assumed, as was used by Rad (1997) to investigate his system identification algorithm, that

for the reference model m1 is decreased by 10% of the value in Fig. 2 and m4 by 20%, while m7, k3,

k5 and k9 are increased by 15%, 10%, 30% and 10%, respectively. For the static displacement, the

model is subjected to a load 10 kN at m10. Parameters of the GA used in the analysis are shown in
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Fig. 2 The 10-DOF spring-mass system
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Table 1. For easy comparison of updating results, all updating variables are normalized as a ratio to

initial value as in Fig. 3, Fig. 4 and Table 5.

3.2 Selection of optimal objective function

The objective functions are evaluated to update mass as well as stiffness at the same time as

shown in Eqs. (7a) to (7d). The weighting factors of each fitness functions in Eq. (4) are assumed

as 1.0.

(7a)

(7b)

(7c)

(7d)

Fig. 3 shows the convergence histories of the updating variables and the objective function value.

In Fig. 3(b), GA(Best) are the best individuals from each generation.

f1 min, fitness1 f( ) fitness2 φ( ) fitness3 u( )+ +=

f2 min, fitness1 f( ) fitness3 u( )+=

f3 min, fitness1 f( ) fitness2 φ( )+=

f4 min, fitness2 φ( ) fitness3 u( )+=

Table 1 The parameters of the GA

Parameters Function Value

Population size - Updating variables×20

Generation - 100

Elite count - 2

Initial population range - [0.5, 1.5]

Selection method Roulette wheel -

Crossover probability Scattered 0.8

Mutation probability Uniform 0.1

Fig. 3 Convergence histories for the HGA
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Values of objective functions with respect to their type are shown in Table 2. It is shown that the

model updating using f1,min as the objective function yields better result in accuracy. Updated values

of updating variables with respect to the objective function are compared in Fig. 4.

In Fig. 4(a), all variables of stiffness and mass are correctly converged to their reference values.

Moreover, the updating error in case of the objective function f1,min considering the static

displacement decreases compared with that in the case of f3,min considering the modal data only,

which is commonly used in the conventional model updating methods. Consequently, it is found

that the best type of objective function to update stiffness and mass simultaneously is f1,min

considering all the fitness functions with respect to the natural frequencies, mode shapes and static

displacements. Table 3 shows the correlations of MAC, CoMAC and NMD for the final updated FE

model.

Fig. 4 Comparison of updating variables according to the type of objective function

Table 2 Comparison of objective function value

Objective function f1,min f2,min f3,min f4,min

Function value 0.011 1.905 0.339 0.808
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In Table 3, MAC and CoMAC are correctly updated as 1.0 on all modes, and maximum value of

NMD is 0.002 at mode 2. This means that the normalized modal difference between FE and

experimental mode shape is reduced to 0.2% or smaller. 

3.3 Necessary condition for the generation and population in the GA

The convergence according to the number of updating variables for the HGA method is

investigated, as shown in Table 4. The error on each updating variable is calculated by the root

mean square error (RMSE), as shown in Eq. (8).

(8)

where  and  indicate the value of variable, xi, on the reference model and updated model,

respectively, and N is the total number of updating variables. For the effect of the number of

updating variables, the updating variables are arranged in Table 4. Only the objective function f1,min

considering the fitness function on natural frequencies, mode shapes and static displacements is

used. 

In the GA, the accuracy of solution usually increases according to the number of generation and

population. But, it takes a long time to optimize due to large number of iterations. In order to get
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Table 3 Comparison of MAC, CoMAC and NMD values ( f1,min)

