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Abstract. Thermal stability of quasi-isotropic composite and polymeric structures is considered one of
the most important criteria in predicting life span of building structures. The outdoor applications of these
structures have raised some legitimate concerns about their durability including moisture resistance and
thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe
climatic conditions such as heat flux and frigid climate would change the material behavior and thermal
viability and may lead to the degradation of material properties and building durability. This paper
presents an analytical model for the generalized problem. This model accommodates the non-linearity and
the non-homogeneity of the internal heat generated within the structure and the changes, modification to
the material constants, and the structural size. The paper also investigates the effect of the incorporation
of the temperature and/or material constant sensitive internal heat generation with four encountered
climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric
structures. This can eventually result in the failure of such structures. Detailed critical analyses for four
case studies which consider the population of the internal heat generation, cylindrical size, material
constants, and four different climatic conditions are carried out. For each case of the proposed boundary
conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the
thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the
convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure
environment.

Keywords: thermal stability; quasi-isotropic composite/polymeric material degradation; non-uniform
internal heat generation; cylindrical building structures; material-environment interaction.

1. Introduction

Thermal analysis is increasingly becoming an important tool in determining the reliability of the

selection and application of composite materials and polymers in many engineering fields such as

electronic packaging, automotive, aerospace, military, marine and civil structures. Prediction of

thermal behavior of quasi-isotropic composite/polymeric structures due to environmental effects and

internal heat generation after the curing process is considered to be an effective and complementary
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tool during the design stage. Thermal stability of prescribed parameters are the limiting values

below which there will be a steady-state temperature distribution within the structures. Monteverde

(2005) investigated the thermal stability of two hot-pressed diborides matrix composites in air at

ultra-high temperatures. The two highly-dense composites consisted of HfB2 or a mixture of ZrB2

and HfB2. Both materials were subjected to repeated heating-cooling cycles at 1600oC and a 20 h

exposure at 1450oC in flowing dry air. The resistance to oxidation was also tested in laboratory air

in which the modifications in the microstructure induced by the oxidation were monitored. The

author found that the introduction of the SiC particles as sintering aid provided tangible benefits for

the resistance to oxidation. Finally, modest weigh gains and limited corrosion depths highlighted a

good thermal stability criterion. Ju Wei et al. (2005) studied the effect of polymer structure on

thermal stability of composite membranes. Novel thermal stable polymer (PPESK) was used as the

support material of the thin film composite (TFC) membranes fabricated via interfacial

polymerization. They found that the fully aromatic PA/PPESK membranes have better thermal

stability than PA/PSF membranes and can work stably under relatively high temperature. The

authors also indicated that using stable salt rejection, water flux of fully aromatic PA/PPESK

composite membrane will increase linearly when solution temperature rose from 20oC to 90oC.

Krawiec and Kaskel (2006) investigated the thermal stability of high surface area silicon carbide

materials. The authors first indicated how different precursors, deposition parameters and loadings

of SiC/SBA nano-composites influenced the textural properties of mesoporous silicon carbide. Next,

they concluded that high surface area silicon carbide showed a higher thermal stability at 1573 K as

compared to pure SBA-15 and the thermal stability of mesoporous carbon (CMK-1) was even better

than that of porous SiC tested under the same conditions.

Attempting to investigate the cause of discoloration of the central region of a tall stack of

plywood panels which was being cured in an ambient environment, Squire (1967) reported that no

damage to the panels will be ensured if a dimensionless parameter, , does not exceed the

value of 2.0; where qo and β are material constants and K is the thermal conductivity of the

material. Earlier, Landau (1959) had stated in a more lucid way, that an infinite slab would fail to

exhibit a steady-state temperature distribution, if a dimensionless number, , exceeds the

value of 0.88; where L is the half-thickness of the Landau’s slab. Both investigators recognized the

fact that thermal instability or thermal viability will result if the system fails to dissipate all the heat

conducted into and generated from within the system - the latter, being closely related to the

chemical reactions in the generic material, can and will, sometimes, continue long after the process

of manufacture had been completed. In this regard, it is interesting to note that the Great Coulee

Dam, one of the largest concrete structure in the United States with 9,155,942 m3 (website), was

poured with pre-chilled concrete just to compensate for the heat release from the exothermic

reaction within the concrete long after the pouring process.

