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Abstract. A fundamental solution for the transient, quasi-static, plane problems of linear viscoelasticity
is introduced for a specific material. An integral equation has been found for any problem as a result of
dynamic reciprocal identity which is written between this fundamental solution and the problem to be
solved. The formulation is valid for the first, second and mixed boundary-value problems. This integral
equation has been solved by BEM and algorithm of the BEM solution is explained on a sample, mixed
boundary-value problem. The forms of time-displacement curves coincide with literature while time-
surface traction curves being quite different in the results. The formulation does not have any singularity.
Generalized functions and the integrals of them are used in a different form. 
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1. Introduction

The viscoelastic behaviour of the materials attracted a great interest as a consequence of advances

in the materials science. In the presented study, the use of dynamic reciprocity theorem in transient,

isothermal viscoelasticity problems is introduced for a specific material which is linear,

homogeneous and isotropic. A simple mathematical model has been selected to represent the

viscoelastic behaviour of the material. Poisson’s ratio has been considered to be constant. This

assumption leads identical viscoelastic behaviour in bulk and shear. The inertia terms have been

neglected in the formulation. Depending upon this negligence, the definition of a quasi-linear

viscoelastic state has been presented similar to the concept of elastodynamic state given by Gurtin

and Sternberg (1962). The stress tensor is related to the displacement gradient history (see,

Christensen 1971) for the considered material. An integral equation is obtained from the dynamic

reciprocal theorem (see, Achenbach 1973, 2003), which relates two different viscoelastic states of

the same body. The first viscoelastic state in the expression of the reciprocal theorem represents the

problem to be solved whereas the second one expresses the displacement and stress fields in an

unbounded medium due to a sudden application of a time-dependent point load. The second state is

also named as a fundamental solution. Here, a quasi-static fundamental solution is also constructed
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for the selected, specific material in an infinite plane region using Laplace Transform. Simple

mathematical model provides to determine the exact solution of this fundamental state. Lee et al.

(1994) have used an approximation for inverse Laplace Transform. Similar expressions can be

found in literature, for example, Sim and Kwak (1988), Banerjee and Butterfield (1981) but this

state given here does not involve any constant term which means the infinite medium at rest before

the application time of the point load. In transient problems, entire motion starts when time is

greater than zero. The aforementioned integral equation turns out to be a summation of the

boundary integrals and these boundary integrals have Riemann convolutions in their kernels. For

plane problems, the boundary integrals are reduced to line integrals. The aim of the boundary

element method is to reduce the resulting integral equation to a system of linear algebraic equations

for any time. The construction and the unknowns of this system are different for the first, second

and mixed boundary-value problems. The construction of this system and the unknowns have been

explained on a sample, mixed boundary-value problem, which is a thick and wide concrete column

under a transient singular and eccentric normal force. The displacement components on a part of the

boundary and the surface tractions on a second part of the boundary have been determined as

functions of time for the sample problem. Results coincide with those given by others (Banerjee and

Butterfield 1981, Mesquita and Coda 2007a, 2007b) for the forms of time-displacement curves but

the forms of time-surface traction curves are quite different.

2. Basic formulation

The definition of a quasi-linear viscoelastic state is summarized below:

A region B with interior volume V and boundary S is considered. The ordered triple

 defines a quasi-linear viscoelastic state on , where  is the closure

of V and T is an arbitrary interval of time. u(x, t) is displacement vector and x, t denote the position

vector of a point and time, respectively. τ (x, t) is the stress tensor. f denotes body force. They

satisfy the following relations 

(1)

(2)

(3)

, , (4)

where  and  are time dependent coefficients and ν is the Poisson’s ratio. It is assumed that

time dependency, represented by  function, is the same for both  and  functions

(Kadioglu et al. 2007). εij is the strain tensor. δij represents Kronecker’s delta. λo and µo indicate

Lamé’s elastic coefficients in classical elasticity. The integral form of stress-strain constituve

relations in Eq. (2) is named as Stieltjes convolution notation (Christensen 1971), and, this form of

hereditary integral type has been used by many authors (Syngellakis 2003, Syngellakis and Wu
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2004, Wang and Birgisson 2007) while some others (Lahellec and Suquet 2007, Mesquita and Coda

2001, 2007a, 2007b) have used the differential equation form of constituve equation. 