Mode
MAC CoMAC NMD

Initial Updated Initial Updated Initial Updated

1 1.0000 1.000 0.9223 1.000 0.0062 0.000

2 0.9989 1.000 0.8397 1.000 0.0328 0.002

3 0.9956 1.000 0.7793 1.000 0.0666 0.001

4 0.9932 1.000 0.6787 1.000 0.0829 0.001

5 0.9821 1.000 0.6816 1.000 0.1351 0.001

6 0.9645 1.000 0.6961 1.000 0.1917 0.001

7 0.9693 1.000 0.7122 1.000 0.1779 0.001

8 0.9073 1.000 0.7077 1.000 0.3197 0.000

9 0.0004 1.000 0.551 1.000 51.1564 0.000

10 0.0001 1.000 0.5795 1.000 83.0597 0.000

Table 4 Updating variables

Number of updating variables Updating variables

1 k3

3 k3, k5, and k9

6 m1, m4, m7, k3, k5, and k9

10 k1~k10

15 m1~m5 & k1~k10

20 m1~m10 & k1~k10
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reliable results by the proposed method, a necessary condition for the number of generation and

population on the GA according to the number of updating variable is investigated. In Fig. 5 and

Fig. 6, it is shown that the averaged values and variances of RMSE with respect to improved

updating variables become relatively very small if the number of generation is larger than certain

number. Also, it is found that the number of generation and population size on the GA should

necessarily be larger than approximately twenty times the number of updating variables for the

reliable application of the proposed method. 

3.4 Effect of the combinatorial problem of updating variables

In model updating problems, it is very important to assure that the acquired result is well

optimized so that it always gives reliable results with acceptable differences less than certain

amount. Results of 10 individual model updating trial, where the same updating parameters are used

while the values of population are randomly assigned in each trial, are shown in Table 5. As shown

in Table 5, each model updating shows similar results with acceptable differences. In other words,

Fig. 5 Comparison of objective function value according to the number of generation

Fig. 6 Comparison of RMSE of updating variables according to the number of generation
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even though it cannot be guaranteed that the proposed solution is the best, all the results of updating

variables are converged less than about 5% in all trials. Since these differences are very small and

ignorable in the civil engineering problems it can be said that the proposed solution is reliable.

4. Application on numerical bridge model

4.1 Two span continuous grid model

To verify the applicability of the proposed method to bridge structures, an FE model updating is

also performed on a symmetric two-span multi-girder bridge idealized as a grid model, as shown in

Fig. 7 (Kwon 2006). The analytic model is composed of a total of 58 beam elements and 2-node

linear beam elements are used between the girders.

Damaged structure with reduced sectional properties as in Table 6, which Kwon (2006) used for

his damage detection study, are considered as reference model. Only mode shape vectors in the z-

direction are considered. Static deflections corresponding to a load of 20 kN moving from node 1 of

the members’ group G1 to node 13 of the members’ group G5 are used in fitness function. For the

static displacement, only the responses at six midspan nodes are considered.

Fig. 8 depicts the deformed shape under static load applied at node 4. Fig. 9 shows the first six

Table 5 Results of updating variables from 10 trials

Updating 
variables

Ref. 
value

Trial number Max. 
diff.

