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Damage assessment for buried structures against 
internal blast load
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Abstract. Damage assessment for buried structures against an internal blast is conducted by considering
the soil-structure interaction. The structural element under analysis is assumed to be rigid-plastic and
simply-supported at both ends. Shear failure, bending failure and combined failure modes are included
based on five possible transverse velocity profiles. The maximum deflections with respect to shear and
bending failure are derived respectively by employing proper failure criteria of the structural element.
Pressure-Impulse diagrams to assess damage of the buried structures are subsequently developed.
Comparisons have been done to evaluate the influences of the soil-structure interaction and the shear-to-
bending strength ratio of the structural element. A case study for a buried reinforced concrete structure
has been conducted to show the applicability of the proposed damage assessment method.
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1. Introduction

Damage assessment is a critical issue in protective structure design against blast load. Among the

existing damage assessment methods, the simplified single-degree-of-freedom (SDOF) system has

been widely used to analyze the structural response under blast load for a variety of structures or

structural elements (Krauthammer et al. 1986, Li and Meng 2002a, Campidelli and Viola 2007,

Fallah and Louca 2007). The SDOF system has its advantages in deriving analytically the structural

response. In many cases of practical engineering, it has been used to give a preliminary assessment

of structural damage induced by a blast load. However, due to its inherent limitation, the SDOF

model oversimplifies the structural elements and neglects the influence of shear deformation, or it

can only analyze the shear and bending response separately (Krauthammer et al. 1986). 

In a blast event, structures at a close-in distance may experience localized transverse shear failure

which deforms as a shear hinge (Symonds 1968, Jones 1989, Jones 1997). Depending on different

loading rates, intensities, and material properties, the localized shear deformation can be isothermal

rupture (Menkes and Opat 1973) or adiabatic shear banding failure (Kalthoff and Winkler 1987,

Kalthoff 1990). Based on experimental and analytical results, researchers realized that, when the
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span-to-height ratio of a structural element is relatively small or when a detonation is at a close-in

distance from the structure, the shear failure probably occurs. If the duration of the blast load is

sufficiently short, shear failure becomes dominant and cannot be ignored.

To overcome the limitation of the SDOF model in analyzing combined failure modes, a mode

approximation method for rigid-plastic structural elements has been proposed (Martin and Symonds

1966, Symonds and Chon 1979, Jones and Song 1986, Liu and Jones 1988, Li and Jones 1999,

Alves and Jones 2002, Jones and Jones 2002, Li and Jones 2005a, Lellep and Torn 2005). Although

the rigid-plastic model neglects the elastic deformation, the estimated deflections by the mode

approximation method in most cases agree well with the final deflections observed in tests

(Symonds and Chon 1979). And the pressure-impulse (P-I) diagrams derived from such model

agree well with those from elastic, perfectly plastic SDOF model, especially when severe damage

occurs. Lellep and Torn (2005) developed a method for investigation of rigid-plastic beams

subjected to impulse load. Close-form solutions were derived for beams made of perfectly plastic

material obeying the square yield condition. According to this method, the shear and bending

responses can be analyzed at the same time. Ma et al. (2007) derived explicit forms of P-I diagrams

based on the rigid-plastic beam model for structural elements subjected to a blast load.

However, the most existing works focused on damage assessment of surface structures. Very few

involved in failure of underground buried structures. In fact, the complexity of soil property makes

it difficult to perform structure response analysis when the soil-structure interaction is considered. It

is understood the surrounding soil interacts with the buried structural element during the loading

phase. The soil acts as an elastic support which absorbs part of the blast energy during an internal

blast event occurred to a buried structure.

In the present study, the soil-structure interaction is simplified as a spring effect. The rigid plastic

model with the mode approximation method is adopted. Pressure-impulse diagrams are subsequently

developed for structural element by considering the soil-structure interactions. The results of the

present study can also been applied to the scenarios when the explosion occurs nearby a retaining

wall, over a foundation slab, and basement, etc. Comparison between the present study and damage

assessment for surface structures is carried out to evaluate the soil-structure interaction effect. P-I

diagrams of different damage levels are also plotted. To verify the continuity of different failure

modes, verifications are done by checking a few sharing points of different failure modes. A case

study for a buried reinforced concrete structure has been conducted to show the applicability of the

proposed damage assessment method.