The expression of the dynamic reciprocal identity which is written between two viscoelastic states

 and  of the same body is (Achenbach 1973

2003)

(5)

(6)

where T and T* are surface traction vectors in two states, respectively. n is the outward normal of

the surface S. Sign * represents Riemann convolution as follows

(7)

It will be considered that the viscoelastic state  represents a problem to

be solved on the region B of volume V bounded by surface S. This problem (Sokolnikoff 1956) can

be a first, second or mixed boundary-value problem. The body force f will be neglected in the

formulation. The second viscoelastic state  represents the displacement

and stress fields in an unbounded viscoelastic medium due to a sudden application of a time

dependent point load f*. The viscoelastic state , which will have

been constructed here, will be used as  in Eq. (5) for the quasi-static

solutions of plane viscoelasticity problems.

3. A singular quasi-static viscoelastic state for the solutions of plane viscoelastic-

ity problems

A body force in an infinite viscoelastic medium having the same material with the problem to be

solved is defined as

(8)

where x and y represent the position vectors of an arbitrary point and a specific point of volume V,

respectively. ek (k = 1, 2) represents a base vector in Cartesian coordinates.  is a generalized

function, which is known as Dirac delta function satisfying following property for an infinite

volume V
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Similar to Achenbach’s (1973, 2003) algorithm, f k and the displacement field uk due to this body

force can be represented as 

(11)

(12)

(13)

The lower boundaries of the integrals in Eq. (2) can be taken as zero since the medium at rest for

. This reduces a Stieltjes convolution to a Riemann convolution without an additional term

having initial values. This was done before by Wang and Birgisson (2007), but not Syngellakis

(2003) and Syngellakis and Wu (2004). Then substituting Eqs. (2) to (4), Eq. (7), Eq. (11) and

Eq. (12) in Eq. (1)

(14)

is found.  represents the time derivative of f. And the Laplace transform of Eq. (14) over t

variable becomes

 (15)

From now on, the Laplace transform of any function f(t) over t variable will be represented by

. Following Malvern (1969), a new vector function  can be defined as

 (16)

From Eq. (16) and Eq. (15)  can be expressed as

(17)

Again following Malvern (1969),  and the curl of  can also be determined as follows

 (18)

 (19)

Evaluating Laplace transform of Eq. (12) and substituting Eq. (18) and Eq. (19) in this expression,

the Laplace transform of  and inverting this  due to the point load given in

Eq. (8) is found as below 
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(21)

where 

(22)

(23)

Using Eq. (3), the (ij)th component of strain tensor can be written as

(24)

And substituting Eq. (24) in Eq. (2), the (ij)th component of the stress tensor can also be obtained

as 

(25)

where

(26)

The expression of dynamic reciprocal identity (Eq. (5)) which is written between ,

 and  is reduced to the following form:

(27)

It is clear that if the boundary values of T(x, t) and u(x, t) are known on the boundary S,

displacement vector at an inner point y can be determined using Eq. (27). Besides the stress

components can also be calculated at this point using Eq. (27) and Eqs. (2) to (4). This expression

is given below: 
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(30)

where

 (31)

4. The sample viscoelastic material

A simple compression test has been considered. And the time dependencies of strain components

are modeled in Cartesian coordinates as

(32)

, (33)

Here Eo is a constant and σo denotes the constant compression applied to the specimen. t1 is a

constant. The Poissons’s ratio ν is also accepted to be constant for this material and time dependent

coefficients are defined as 

(34)

The results of experiments of Akbarov (2005) and approximation are given in Fig. 1. 