Max. 
per.1 2 3 4 5 6 7 8 9 10

m1 0.90 0.902 0.898 0.902 0.898 0.901 0.906 0.900 0.897 0.905 0.912 0.012 1.3%

m2 1.00 0.985 1.001 1.004 1.006 0.999 1.015 0.996 1.018 1.007 1.034 0.034 3.4%

m3 1.00 0.968 1.005 1.007 0.997 1.000 1.016 0.990 1.045 1.009 1.040 0.045 4.5%

m4 0.75 0.720 0.759 0.763 0.725 0.755 0.755 0.737 0.790 0.764 0.778 0.040 5.4%

m5 1.00 0.996 1.014 1.004 0.994 1.003 1.003 0.994 1.036 1.021 1.025 0.036 3.6%

m6 1.00 1.002 1.013 1.004 0.991 1.005 1.011 1.002 1.014 1.032 1.024 0.032 3.2%

m7 1.15 1.138 1.150 1.147 1.170 1.150 1.183 1.149 1.134 1.188 1.171 0.038 3.3%

m8 1.00 0.987 0.976 0.990 1.028 1.000 1.037 0.999 0.970 1.036 1.020 0.037 3.7%

m9 1.00 1.023 0.961 1.000 1.014 1.002 1.033 1.006 0.949 1.049 1.011 0.051 5.1%

m10 1.00 1.012 0.963 0.994 1.010 1.004 1.026 1.013 0.968 1.042 1.008 0.042 4.2%

k1 1.00 1.000 0.999 0.997 1.000 1.001 1.000 1.005 0.986 1.000 1.000 0.014 1.4%

k2 1.00 1.003 0.997 1.003 1.001 1.000 1.012 0.998 1.001 1.009 1.020 0.020 2.0%

k3 1.10 1.070 1.106 1.105 1.112 1.099 1.118 1.094 1.139 1.106 1.149 0.049 4.5%

k4 1.00 0.992 1.006 1.004 1.009 0.999 1.016 0.990 1.045 1.012 1.034 0.045 4.5%

k5 1.30 1.238 1.318 1.326 1.240 1.311 1.303 1.277 1.369 1.328 1.346 0.069 5.3%

k6 1.00 0.988 1.011 1.003 0.982 1.006 1.007 0.998 1.037 1.025 1.030 0.037 3.7%

k7 1.00 1.004 1.011 1.003 1.004 1.003 1.020 1.003 0.994 1.036 1.019 0.036 3.6%

k8 1.00 0.980 0.988 0.992 1.031 0.999 1.037 0.997 0.976 1.032 1.023 0.037 3.7%

k9 1.10 1.123 1.064 1.103 1.127 1.101 1.141 1.100 1.039 1.152 1.119 0.061 5.5%

k10 1.00 1.012 0.957 0.991 1.005 1.004 1.026 1.012 0.966 1.045 1.005 0.045 4.5%
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Fig. 7 Two span continuous grid model

Table 6 Cross-sectional and material properties of the members’ groups

Group
Area (mm2) I33 (mm4) ×105

I22 (mm4) 
×106

J (mm4) 
×104

E
(GPa)

Mass
(kg/m3)Reference Initial Updated Reference Initial Updated

1, 5
2, 6
3, 7
4, 8

836.4
836.4
836.4
1175.0

760.36
1045.5
760.36
1566.7

986.80
1140.54
992.50
963.18

3.638
3.638
3.638
2.945

3.3073
2.9104
3.3073
3.9267

3.637
3.635
3.649
2.971

1.052
1.052
1.052
1.864

80.80
80.80
80.80
1.721

210 7850

Fig. 8 Deformed shape under static load

Fig. 9 Analytical mode shapes of the reference FE model
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mode shapes of the reference model considered during model updating.

4.2 Model updating

The analysis conditions applied for the GA are the same as conditions on the spring-mass model,

except that the number of generation is twenty times the number of updating variable. The mesh

size of each updating variable applied for the NMS method is 5% of starting value. Natural

frequencies and various correlation coefficients such as MAC, NMD and CoMAC are compared in

Tables 7 and 8, respectively.

As it is shown in Table 7, natural frequencies of the updated model and the reference model are

almost identical with difference ratio smaller than 0.02%. Also MAC and CoMAC values of

updated model are 1.000 and NMD are very small in Table 8. However, even though the value of

the updating variables I33 in Table 6 converges to the reference value very closely, the mass or area

exhibits large difference compared with the reference value. This can be explained by the fact that,

during the establishment of the grid model, the connecting cross-beams between the girders are

modeled as single beam element, which attributes values only at each node of the girder in the

global mass matrix. This implies that even though the values of the updating variables of the final

improved model are different, the global mass matrix of the FE model remains identical to that of

the reference model, which results in identical analytic results for both updated model and reference

model. Thus, if the HGA method and objective function proposed in this paper are used for FE

model updating, the application to actual structures appears to be sufficiently reliable.

Table 7 Comparison of natural frequencies according to FE model

Mode No.
Natural frequency (Hz) Difference ratio (%)

Referencea Initialb Updatedc Initiald Updatede

1 6.3006 5.3701 6.2999 -14.77 -0.01

2 9.9001 8.4331 9.9001 -14.82 0.00

3 10.439 9.6986 10.437 -7.09 -0.02

4 13.079 12.028 13.080 -8.04 0.01

5 25.342 21.493 25.344 -15.19 0.01

6 31.835 27.338 31.840 -14.13 0.02

d = (b-a)/a×100, e = (c-a)/a×100.