Both investigations cited above (Squire 1967, and Landau and Lifshitz 1959) introduce the

internal heat generation source into their analysis through an exponential function which only

depends on temperature. At the system’s boundaries both investigations prescribed a constant

temperature equal to that of the system’s environment. Under these conditions, their analyses

yielded simplistic results. In retrospect, the former assumption is a good approximation for more or

less explosive combustion reactions, the assumption of a uniform heat source population and the use

of constant temperature on the boundaries are, perhaps, plausible simplifications.

In a recent work Gadalla and El Kadi (2005) investigated the thermal stability of a composite

slab-structure subjected to harsh environmental conditions. Their formulation was tested for three

qoβro
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cases with different temperature boundary conditions. A critical thermal stability parameter was

obtained for each of the cases. This parameter was shown to be function of the material properties

as well as the position within the composite slab. The extension of this study to the case of a

composite cylinder is considered in the current work.

Although a uniform source distribution in the cylinder is a reasonable simplification, it would

seem much more pragmatic to incorporate in the analysis a spatial dependence simulating the source

distribution in the medium. This is especially important in composite materials where the

manufacturing process may, in some cases, produce a less-than-uniform structure. The selection of a

spatially-dependent function is more restricted for the case of a cylinder than for a plane slab (Liu

and Ainsworth 1984) aiming at mathematical amenability. For this reason, a one-term power

function with an arbitrary constant power m was used in the current study; this power can be

positive, zero, or negative. Squire’s case (1967) of uniformly populated heat sources is thus a

special case of the present study if m is set to zero.

Mathematical simplicity and feasibility aside, one might note that over-designed structures,

mismatched construction materials and other practicable environmental boundary conditions such

insulated or nearly-insulated boundaries are all among the consequences of thermal instability. It is,

therefore, wise to re-examine and re-design disproportionate structural dimensions, re-examine

insulated boundaries and replace materials of low conductivity (except for cryogenic and

refrigeration equipments). For this reason, this paper analyzes and predicts the magnitudes of the

critical parameter, Γc for five cases of boundary conditions, and for several values of the arbitrary

power coefficient (m).

In the case of hollow cylinders with convective boundaries, this critical parameter is no longer a

constant as was the case in (Squire 1967, and Landau and Lifshitz 1959). It now depends on several

factors: for instance, the material constant (m) and the Biot number (Bi = hro /K, where h is the

convective heat transfer coefficient, r0 is the outer radius of the cylinder and K is the thermal

conductivity) (Holman 2002) in the case of solid cylinder with convective boundaries or the

material constant, the radii ratio ( , and the Biot number in the case of a hollow cylinder

with convective boundaries. Graphically, the thermal stability critical parameter (Γc) may be thought

of as the altitude of a surface  below (or between) which the cylinder will be

thermally stable and performance-worthy. It was found (Gadalla 1992) that an insulated outer

surface and/or m = −2 can sustain no internal heat generation, however small.

In as much as the bounds of the thermal stability of a cylindrical structure system is eminently

determined by the boundary conditions to which the system is subjected, an adverse deviation from

the “designed-for” conditions can significantly alter the life span of the system, not mentioning the

weathering and creeping of the material with time. It might not be too soon to recommend that the

critical parameter Γc be considered for inclusion in the building code and the specifications of

structural design.