Eq. (2) will be used to determine E(t) function. Substitution of Eqs. (32) to (33) in Eq. (2) gives

the following integral equation. 
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Fig. 1 Strain-time relations for the considered material
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The solution of this integral equation (Kadioglu et al. (2007)) is 

(36)

And the ϕ(t) function mentioned in Eq. (4) and Laplace transform of it become

, (37)

 and  functions defined in Eqs. (23), (26) and (30) for this material can be

calculated as follows 

, ,  (38)

where  is Heaviside’s unit step function and it is accepted that

 (39)

5. Sample problem

A vertical concrete column under an eccentrical normal force P = 1000 kN is considered acting at

a point y3 as shown in Fig. 2. The body force will be neglected and the Poisson’s ratio, ν is 0.2 and

 days. The problem is considered as a plane stress problem. The third dimension of the

column is 0.4 m.
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The body force f will be defined as

f = 0  (40)

And the boundary conditions of the problem are as follows:

The surface tractions on the BCDKA part of the boundary can be defined as

(41)

The displacement components on AB part of the boundary can be written as

for (42)

Since the problem is a plane problem, volume V and surface S came out to be a planar area and

the summation of plane lines, respectively. And the integrals over boundary are reduced to line

integrals. BCKA and AB parts of the boundary are named as L1 and L2, respectively. The surface

tractions are known on L1 while displacements are known on L2. Because of these, problem is a

mixed boundary-value problem. From now on,  will represent the problem

mentioned above. Substituting Eqs. (40) to (42) in Eq. (27), the following two integral equations

given below are found 

 (43)

From now on, it is considered that point y is not an inner point of the planar surface, S. Then the

unknowns of the problem become the surface traction vector  on L2 and the displacement

vector  on L1. It must be emphasized that during integrations over the boundary, one must

keep the region on the left. The procedure which will be used to solve these unknowns by

Boundary Element Method has been explained below step by step:
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boundary elements. If the number of these line segments is N, the number of the end points, named

as nodal points, is also N. The starting and end points of Jth element are x(J) and x(J + 1). Besides

time t is also divided to intervals with constant length, l(J), the length of Jth line element. The

starting point of the Ith interval is t = t(I) and the end point is t = t(I+1) with t(1) = 0. It is assumed

that the variation of any displacement or stress component on the Jth line segment in the Kth time

interval has the following form.
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(45)

where s is the distance from x(J) to any point between x(J) and x(J + 1). A similar form to this

variation has been used by Carrer and Mansur (2006) for an elastodynamic problem. After these

definitions, the unknowns of the problem will be reduced to the nodal values of displacement

components on L1 and the surface traction vectors on L2 at any time t = t(K + 1). Both BC and KA

lines have been divided to N1 intervals while CK and AB divided to N2. Then the number of the

nodal points becomes N = 2N1 + 2N2. And point B is selected as the last nodal point having the

nod number N. After this selection the nodal numbers of C, K, A points become N1, (N1 + N2) and

(2N1 + N2), respectively (Fig. 3).

Depending upon these, the numbers of the unknowns and their order can be expressed at any time

t(K + 1), as follows:

First (2N1 + N2 − 1) unknowns are the horizontal displacement components on nodal points on L1

starting from u1(K + 1, 1).

The following (2N1 + N2 − 1) unknowns of the problem are the vertical displacement components

on nodal points L1 starting from u2(K + 1, 1).

The third group of unknowns will be the horizontal component of the surface traction vector on

nodal points on L2. The values of this quantity are equal to zero for this problem at both A and B

points. Then the first and last elements of this group, having N2 − 1 unknowns, will be T1(K + 1,

2N1 + N2 + 1) and T1(K + 1, 2N1 + 2N2 − 1). The last group of N2 + 1 unknowns are the vertical

components of the surface traction vector on nodal points on L2 starting from T2(K + 1, 2N1 + N2). 

And the total numbers of the unknowns becomes M = 4N1 + 4N2 − 2 at any time t =t (K + 1). To

determine these unknowns M equations is necessary. Any of these equations can be written

selecting loading point y to be any nodal point x(I) and k being equal to 1 or 2 in Eq. (43). But x(I)

is a boundary point of the planar region. Because of this an artificial boundary including all of the
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Fig. 3 Nodal points
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line segments but not the nodal point x(I), will be defined for a singular loading on that nodal point.

Around x(I) a small circular arc Lε, with radius ε which leaves this nodal point outside the region

(Fig. 4) is added to complete this artificial boundary (Kadioglu and Ataoglu 2007).

It is assumed that the variations of the components of the displacement and surface traction

vectors on this circular arc will be represented by uk(t, x(I)) and Tk(t, x) = 0 for (k = 1, 2). As a

consequence of the definition of the artificial boundary, when the loading point is x(I), right side of

Eq. (43) becomes zero because x(I) is not a point in the region bounded by this artificial boundary.