Table 8 Comparison of the correlation between initial and updated model

Mode
No.

MAC NMD Node
No.

CoMAC

Initial Updated Initial Updated Initial Updated

1 1.000 1.000 7.0E-4 2.0E-4 2 0.9997 1.000

2 1.000 1.000 1.7E-3 3.0E-4 3 0.9997 1.000

3 1.000 1.000 5.9E-3 1.1E-3 4 0.9998 1.000

4 1.000 1.000 3.3E-3 1.0E-3 5 0.9998 1.000

5 0.9999 1.000 1.1E-2 4.0E-4 6 0.9998 1.000

6 0.5148 1.000 9.7E-1 8.0E-4 10 0.9998 1.000
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4.3 Effect of measurement error considering random noise

To investigate the effect of measurement error, random noise was added to the results of the

reference model. In real situations, experimental results such as modal data are not random since

these are usually averaged and normalized, and the magnitudes of measuring errors are relatively

small. In this paper, the measuring errors of natural frequencies, mode shapes, and static

displacements are considered as random noise of 1%, 5%, and 10% with respect to the analytical

results of reference model. FE model updating is carried out to investigate the effect of measuring

error with respect to five different reference values and the results are show in Table 9.

It can be found in Table 9 that maximum model updating errors for the mass or area are 40.6%,

12.1% and 5.6% in case of 10%, 5% and 1% random noise level, respectively. On the other hand,

those for the stiffness (or inertia moment) are 3.7%, 3.6% and 0.5%, respectively. This means that

model updating efficiency for the stiffness may be still satisfactory with increasing noise level,

while that for the mass is very vulnerable to noise. Since pure and high quality data can be achieved

due to the rapid development of measurement technology and mass is rather deterministic compared

with stiffness, it can be said that the proposed method may be applicable to real structures where a

certain level of measurement noise is expected.

5. Conclusions

A hybrid genetic algorithm based on a genetic algorithm and modified simplex method has been

addressed as global-local optimization method and a corresponding FE model updating method

using a commercial finite element analysis tool has been presented. The proposed method can be

applied to any FEA tool if the interface of FEA tool is prepared. Therefore, FE model updating by

HGA does not require a condensation or expansion technique of system matrices to match the

corresponding DOFs between measurement points and analytical model. Objective function has

been formulated as a linear combination of fitness functions related to static deflections, natural

frequencies and mode shapes in order to improve both the stiffness and mass simultaneously. The

applicability of the proposed method to bridge structures has been investigated through numerical

examples.

The proposed method has been applied to a spring-mass model with 10 DOFs and a 2-span

Table 9 Comparison of the effect on measuring error

Noise
Area Inertia Moment Function 

valueG1 G2 G3 G1 G2 G3

1%
AE (%) 3.156 5.633 3.741 0.249 0.511 0.435 0.023

SD (%) 1.754 3.801 2.045 0.143 0.314 0.382 0.003

5%
AE (%) 7.179 12.079 7.016 2.534 3.554 2.893 0.108

SD (%) 6.952 5.137 6.379 2.388 2.672 2.494 0.029

10%
AE (%) 13.231 40.610 15.584 2.981 1.507 3.650 0.244

SD (%) 6.059 20.029 12.756 2.073 1.275 1.656 0.029

AE = Average Error, SD = Standard Deviation.
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continuous girder bridge model. The results demonstrate that the proposed method is very efficient

for the model improvement. From the numerical examples, it is found that the number of generation

and population on the GA should be larger than twenty times the number of updating variables for

the proposed method to give reliable result. Also, random noise was added to the result of

numerical analysis in order to investigate the effect of noise on the efficiency of model updating

and the applicability to real structures. From the result, it can be said that the proposed method is

very robust for updating of the stiffness and it may be applied to real structures where the level of

measurement noise is relatively small. This fact will be proved by further applications to various

real bridges.
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