2. Problem formulation and solution

Consider an infinite hollow cylinder having an inner radius of ri and an outer radius of ro with a

constant thermal conductivity (K). If this cylinder is seeded with an internal heat source, the rate of

internal heat generation can be assumed to be governed by the law 

ζ ri/ro=

Γc Γc m ζ Bi, ,( )=
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(1)

where qo, m, and β are material constants, and T0 is the ambient temperature. A special case for this

equation is due to Squire (1967) and can be obtained by setting m = 0. A heat balance yields the

following governing equation for the temperature distribution in the cylinder 

 (2)
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The effect of the value of m on the term (r/ro)
m for the various ratios r/ro is shown in Figs. 1(a)

and 1(b); Fig. 1(a) shows this variation for m ≥ 0 while Fig. 1(b) shows the variation for m < 0.

The Squire case (m = 0) is also shown.

Introducing the new variables 

Eq. (2) can be written as

 (3)

To reduce Eq. (3) into a more amenable form, the following transformation is introduced

 (4)

The transformed equation can be written in the form

 (5)

where

 (6)

and the prime denotes differentiation with respect to ζ.

Differentiating Eq. (5) with respect to ζ yields

 (7)

Substituting Eq. (5) into the R.H.S. of Eq. (7), we obtain

 (8)

Multiplying throughout by ζ 2, Eq. (8) takes the form of a total differential, i.e. 
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whose first primitive is 
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Eq. (10) now reads

(12)

Separation of variables in Eq. (12) yields

 (13)

The outcome of the analysis now depends on the relative magnitude of the constant C1. For

reasons we shall soon see, we choose . Consequently, Eq. (13) can be written in the

following form 

(14)

where  and C2 is a constant of integration. Evaluation of the integral in Eq. (14) gives

 (15)

Using Eq. (11), Eq. (15) becomes after integration

 (16)

where C3 is a constant of integration.

Subsequent substitution of Eq. (16) into Eq. (4) yields

 (17)

To obtain a general form suitable for the case studies under consideration, some algebraic

manipulations are required; first, differentiating Eq. (17), we get 

  (18)

Then, taking the exponential function of both sides of Eq. (17), we obtain

  (19)

Eq. (19) includes three arbitrary constants: γ, C2, and C3 - recall that . Since there

are only two boundary conditions, one for each of the cylindrical surfaces at  and , one

more condition is needed for the determination of these three constants. This needed condition can

be obtained, however, by substituting Eq. (17) into Eq. (3), yielding

  (20)

In the case of a solid cylindrical composite structure, to obtain a finite value for the temperature

along the cylinder axis, the value of γ must be set at (2 + m) (see Eq. 17). Substituting, we get
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 (21)

Differentiating with respect to ζ, we get

 (22)

For a solid Squire cylinder (a solid infinite cylinder in which the rate of internal heat generation is

independent of the heat source location in the cylinder, but is an exponential function of the

temperature differential; i.e., m = 0), Eqs. (21) and (22) are simplified as

(23)

(24)

For a solid cylinder with m > 0, the required condition becomes

 (25)

For a Squire cylinder where m = 0, this condition is reduced to 

(26)

Eq. (17) will now be used to develop different solutions for five different cases for solid and

hollow cylinders subjected to a variety of boundary conditions as shown in Fig. 2. Each boundary

condition for hollow cylinders is supplemented with Eq. (20) for a full determination of the

constants,  and C3. While Eq. (21) will be used to determine the constants C2 and C3 for solid

cylinders.

3. Case studies

Case A - Solid cylindrical structure (m ≠ 0), with constant boundary temperature (T0).
The sole boundary condition for this case as shown in Fig. 2(a) is 

This condition can also be written as
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To solve for C2 and C3 we need the aid of Eq. (25) namely . Eliminating

C3 between Eqs. (25) and (28), we obtain

(29)

To determine the critical value of the parameter Γ, differentiate Γ in Eq. (29) with respect to

, i.e.

Setting  to zero, we obtain

 (30)

where the subscript c denotes criticality.