After necessary calculations, the radius ε will be shrunk to the nodal point x(I). The first assumption

on circular arc, Lε, means that any displacement component at a nodal point is single valued at any

time t. The second assumption is that there is not a singular force acting at that nodal point. Then if

a singular force exists at a point of the boundary this point must not be selected as a nodal point.

After these, Eq. (43) takes the following form 

(46)

where k represents the direction of the loading and when k = 1 this direction coincides with the

direction of x1 axis while k = 2 indicates the loading direction to be the direction of x2 axis. As it is

mentioned above, M equations, each of these corresponding to a singular loading at a nodal point in

any direction, are necessary. The order of these loadings is as below:

For the first (2N1 + N2 − 1) equations, loading points are the nodal points on L1 and the loading

index k is one and for the second (2N1 + N2 − 1) equations, loading points are the same but index k

is two. For the following (N2 − 1) equations, k is one and the loading points are the nodal points on

L2 except A and B points. And in the last (N2 + 1) equations, loading points are the nodal points on
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Fig. 4 Artificial boundary
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L2 either but including A and B points and k is two. Besides it must be emphasized that the

convolutions in these equations, at any time t = t(K + 1) will be performed as

(47)

After writing the necessary M equations and substituting Eq. (6), Eq. (21), Eq. (25), the first two

of Eqs. (38) and the Eqs. (44) to (45) in Eqs. (46), the following system of linear algebraic

equations, given in partitioned form, is obtained for any time t = t(K + 1), (K = 1, 2, 3...).

(48)

where A, B are constant matrices while C(K) and R(K) are dependent to time t = t(K + 1). The

components of these matrices are given as follows  

 

(49)

where δIJ is the Kronecker’s delta, and  is defined as

(50)

f x t,( ) * g x t,( ) fi x t K 1+( ) ξ–,( )gi ξ( ) ξd

0

t K 1+( )

∫=

A
Mx 4N1 2N2 2–+( )

B
Mx 2N2( )

f12 K K,( )⋅,[ ]X 4N1 4N2 2–+( )x1
K( ) C

Mx1
K( ) R

Mx1
K( )+=

A I J,( ) δIJAD11 I( ) σ1i

1
x x I( ),( )ni 1

s

l J( )
---------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J( )

∫+=

 σ1i

1
x x I( ),( )ni

s

l J 1–( )
-----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 1–( )

∫+

A I J 2N1 N2 1–+ +,( ) δIJAD12 I( ) σ2i

1
x x I( ),( )ni 1

s

l J( )
---------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J( )

∫+=

 σ2i

1
x x I( ),( )ni

s

l J 1–( )
-----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 1–( )

∫+

A I 2N1 N2 1 J,–+ +( ) δIJAD21 I( ) σ1i

2
x x I( ),( )ni 1

s

l J( )
---------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J( )

∫+=

 σ1i

2
x x I( ),( )ni

s

l J 1–( )
-----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 1–( )

∫+

A I 2N1 N2 1 J 2N1 N2 1–+ +,–+ +( ) δIJAD22 I( )  +=

σ2i

2
x x I( ),( )ni 1

s

l J( )
--------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd σ2i

2
x x I( ),( )ni

s

l J 1–( )
----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 1–( )

∫+
0

l J( )

∫

for I 1 to 2N1 N2 1–+ J 1 to 2N1 N2 1–+=,=( )

σij

k
x y,( )

σij

k
x y,( ) 1

f2 t( )
----------τij

k
x y t, ,( )=
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Additional matrices AD11, AD12, AD21 and AD22 which correspond to the second term in

Eq. (49) can be expressed, in terms of θ1 and θ2 angles are shown in Fig. 4, as

 (51)

The remaining terms of the matrix A are given as follows:

 

(52)

 

(53)

AD11 I( ) 1

4π 1 ν–( )
---------------------- 2 1 ν–( ) θ2 θ1–( ) n1 I( )n2 I( )– n1 I 1–( )n2 I 1–( )+[ ]–=