2. Simplification of soil effect

The interaction between soil and structure is so complicated because of the complexity of the soil

contents. During the physical process when a blast wave interacts with a buried structure, as shown in

Fig. 1, the soil medium is considered as a macroscopical homogeneous material which can be

simplified to an elastic foundation to support the structure. Therefore the soil-structure interaction (SSI)

effect is simplified to a spring support which distributes over the structural element. The SSI effect

exists in the deformation phase till the motion of element vanishes. Change of soil density during

deformation is not considered; therefore the average stiffness of soil is adopted according to the

analytical and laboratorial results (Sawangsuriya et al. 1974, Dutta et al. 2004). Such simplification

aims on getting result efficiently in the analysis of the structure response by considering the SSI effect. 
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3. Failure criteria

A typical resistance-deflection curve for laterally restrained elements is shown in Fig. 2 (TM5-

1300, 1990). The initial portion of the curve is primarily due to the flexural action. The ultimate

flexural resistance is maintained until 2 degrees of support rotation is produced. At this support

rotation, the concrete begins to crush and the element loses flexural capacity. If adequate single leg

stirrups were provided, the flexural action would be extended to 4 degrees. However, due to the

presence of the continuous reinforcement and adequate lateral restraint, a tensile membrane action is

developed. The resistance due to this action increases with increasing deflection up to incipient

failure at approximately 12 degrees support rotation. In order to simplify the analysis, the resistance

is assumed to be due to plastic action throughout the entire range of behavior. To approximate the

energy absorbed under the actual resistance-deflection curve, the deflection of the idealized curve is

limited to 8 degrees support rotation. Design for this maximum deflection would produce incipient

failure conditions. Existing studies (Yu and Jones 1991, Krauthammer 1998) also suggested use the

ratio of centerline-deflection to half-span as the criterion of bending failure, since the largest ductile

plastic deformation usually appeared at the mid-span due to bending effects.

The maximum bending deformation of the element is defined as

(1)ym L tanθ⋅=

Fig. 1 Soil-structure interaction

Fig. 2 Idealized resistance-deflection curve for large deflections
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where L is half length of the element, and θ is the support rotation.

Since θ is small enough, tanθ approximately equals to θ. Then ym can be expressed as

(2)

where β is the ratio of centerline deflection to half span.

For a reinforced concrete structure member, the dynamic bending strength M0 varies for different

cross section designs. According to TM5-1300, for type I design, there is no crushing or spalling in

concrete; only cracking appears on the tension side and the M0 can be expressed as

 (3)

in which

(4)

where As is the area of tension reinforcement within the width, fds is the dynamic design stress for

reinforcement, b is the width of compression face, d is the distance from extreme compression fiber

to centroid of tension reinforcement, a is the depth of equivalent rectangular stress block,  is the

dynamic ultimate compressive strength of concrete.

In the cross section type II, cracking appears on the tension side of member while crushing

appears on the compression side. The M0 can be shown as 

 (5)

where As shows the area of tension or compression reinforcement within the width b, dc is the

distance between the centroids of the compression and the tension reinforcement.

In the cross section type III, disengagement of concrete appears on both tension and compression

sides of the member. The bending strength M0 is expressed the same as in Eq. (5).

The shear deformation at the element supports can be expressed by

(6)

where ys is cumulative quantity over of shear sliding, γv is the average shear strain, δ is a material

parameter calculated from experiment result, h is the depth of the element. In the present study, δ is

fixed as 0.8.

Therefore, the dynamic shear strength of a rectangular section reinforced concrete structure

member, Q0 can be expressed as 

ym Lβ=

M0

As fds

b
---------- d

a

2
---–⎝ ⎠

⎛ ⎞
=

a
As fds

0.85bfdc′
---------------------=

fdc′

M0

As fdsdc

b
----------------=

ys γ
ν

δ h⋅ ⋅=

Table 1 Different damage level under empirical bending and shear failure criteria (Yu and Jones 1991)

Type of 
failure

Criteria Light 
Damage (%)

Moderate 
Damage (%)

Severe 
Damage (%)

Shear Average shear strain γ
ν

1 2 3

Bending Ratio of centerline deflection to half span β 3.492 8.749 14.054
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(7)

Table 1 shows different damage level under empirical bending and shear failure criteria from

results of Yu and Jones (1991) and Krauthammer (1998). There are three levels of damage,

including light damage, moderate damage, and severe damage. For shear design, average shear

strain γv indicates different damage levels, while the support rotation β is for bending.