Consequently, Eqs. (28) and (29) give
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Fig. 2 Schematic representation of analyzed case studies and their corresponding boundary conditions
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Substituting for the value of C2c from Eq. (30) into Eq. (29), we obtain the critical value of the

parameter Γ to be

 (32)

or for simplification

(33)

Fig. 3 shows the value of the critical thermal stability parameter Γc as a function of the power

coefficient, m. As shown, the value of Γc systematically increases with an increase of m. The figure

also shows that for m = 0 (Squire’s case), the critical thermal-stability parameter, Γc = 2, which is

the same result obtained by Gadalla (1992). 

Case B - Solid cylindrical structure with convective heat transfer 

In this case as shown in Fig. 2(b), the boundary condition must satisfy the equation

  (34)
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 (36)

Eliminating C3 between Eqs. (37) and (26)

(37)

To obtain the critical value of the parameter Γ, differentiate it with respect to , and

subsequently equating the differential term to zero, we obtain 

 (38)

Solving
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boundary, if m = 0; it becomes  if m = −2.

Eq. (41) is graphically depicted in Fig. 4 for m = −2 to 4. The figure shows the values of the

critical thermal stability parameter Γc as a function of Biot number. The figure shows that an

increase in the power coefficient m results in an increase in the value of Γc. The figure also shows

that Γc = 0 at m = −2 as indicated in Holman  (2002).

Case C - Solid cylindrical structure with insulated surface

According to Eq. (21), the temperature distribution for a solid cylinder with insulated surfaces is

For this case the boundary condition on the outer insulated cylindrical surface as indicated in

Fig. 2(c) is

(41)

Or, from Eq. (21)

(42)

To obtain a non-trivial solution, (2 + m) ≠ 0, i.e.

 (43)

Consequently, the temperature distribution in the cylinder is

(44)

The constant C3 is now determined by the use of Eq. (26), which, using Eq. (44), states that

(45)

Since we must have a finite temperature in the cylinder, we require that C3 be different from zero;

hence we conclude that

(46)

Case D - Hollow cylindrical stricture with constant temperature T0 on both boundaries

The boundary conditions for this case as shown in Fig. 2(d) are:

T(ri) = To and T(ro) = To; in other words, using the dimensionless variables introduced earlier

(47)
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 (48)

 (49)

Eliminating C3 between Eqs. (49) and (20), we get

(50)

Solving for , we obtain  

 (51)

To be certain that the value of  obtained from the previous equation is real, set the contents of

the radical to zero. This results in
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Substituting in Eq. (51)
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Rearranging, the critical parameter can be given explicitly as
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same value of the inside radius) for the same value of m results in a gradual increase in the value of

Γc until the value of ζ is close to unity. At this point, the value of Γc increases asymptotically.

It can be shown for a hollow polymeric cylinder (m = 0 and ζ > 0), Eq. (56) becomes

 (57)

For the case of a solid composite cylinder (m ≠ 0 and ζ→ 0), the equation becomes

or

Simplifying
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Eq. (57) presents the critical thermal-stability parameter for hollow polymeric cylinder and its

critical relationship with the cylinder size ratio ζ (depicted graphically in Fig. 5 for m = 0). The
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added capability is mainly due to the second boundary condition at the inner radius providing an

additional venue of heat dissipation from the cylinder to the atmospheric surroundings, unless this

venue is blocked with insulation or poor ventilation process. Finally Eq. (58) assures the critical

thermal-stability parameter obtained by Eq. (33) for a solid cylindrical composites subjected to a

constant temperature.