AD12 I( ) 1

4π 1 ν–( )
---------------------- n2 I( )n2 I( )– n2 I 1–( )n2 I 1–( )+[ ]–=

AD21 I( ) 1

4π 1 ν–( )
---------------------- n1 I( )n1 I( ) n1 I 1–( )n1 I 1–( )–[ ]=

AD22 I( ) 1

4π 1 ν–( )
---------------------- 2 1 ν–( ) θ2 θ1–( ) n1 I( )n2 I( ) n1 I 1–( )n2 I 1–( )–+[ ]–=

A I 4N1 2N2 2–+ + J,( ) σ1i

1
x x I 2N1 N2+ +( ),( )ni 1

s

l J( )
---------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J( )

∫=

 σ1i

1
x x I 2N1 N2+ +( ),( )ni

s

l J 1–( )
-----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 1–( )

∫+

A I 4N1 2N2 2 J 2N1 N2 1–+ +,–+ +( ) σ2i

1
x x I 2N1 N2+ +( ),( )ni 1

s

l J( )
---------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J( )

∫=

 σ2i

1
x x I 2N1 N2+ +( ),( )ni

s

l J 1–( )
-----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 1–( )

∫+

for I 1 to N2 1– J 1 to 2N1 N2 1–+=,=( )

A I 4N1 3N2 3–+ + J,( ) σ1i

2
x x I 2N1 N2 1–+ +( ),( )ni 1

s

l J( )
---------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J( )

∫=

 σ1i

2
x x I 2N1 N2 1–+ +( ),( )ni

s

l J 1–( )
-----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 1–( )

∫+

A I 4N1 3N2 3 J 2N1 N2 1–+ +,–+ +( ) σ2i

2
x x I 2N1 N2 1–+ +( ),( )ni 1

s

l J( )
---------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J( )

∫=

 σ2i

2
x x I 2N1 N2 1–+ +( ),( )ni

s

l J 1–( )
-----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 1–( )

∫+

for I 1 to N2 1+ J 1 to 2N1 N2 1–+=,=( )
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The elements of the matrix B are

(54)

 

(55)

B I J,( ) v1

1
x x I( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

 v1

1
x x I( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

B I 2N1 N2 1–+ + J,( ) v1

2
x x I( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

 v1

2
x x I( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

B I J N2+,( ) v2

1
x x I( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

 v2

1
x x I( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

B I 2N1 N2 1–+ + J N2+,( ) v2

2
x x I( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

 v2

2
x x I( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

for I 1 to 2N1 N2 1–+ J 1 to N2 1–=,=( )

B I N2,( ) v2

1
x x I( ),( ) 1

s

l 2N1 N2+( )
-----------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 N2+( )

∫–=

B I 2N1 N2 1–+ + N2,( ) v2

2
x x I( ),( ) 1

s

l 2N1 N2+( )
-----------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 N2+( )

∫–=

B I 2N2,( ) v2

1
x x I( ),( ) s

l 2N1 N2+( )
-----------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 N2 1–+( )

∫–=

B I 2N1 N2 1–+ + 2N2,( ) v2

2
x x I( ),( ) s

l 2N1 2N2 1–+( )
-----------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 2N2 1–+( )

∫–=

for I 1=  to 2N1 N2 1–+( )
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(56)

(57)

B I 4N1 2N2 2–+ + J,( ) v1

1
x x I 2N1 N2+ +( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

v1

1
x x I 2N1 N2+ +( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

B I 4N1 3N2 2–+ + J,( ) v1

2
x x I 2N1 N2+ +( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

v1

2
x x I 2N1 N2+ +( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

B I 4N1 2N2 2–+ + J N2+,( ) v2

1
x x I 2N1 N2+ +( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

v2

1
x x I 2N1 N2+ +( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

B I 4N1 3N2 2–+ + J N2+,( ) v2

2
x x I 2N1 N2+ +( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

v2

2
x x I 2N1 N2+ +( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

for I 1 to N2 1– J 1 to N2 1–( )=,=( )

B I 4N1 2N2 2–+ + N2,( ) v2

1
x x I 2N1 N2+ +( ),( ) 1

s

l 2N1 N2+( )
-----------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 N2+( )

∫–=

B I 4N1 2N2 2–+ + 2N2,( ) v2

1
x x I 2N1 N2+ +( ),( ) s

l 2N1 2N2 1–+( )
-----------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 2N2 1–+( )