4. Failure modes and response analysis

The internal blast load is simplified as a rectangular pulse load with magnitude of p0 and duration

of td, while the pulse shape effect is eliminated. The pulse shape effect has been discussed by

Youngdahl (1970, 1971), Li and Meng (2002b), and Li and Jones (2005b) that the loading shape

effects on the P-I diagrams of a rigid, perfectly plastic SDOF model can be eliminated by using the

Yougdahl’s correlation parameter method. For convenience of P-I equations derivation while not

losing the generality of the solution, the rectangular pulse load with equivalent pressure and impulse

is adopted in the present study. The pulse shape effects on the P-I diagrams of a rigid, perfectly

plastic SDOF model can be eliminated by using the Youngdahl’s (1971) correlation parameter

method as follows.

(8)

where I is the impulse, ty is the time when material begins to yield, tf is the end time of total

deformation, P(t) is the external pressure, tmean is the mean time, Pe is the effective pressure.

As discussed in section 2, the spring effect exists in all the phases. The governing equation is

expressed as

(9)

where Q is the transverse shear force, x is the abscissa on the element, m is the mass per unit

length,  is the acceleration of unit mass, K is equivalent spring coefficient to represent the SSI

effect, and y is the displacement of unit mass. It is worth noting that the governing Eq. (9) considers

the soil-structure interaction which has an additional term of the sprint effect and is different from

that derived for surface structures.

The same as the analysis of surface structure, there are totally five possible transverse velocity

profiles including one pure shear failure mode, two pure bending failure modes, and two combined

failure modes as shown in Fig. 3. A dimensionless strength ratio is introduced as below

(10)

Q0 0.18fdc′ bd=

I P t( ) td
ty

tf
∫=

tmean
1

I
--- t ty–( )P t( ) td

ty

tf
∫=

Pe
I

2tmean

-------------=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

∂Q

∂x
------- p0– my·· Ky+ +=

y··

ν
Q0L

2M0

----------=
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where Q0 and M0 are the dynamic shearing and bending strength respectively, L is the half length of

the element. 

Table 2 shows the velocity profile of different phases under different modes. Mode 1 contains

shear failure only. Mode 2 is for simple bending failure which has a plastic hinge at the center of

the element. Mode 3 can be considered as a combination of mode 1 and mode 2. Mode 4 is the

complex bending failure mode which has a plastic zone at the middle of the element. And mode 5

is the combination of mode 1 and mode 4. Differentiation of the five failure modes is the same as

that for surface structures. Detail discussion of the mode differentiation is given in Section 6.

Derivation of the displacement time history for the five failure modes is summarized as follows.

The x-axis starts at the mid of the beam and only half of a strip beam is considered due to

symmetry as seen in Fig. 1. 

Mode 1.  and , shear failure mode.

This shear failure mode provides direct shear failure occurs at the two supports where carries the

maximum shear force, while bending failure does not occur. In this mode, the dimensionless

parameter ν is less than one which indicates a very low shear-to-bending strength ratio.

0 ν 1< < p0 2M0ν/L
2≥

Fig. 3 Distribution of failure modes

Table 2 Velocity profile

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Phase 1

Phase 2

Phase 3 N.A. N.A.

Phase 4 N.A. N.A. N.A. N.A.
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There are totally two phases in this mode including a loading phase (phase 1) and a post-loading

phase (phase 2) which end at td and tf respectively.

In phase 1, the governing equation is

(11)

where  and ys are the acceleration and displacement due to shear force respectively.

The boundary and initial conditions are

(12)

(13)

where  is the velocity due to shear force.

Integrating Eq. (11) with respect to time, at the end of phase 1 when t = td, the maximum

displacement and velocity of the element are shown as follows.