Case E - Hollow cylindrical structure with inner boundary insulated and outer boundary

at a constant temperature
The boundary conditions for the case of a hollow cylinder with an insulated inner boundary and

an outer boundary kept at a constant temperature T0 as shown in Fig. 2(e) are

(59)

Substituting for the two boundary conditions in Eqs. (17) and (18) results in two relations between

the constants C2 and C3, i.e. 
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The graphical representation of Eq. (65) is depicted in Fig. 6 where Γc is plotted as a function of

ζ for various values of the power exponent m (material constant). As was the case in case study D,

for a specific value of ζ, an increase in m results in a higher value of the critical thermal-stability

parameter Γc. The figure also shows that increasing ζ for the same value of m results in a vertical

increase in the value of Γc at  followed by a gradually increase of Γc for higher values of ζ

and then a steep rise in Γc as ζ is close to unity. At this point, the value of Γc increases

asymptotically. 

Had the inner boundary of the cylindrical composite/polymeric structures in case D been insulated

as described in case E, the critical thermal-stability parameter would have been reduced to almost

half of that of case D (for example, for ζ = 0.5, Γc = 3.7). This is due to the blockage in the rate of

energy dissipated form the inner surface of the composite/polymeric structures. 

Eq. (65) shows that for ζ > 0, a value of m = −2 will result in a critical value of

This shows the necessity of limiting the value of the coefficient m such that the maximum value

obtained for ζ is not greater than unity. To obtain the limiting value of the coefficient m, let 
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Fig. 6 Case E: Variation of the critical stability parameter (Γ
c
) with the radius parameter (ζ) for different

values of the power coefficient (m)
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or

Thus: .

Therefore, we conclude for ,  If m = −2, then .

4. Observations

When the temperature of the cylindrical surface of quasi isotropic composite/polymeric materials

is subjected a temperature equal to the ambient temperature T0, the convective heat transfer

coefficient is infinitely high. The Squire boundary condition is therefore the most efficient

mechanism of dissipating energy from the cylindrical structures. On the other hand the insulated

outer surface boundary would in turn reduce the amount of energy dissipated to the environment to

zero, thus the coefficient of convective heat transfer is zero. When the magnitude of the value of the

convective heat transfer coefficient is between the two limits, the cylindrical composite/polymeric

structures will be exposed to convective heat transfer with Bi number greater than zero and less than

infinity. Therefore the environment has a great impact on thermal stability on cylindrical structures.

To control the life span of the structure, the critical value of thermal stability parameter could be

controlled by choosing some selected material properties or by resizing the structure for specified

material properties. This can be achieved during the design stage as well as the repairing process. 

5. Conclusions

Analytical modeling and solution for thermal stability of cylindrical quasi-isotropic composite

and/or polymeric structures under different configurations and boundary condition is developed. The

analytical model represents a class of closed form solution that can be a very effective tool during

the design stage and/or during the repair of a structure due to any malfunction. Since these

structures are subjected to different environmental boundary conditions depending on the

engineering application, thermal instability or thermal viability of these structures may result if the

structures fail to dissipate all of the internal energy generated long after the manufacturing process

or due to an internal heat generation source. Based on the analytical model and the case studies

presented, it is concluded that:

1. The critical thermal stability parameter of the quasi-isotropic composite structure is not linearly

related to the material constant or the cross sectional properties.

2. The thermal behavior of cylindrical structures with altered sections and/or materials due to

modification, maintenance or repairing can differ drastically from the original structures under

the same environment.

3. The critical thermal stability parameters of quasi-isotropic composites with positive material

constant m are higher than for polymeric structures of the same size.

4. The critical thermal stability parameter of polymeric structures represents the upper limit of

composites structures with negative material constants. This is due to the higher capability of

polymers in dissipating the heat generated within the structure to the environment. 
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5. Hollow cylindrical quasi-isotropic composites/polymeric structures can tolerate much greater

internal heat generation rate than solid structures of the same outer radius.

6. Any inadvertent changes in the size and/or the material of the cylindrical structures from the

designed-for conditions can alter the life span of these structures. Additionally, the environment

in which a cylindrical structure is used can significantly alter its life-span.

7. An effective tool for selecting the desired material constants and the trade-off between the

material, structural cross section and/or environment was developed.
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