∫–=

B I 4N1 3N2 2–+ + N2,( ) v2

2
x x I 2N1 N2+ +( ),( ) 1

s

l 2N1 N2+( )
-----------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 N2+( )

∫–=

B I 4N1 3N2 2–+ + 2N2,( ) v2

2
x x I 2N1 N2+ +( ),( ) s

l 2N1 2N2 1–+( )
-----------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 2N2 1–+( )

∫–=

for I 1 to N2 1–=( )
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(58)

(59)

(60)

(61)

where

 (62)

B 4N1 3N2 2–+ J,( ) v1

2
x x 2N1 N2+( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

v1

2
x x 2N1 N2+( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

B 4N1 3N2 2–+ J N2+,( ) v2

2
x x 2N1 N2+( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

v2

2
x x 2N1 N2+( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

B 4N1 4N2 2–+ J,( ) v1

2
x x 2N1 N2+( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

v1

2
x x 2N1 2N2+( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

B 4N1 4N2 2–+ J N2+,( ) v2

2
x x 2N1 2N2+( ),( ) 1

s

l J 2N1 N2+ +( )
-------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2+ +( )

∫–=

v2

2
x x 2N1 2N2+( ),( ) s

l J 2N1 N2 1–+ +( )
----------------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l J 2N1 N2 1–+ +( )

∫–

for J 1 to N2 1–=( )

B 4N1 3N2 2–+ N2,( ) v2

2
x x 2N1 2N2+( ),( ) 1

s

l 2N1 N2+( )
-----------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 N2+( )

∫–=

B 4N1 3N2 2–+ 2N2,( ) v2

2
x x 2N1 2N2+( ),( ) s

l 2N1 2N2 1–+( )
-----------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 2N2 1–+( )

∫–=

B 4N1 4N2 2–+ N2,( ) v2

2
x x 2N1 2N2+( ),( ) 1

s

l 2N1 N2+( )
-----------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 N2+( )

∫–=

B 4N1 4N2 2–+ N2,( ) v2

2
x x 2N1 2N2+( ),( ) s

l 2N1 2N2 1–+( )
-----------------------------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

l 2N1 2N2 1–+( )

∫–=

vi

k
x y,( ) 1

f1 t( )
----------ui

k
x y t, ,( )=
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(63)

(64)

 

(65)

where 

(66)

(67)

(68)

for 

for (69)

where

(70)

 (71)

It is seen from Eq. (42) that 

 (72)