(14)

(15)

In phase 2, the governing equation transfers to

(16)

Using Eq. (12) as the boundary conditions and Eqs. (14)-(15) as the initial conditions to solve

Eq. (16), at the end of phase 2, the final time tf will be

(17)

The element’s final transverse displacement due to shear is

(18)

where .

Mode 2.  and , or  and ,

bending failure mode.

A bending failure mode will occur when the above conditions are satisfied. A plastic hinge is

generated at the mid-span of the element. There are totally two phases in this mode including a
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loading phase (phase 1) and a post-loading phase (phase 2) which end at td and tf respectively.

In phase 1, the governing equation is

(19)

where  and ym are the acceleration and displacement due to bending force respectively.

The boundary and the initial conditions are

(20)

(21)

where  is the velocity due to bending force.

Integrating Eq. (19), at the end of phase 1 when t = td, the maximum displacement and velocity

of the element due to bending are shown respectively as follows.

(22)

(23)

In phase 2, the governing equation changes to

(24)

Using Eq. (20) as the boundary conditions and Eqs. (22)-(23) as the initial conditions, the final

time tf will be

(25)

The final bending displacement of the element is solved as

(26)

Mode 3.  and , combined failure mode.

Mode 3 is the combination of mode 1 and mode 2. Both shear failure and bending failure occur

to the element. The shear failure occurs at the two supports, while the bending failure induces

plastic hinge at the mid-span of the element. There are three phases including one loading phase

(phase 1) and two post-loading phases (phase 2 and phase 3) which end at td, ts, and tf respectively.

In phase 1, the governing equation is

(27)

with the same boundary and initial conditions given in Eqs. (20), (13), and (21).
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Similar to mode 1 and mode 2, after integrating Eq. (27), at the end of phase 1 when t = td, the

maximum displacement and velocity of the element due to shear and bending are given respectively

as follows.

(28)

(29)

(30)

(31)

In phase 2, the governing equation is

(32)

The boundary conditions are still the same as in the first phase, while the velocities and

displacements given in Eqs. (28)-(31) are used as the initial conditions. Solving Eq. (32), at the end

of phase 2 when t = ts, the displacement due to shear stops first, while the bending displacement

remains to the next phase. The ending time ts and the maximum displacement and velocity due to

shear and bending are shown respectively as follows.

(33)
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(35)
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In phase 3, only the bending failure induced motion remains, and the governing equation is the

same as Eq. (24). Similarly, the motion termination time tf and the final displacement ym(tf) are

determined as

(37)

(38)

where .

Mode 4.  and , bending failure mode.

In this mode, the bending failure with a plateau deformation at the central portion of the element

occurs when the blast load is sufficiently intensive. Different from mode 2, two plastic hinges are

generated offset from the mid-span of the element. There are totally three phases including one

loading phase (Phase 1) and two post-loading phases (phase 2 and phase 3) which end at td, t1, and

tf respectively.

In phase 1, the governing equation is expressed as

(39)

where ξ0 is the distance of the plastic hinge from the mid-span.

The boundary conditions are as follows,

, , , (40)

And the initial conditions are the same as Eqs. (13) and (21). Thus Eqs. (40), (13), and (21) are

used to determine the integral constants when Eq. (39) is integrated.

At the end of the loading period, when t = td, the plastic hinge location which is indicated by ξ0

and the ending displacement and velocity of phase 1 are derived respectively as follows.
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In phase 2, the blast load has been released, and the velocity profile is the same as that given in
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equation of phase 2 is

(44)

where ξ is the distance between the plastic hinge and the mid-span of the element.

The boundary conditions are

, , , (45)

Using Eqs. (13) and (21) as the initial condition to solve Eq. (44). At the end of phase 2 when

t = t1, moving of the two plastic hinges stops. The ending time of phase 2 and the maximum

displacement and velocity due to bending are shown respectively as follows,

(46)

where , , 

(47)

(48)

In phase 3, the governing equation is the same as Eq. (24), and it can be solved in a similar way

as it was done for mode 2 and mode 3.

At the end of phase 3, when t = tf, the motion stops and the final time tf is determined as

(49)

The final bending displacement ym(tf) is

(50)

where .

Mode 5.  and , combined failure mode.

Mode 5 is the most complicated mode as mode 1 and mode 4 are combined. There are four

phases including one loading phase (phase 1) and three post-loading phases (phase 2, phase 3, and

phase 4) which end at td, ts, t1, and tf respectively.

In phase 1, both shear and bending deformation occur. The governing equation is

(51)

The boundary conditions are the same as those in Eq. (20), and initial conditions are the same as
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Eqs. (13) and (21). After integrating Eq. (51), at the end of phase 1 when t = td, the plastic hinge

location, the maximum displacement and velocity of this phase are shown respectively as follows.

(52)

(53)

(54)

(55)

(56)

In phase 2, the velocity profile is the same as that of the previous phase, while the shear

deformation tends to vanish. The governing equation is

(57)

Based on the same boundary conditions given in Eq. (19), and the initial conditions of Eqs. (53)-

(56), Eq. (57) can be integrated with respect to time. At the end of phase 2 when t = ts, the shear

deformation stops. The displacement and velocity at the ending time of phase 2 due to shear and

bending are shown respectively as follows,

(58)

(59)

(60)

(61)

In phase 3, the bending deformation remains the same velocity profile as that in phase 2 of mode

4, and the two plastic hinges start to move toward the mid-span of the element. The governing
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equation is the same as Eq. (44). Similarly, at the end of phase 3, when t = t1, the two plastic

hinges coincides at the mid-span, and the ending displacement and velocity of phase 3 are deduced

as follows.

(62)

where , .

(63)

(64)

Similarly, in phase 4 of mode 5, the governing equation is the same as Eq. (24). At the end of

phase 4 when t = tf, the motion stops.

(65)

The final bending displacement is

(66)

5. P-I diagrams and discussions

In each of the five modes discussed in section 4, the final shear displacement ys for direct shear

failure and the final bending displacement ym for bending failure, or both for combined failure can

be derived. Based on the failure criteria discussed in section 3, P-I diagrams for different modes can

then be derived. 

Define dimensionless variables P* and I* of the pressure and impulse of a blast load as:

(67)

(68)

From the equations for final displacements induced by shear and bending failure, the P-I diagrams

can be represented in unified forms as follows.

(69)

(70)

where ys is the maximum displacement due to shear which equals to ys(tf) in a shear failure mode,
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and ys(ts) in a combined failure mode; ym is the maximum displacement due to bending which

equals to ym(tf); S(P*, I*) and B(P*, I*) are implicit expressions with respect to the normalized

pressure and impulse for shear and bending according to failure criteria respectively. S(P*, I*) equals

to the right part of Eqs. (18), (34), or (59) which gave the maximum shear deformation, and B(P*,

I*) equals to the right part of Eqs. (26), (38), (50), or (66) which represent the maximum bending

deformation.

Based on Eqs. (69) and (70), P-I diagrams corresponding to shear and bending failures can be

drawn.

5.1 Differentiation of failure modes

By determining relative parameters, the P-I diagrams can be plotted for all five failure modes.

Differentiation of the failure modes given in Fig. 3 is determined by the requirement of the motion

initiation. For example, for mode 1, the acceleration induced by the shear force at the supports

should be larger than zero, and the maximum bending moment should be smaller than the bending

strength of the element. Therefore  and  are derived, respectively. For modep0 2M0ν/L
2≥ 0 ν 1< <

Fig. 4 Typical failure modes
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2, the initial acceleration due to bending should be larger than zero, while the maximum shear force

should be less than the shear strength. Therefore  and 2M0/L
2 ≤ p0 ≤ 2M0(4ν − 3)/L2, or ν

≥ 1.5 and 2M0/L
2 ≤ p0 ≤ 6M0/L

2 are required. For mode 3, by combining the two requirements that

accelerations due to both shear and bending are larger than zero, the equations of boundaries are

derived as  and p0 > 2M0(4ν − 3)/L2. The mode 4 has the same requirements as mode 2

and the boundaries are 1.5 < ν and . The mode 5 has the same requirements as

mode 3, and the boundaries are 1.5 < ν and .

Three typical P-I diagrams of shear and bending failures are plotted in Fig. 4.

1) When ν = 0.8 and , only shear failure exists as shown in Fig. 4(a) (mode 1).

Region A and region B indicate shear failure and no failure respectively.