X I( ) u1 K 1+ I,( ) for I 1 2N1 N2 1–+,= =

X I 2N1 N2 1–+ +( ) u2 K 1+ I,( ) for I 1 2N1 N2 1–+,= =

X I 4N1 2N2 2–+ +( ) T1 K 1+ I 2N1 N2+ +,( ) for I 1 N2 1–,= =

X I 4N1 3N2 3–+ +( ) T2 K 1+ I 2N1 N2 1–+ +,( ) for I 1 N2 1+,= =

f12 K K,( ) 1
t1

t K 1+( ) t K( )–

---------------------------------- 1 e
t K 1+( ) t K( )–( )/t

1
–

–[ ]–=

C K( ) I( ) Pv2

1
y3 x I( ),( )f0 K( )–=

C K( ) I 2N1 N2 1–+ +( ) Pv2

2
y3 x I( ),( )f0 K( ) for I– 1 2N1 N2 1–+,= =

f0 K( ) 1 e
t K 1+( )/t

1
–

–=

C K( ) I 4N1 2N2 2–+ +( ) Pv2

1
y3 x I 2N1 N2+ +( ),( )f0 K( ) for I– 1 N2 1–,= =

C K( ) I 4N1 3N2 3–+ +( ) Pv2

2
y3 x I 2N1 N2 1–+ +( ),( )f0 K( ) for I– 1 N2 1+,= =

R K( ) I( ) ΣL 1=

K 2–

f11 K L,( ){–=

ΣJ 1=

N2 1–

B I J,( )[ T1 L J 2N1 N2+ +,( ) ] ΣJ 1=

N2 1+

B I J N2 1–+,( )T2 L J 2N1 N2 1–+ +,( )[ ]+{ }

 f12 K L,( ) ΣJ 1=

N2 1–

B I J,( )T1 L 1+ J 2N1 N2+ +,( )[ ]  +{+

ΣJ 1=

N2 1+

B I J N2 1–+,( )T2 L 1+ J 2N1 N2 1–+ +,( )[ ]}} f11 K K,( )–

ΣJ 1=

N2 1–

B I J,( )T1 K J 2N1 N2+ +,( )[ ]  +{

ΣJ 1=

N2 1+

B I J N2 1–+,( )T2 K J 2N1 N2 1–+ +,( )[ ]} K 2 3 …  I, , , 1 M,= =

R K( ) I( ) 0= K 1  I, 1 M,= =

f11 K L,( ) 1
t1

t L 1+( ) t L( )–

---------------------------------+⎝ ⎠
⎛ ⎞e

t K 1+( ) t L( )–( )/t
1

–

–
t1

t L 1+( ) t L( )–

---------------------------------e
t K 1+( ) t L 1+( )–( )/t

1
–

+=

f12 K L,( )
t1

t L 1+( ) t L( )–

---------------------------------e
t K 1+( ) t L( )–( )/t

1
–

1
t1

t L 1+( ) t L( )–

---------------------------------–⎝ ⎠
⎛ ⎞e

t K 1+( ) t L 1+( )–( )/t
1

–

+=

T1 1 J,( ) 0 for J 2N1 N2 1+ + 2N1 2N2 1–+,= =

T2 1 J,( ) 0 for J 2N1 N2+ 2N1 2N2+,= =
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Substituting Eqs. (25) and (21) in Eqs. (50) and (62)  and  functions are found.

Using these expressions in Eqs. (49), (52), (53) and (54) to (61), performing the integrals, the

entries of A and B constant matrices are calculated. But it must be indicated that there are singular

terms during calculation of these integrals on the boundary elements having the numbers I-1 and I

for a loading point x(I). Integrals have been calculated over these elements to eliminate these

singularities analytically. The singularities which arise in the integrals of  functions have the

type of 

(73)

which is zero. But the singularities arising in the integrals of  functions have the types of 

(74)

but the singular terms having this form eliminates each other during construction of the entries of

the matrix A. Substituting the constant matrices A, B, Eqs. (64), (65) to (68) and (69) in Eq. (48) a

system of linear algebraic equations, whose unknowns have been defined in Eqs. (63), is found for

vi

k
x y,( ) σij

k
x y,( )

vi

k
x y,( )

S1 sln s( ){ }
s 0→
lim=

σij

k
x y,( )

S2 ln s( ){ }
s 0→
lim=

Fig. 5 Variation of the horizontal component of the
displacement vector at point D versus time

Fig. 6 Variation of the vertical component of the
displacement vector at point D versus time

Fig. 7 Variation of the vertical component of the
surface traction vector at point A versus time

Fig. 8 Variation of the vertical component of the
surface traction vector at point O versus time
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Fig. 11 Variation of the horizontal displacement
component on OD line in time-x2 plane

Fig. 12 Variation of the horizontal displacement
component on OD line in time-x2 plane

Fig. 13 Variation of the horizontal component of surface traction vector on AO line in time-x1 plane

Fig. 9 Variation of the vertical component of the
surface traction vector at point B versus time

Fig. 10 Variation of the horizontal displacement
component versus x2 on BC line
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t = t(K + 1). Setting K = 1, the solution vector which corresponds to the nodal values of

displacement and surface traction vectors at t = t(2) is obtained. Then using these same unknowns

can be calculated at t = t(3). Here whole unknowns have been calculated till t = t(34). Before

starting dynamic problem, the static solution of the problem is solved writing f12 = 1, R(K) = 0,

f0(K) = 1 in Eq. (48). The variation of the horizontal and vertical components of displacement

vector at point D versus time are given in Figs. 5 and 6, respectively. 

Besides variations of the vertical component of the surface traction vector (T2 = −τ22) at points A,

O and B versus time are given in Figs. 7, 8 and 9, respectively.

And, the variation of the horizontal displacement component versus x2 on BC line is also given

for t = 3 days and t = 33 days in Fig. 10.