2) As shown in Fig. 4(b) when ν = 1.2 and , the element fails in the mode 3,

which is the combination of mode 1 and mode 2. Two P-I diagrams, for shear failure and

bending failure respectively, are plotted based on Eqs. (69)-(70). There are four regions in this

case which indicate four different failure types of the element. In region A, which corresponds

to larger pressure and impulse, combined failure occurs since both the maximum shear

displacement and the maximum bending displacement exceed the failure threshold given by the

shear and bending failure criteria. In region B, the pair of pressure and impulse locates above

the shear failure diagram but below the bending failure diagram, which indicates shear failure

only occurred to the element. Similarly, in region D, the pair of pressure and impulse exceeds

the bending failure diagram while it is below the shear failure diagram, which defines bending

failure for the element. In region C, the element remains safe due to the pressure and impulse

pair is below both diagrams.

3) When ν = 1.8 and , mode 4 and mode 5 may occur. Fig. 4(c) shows the P-I

diagrams of mode 5 which is similar to mode 2 with 4 different regions.

5.2  Soil-structure interaction effect

The boundary conditions of different failure modes are exactly the same as those of surface

structures. This is because that, whether the spring effect acts on the beam or not, the initial

1 ν 1.5≤ ≤

1 ν 1.5≤ ≤
p0 8M0ν

2
/3L

2>
6M0/L

2
p0 8M0ν

2
/3L

2≤ ≤

p0 8M0ν/L
2>

p0 2M0 4ν 3–( )/L
2>

p0 6M0ν
2
/L

2>

Fig. 5 Failures in different soils
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conditions for all the failure modes remain the same.

Different soil has different density and compressibility, therefore the spring effect varies in all

kinds of soil types. Considering a comparison with plastic beads-sand mixture (K = 2.39 MN/m),

medium sands (K = 3.83 MN/m), and Crushed rock (K = 4.83 MN/m) (Sawangsuriya et al. 1974),

P-I diagrams for shear and bending failure are plotted and compared in Fig. 5. It shows that, these

three types of soil are characterized as low stiffness, intermediate stiffness, and high stiffness. The

low stiffness material is a mixture of 50% by volume of sand and 50% by volume of plastic beads.

The intermediate stiffness material is a medium of uniformly-graded quartz sand. The high stiffness

material is 19-mm crushed lime rock. It can be seen from Fig. 5. that, the crushed rock has the

highest stiffness and has significant effect on the structural failure.

Comparison is also done to the damage assessment results for surface structures when the spring

coefficient is set sufficient small (for example, K = 10 N/m) as shown in Fig. 6. It can be seen that

both the shear failure and bending failure diagrams match well with those for surface structures. It

verifies the present P-I diagrams and the P-I diagram method suggested by Ma et al. (2007) has

been successfully extended to damage assessment for buried structures when the decoupling of SSI

is considered. Furthermore, the present results can be applied to damage assessment for surface

structures by assigning a sufficient small spring coefficient in the equations.

5.3 Verification of continuity

Since different failure modes give different final shear and/or bending displacement, the solutions

at the boundaries of different modes in Fig. 3 should be continuous. It means that two modes should

give the same P-I diagram at their sharing boundary line. To verify the continuity of the equations,

three checking points as shown in Fig. 3 are examined. CP1 (p0 = 3.6M0/L
2 and ν = 1.2) is shared

by mode 2 and mode 3, CP2 (p0 = 6M0/L
2 and ν = 1.5) is shared by mode 2, mode 3, mode 4 and

mode 5, and CP3 (p0 = 8.64M0/L
2 and ν = 1.8) is shared by mode 4 and mode 5. CP1 and CP3 are

chosen randomly from the boundary lines.

The verification is shown in Table 3 which indicates the diagrams of Mode 2, 3, 4, and 5 match

very well at the check points.

Fig. 6 Comparison with surface structures under blast load
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6. Case study

To verify the applicability of the developed P-I diagrams, a case study is carried out by

considering a box-shape buried structure. An explosion occurred inside the buried structure as

schematically shown in Fig. 1. Damage assessment for the side wall is carried out and one unit strip

of side wall is considered for simplicity. The soil layer is medium sands and relative parameters are

given below.