For a better demonstration of the results, the variation of the horizontal displacement component

on OD line is also given in time-x2 plane till t = 5 days and t = 12 days in Figs. 11 and 12,

respectively.

And to be another demonstration, the variation of horizontal component of surface traction vector

on AO line is given in time-x1 plane till t = 8 days.

6. Conclusions

A solution method of plane problems of quasi-linear viscoelasticity has been explained on a

sample mixed-boundary value problem for a specific material. It is known that inertia terms are

neglected in quasi-static solutions. As a result of this negligence, the motion starts at t = 0 for every

point of the region under a transient singular loading. This is not exactly true since the the starting

times of the motion are different for the points having different positions relative to the point on

which the transient load exists. But the arrival times are very small in comparison with the time

scale of the problem. The time units have been given in days for the selected specific material.

These arrival times are relatively very small for a problem having a very small time scale (nearly 30

milli-seconds) in nonviscous case either (Kadioglu and Ataoglu 2006). Therefore, for the specific

concrete used here, this error can be neglected. The difference of the singular quasi-static state,

which was given here, is that no constant terms exist in the expressions of both displacements uk(x,

y, t) and the stresses τ k(x, y, t). The initial values of any quantity have been hidden in H(t) function

which arising as a result of the convolutions in reciprocal identity. The viscoelastic solution of any

problem must give the solution of the same problem for elastodynamic or elastostatic case as a limit

if the viscous characteristics are eliminated in the formulation. In this study, to write t1 = 0 is

sufficient in Eq. (48) to achieve the elastostatic solution of the same problem. This fact can also be

seen in Ref. (Kadioglu et al. 2007) which is the analytical solution of a viscoelasticity problem

considering acceleration terms. The solution method, presented here, has been explained on the

sample problem in details. Dynamic reciprocity theorem provides a relation between displacements,

traction components and body forces for two loading states of the same body and this relation gives

a boundary integral equation for unknown fields on the boundary, complementary to the applied

fields. This integral equation has been solved numerically. The selected approximations for

unknowns are linear in both time and space coordinates and the integral equation is reduced to a

system of algebraic equations. Of course, higher order polynomials can be selected for a better

approximation but it must be emphasized that dominant terms of the coefficients matrix are heavily

dependent to the constant additional matrices AD11, AD12, AD21, AD22, and the constant terms in
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approximation polynomials while the effects of linear terms are secondary. The solution of the same

problem for nonviscous case (elastostatic solution) has been found to check the accuracy of the

formulation and the same elastostatic problem has also been solved by FEM (ANSYS 10.0) for a

second control. Results are nearly the same for displacements while element numbers are quite

different. In BEM, 28 elements are used while 38 elements (PLANE82) and 147 nodes in FEM.

Relative errors are calculated using equilibrium equations. And the relative errors are 0.003868 and

0.00947 in horizontal and vertical directions respectively for BEM while 0.0086 and 0.0122 in

FEM. The increment of the element number slightly affect the error after 28 in BEM. As an

example, relative errors are 0.003499 and 0.00227 for 38 elements. Because of these, the number of

boundary elements is also taken to be 28 for the viscoelastic problem. The forms of the variations

of the displacement components by time coincides with the experimental results and the other

numerical solutions [Sim and Kwak (1988), Mesquita and Coda (2007a, 2007b). But the forms of

time-surface traction curves are clearly different. A similar formulation has been used by Wang and

Birgisson (2007) and it is expected that their results must be also different from others. This cannot

be easily seen in their results because they have selected to give the stress variation by time for

jumping values of time (t1 = 0 s, t2 = 20 s, t = 100 s, t4 = 1000 s). Here, the variation of any surface

traction vector by time shows a damped vibration about nonviscous solution. The components of the

displacement and surface traction vectors are dependent to histories of these quantities at any time

t = t(K + 1) and this fact has been represented by the matrix R(K) which exists in Eq. (48). A

similar formulation has been presented before by Kadioglu and Ataoglu (2005, 2006) in time

domain. And, another similar system has also been constructed for a different problem by Carrer

and Mansur (2006). The presented results may help to the difficulties which arise during stress

computations in experiments (Reddy and Ataoglu 2004).
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