Half element length: L = 2 m

Element height: h = 0.2 m

Unit mass of element: m = 500 kg/m2

Shear resistance of element: Q0 = 252.8 kN

Bending resistance of element: M0 = 153.3 kN·m

Soil spring coefficient: K = 3.83 MN/m

Charge weight: W = 125 kg

Once the distance R is confirmed, using the above parameters, the constant pressure p0 and blast

duration td can be approximated by using relative equations or read from charts. Subsequently, the

normalized pressure and impulse are calculated. In the present case study, three different distances

R = 12.7 m, 14.0 m and 15.6 m, are considered respectively (see Table 4).

ν is calculated as 1.374, the failure criteria of Eqs. (69) and (70) in which β = 3.492% and γν =

1% are used for light damage criteria. Judging from Fig. 3, the failure mode is Mode 5, which is

the most complex combination of shear and bending failures. As shown in Fig. 7, point Z1 is in

region A, point Z2 is in region B, and point Z3 is in region C. That means, when the scaled

distance is 1.674, the structure will endure both light shear and light bending damage; when the

scaled distance is 2.045, the structure will endure light bending damage only; when the scaled

distance is 2.760, the structure is safe.

Table 4 Case study

Point
Distance

 (R)
Duration

 (td)

Scaled Dis-
tance
(Z)

Normalized 
Impulse

(I*)

Pressure
 (p0)

Normalized 
Pressure

(P*)

Z1 12.7 m 2.535 ms 1.674 m/kg1/3 5.271 1.086 MPa 33.95

Z2 14.0 m 2.797 ms 2.045 m/kg1/3 3.246 0.606 MPa 18.95

Z3 15.6 m 3.117 ms 2.760 m/kg1/3 1.591 0.276 MPa 8.338

Table 3 Continuity verification

ν = 1.2 ν = 1.5 ν = 1.8

Mode P* I* P* I* P* I*

2 3.6 0.3883 6.0 0.3169 N.A. N.A.

3 3.6 0.3883 6.0 0.3169 N.A. N.A.

4 N.A. N.A. 6.0 0.3169 8.4 0.3032

5 N.A. N.A. 6.0 0.3169 8.4 0.3032
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7. Conclusions

The present study derives P-I diagrams for underground buried structures subjected to internal

blast load. The soil-structure interaction is considered and a rigid-plastic beam model is applied in

order to consider the combined effect of both shear and bending failure. Verification shows that the

present analysis is a successful extension of damage assessment of surface structures to buried

structures. Results show that with increase of the soil stiffness, the soil-structural interaction and its

effect to the structural damage becomes very significant. 

An internal detonation generates very complicated blast load to the buried structure walls, ceiling

and floor, which is affected by many factors, such as venting, geometry of the buried structure,

charge weight and the way of charge placement, etc. In the present study, the distance from centroid

of charge to the beam element changes along the beam. For example, when the charge is placed at

the floor of the buried structure, the maximum distance will be , where R is the

perpendicular distance from centroid of charge to the beam element. Therefore the scaled distance is

sensitive to the ratio of L/R. To ensure the difference of the peak pressure along the beam within

10%, L/R should be less than 0.229. Under the above considerations, the present study assumed that

the blast load is uniformly acted to the structural element which gives a conservative assessment of

structural damage and leads to a safer design for underground protective structures. And the

localized damage due to unevenly distributed blast load is not in the scope of the present study.

The structural element in analysis is simplified to a simply-supported beam model which ignores

the rigidity at the supports. This again results in conservative assessment of structural damage and

gives a safe design of the structure although adjustment of the P-I diagrams can be done for a fixed

beam as it has been done for surface structures (Ma et al. 2007).

The rigid-plastic model ignores the elastic deformation stage which may cause discrepancies at the

minor damage case, however, it can well represent the structural deformation behavior when the

structure undergoes mediate and large deformations. 

In the present analysis, a rectangular pulse shape is adopted. The pulse shape effect to the P-I

diagrams is minor especially in the two extreme impulsive and quasi-static cases.

Besides, the rate dependence of the soil stiffness is also not considered in the analysis which is

4L
2

R
2

+

Fig. 7 Case study
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mainly due to that experimental data on the soil stiffness rate dependence is not available. 
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