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Abstract. A novel approach is proposed to effectively estimate the quantile functions of normalized
performance indices of reliability constraints in a reliability-based optimization (RBO) problem. These
quantile functions are not only estimated as functions of exceedance probabilities but also as functions of
the design variables of the target RBO problem. Once these quantile functions are obtained, all reliability
constraints in the target RBO problem can be transformed into non-probabilistic ordinary ones, and the
RBO problem can be solved as if it is an ordinary optimization problem. Two numerical examples are
investigated to verify the proposed novel approach. The results show that the approach may be capable of
finding approximate solutions that are close to the actual solution of the target RBO problem.
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1. Introduction

Reliability-based optimization (RBO) (Enevoldsen and Sørensen 1994, Gasser and Schueller 1997,

Papadrakakis and Lagaros 2002, Royset et al. 2001, Jensen 2005) has recently become an important

research area because of the need of making decisions under uncertainties in many engineering

applications. One of the difficulties encountered for RBO is in the reliability constraints, to directly

ensure which during the optimization algorithm may require numerous reliability analyses. The

required computational cost of doing so can be unacceptable, rendering many realistic RBO

problems computationally intractable. One possible solution is to convert these reliability constraints

into ordinary ones by first estimating failure probability as a function of the design variables. This

approach was taken in Gasser and Schüeller (1997) and Jensen (2005), where the logarithm of such

a function is assumed to be either linear or quadratic in the design variables. The similar approach

was also taken with response surface methods or surrogate-based methods (Igusa and Wan 2003,

Eldred et al. 2002).
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This paper presents a completely different and yet efficient approach of converting reliability

constraints into ordinary ones. This novel approach is a generalization of a theory of equivalence

between reliability and safety factor proposed by the authors in a previous work (Ching and Hsu

2008). The novel approach is able to estimate the quantile functions of the “normalized”

performance indices in the reliability constraints. Moreover, such quantile functions can be obtained

as functions of the design variables. It will be shown that once these quantile functions are obtained,

all reliability constraints can be converted into ordinary ones, and the RBO problem can be solved

approximately using any suitable deterministic optimization algorithm to find the approximate

solution of the target RBO problem.

The structure of the paper is as follows: First, we define the problem of reliability-based

optimization, then we introduce the theory of equivalence between reliability and safety factor and

present the novel approach of estimating quantile functions. After that we describe the framework of

the new RBO approach and demonstrate numerical examples.

2. Definition of RBO problems

Let Z be the uncertain variables of the target system and θ be the design parameters. Given the

design parameters θ, the probability of failure of the target system is

(1)

where F denotes the failure event: , where  is called the performance

index, and ΩF is the failure domain in the Z space. The performance index does not necessarily

define the complete collapse of the system but the performance of the system, e.g., serviceability

and ultimate capacity. Throughout the paper, it is assumed without loss of generality that  is

positive and that the probability density function (PDF) of the uncertainty Z conditioning on θ,

denoted by , is known. A reliability-based optimization problem is to solve the following

problem 

s.t. (2)

where  is the objective function;  are deterministic constraints of θ;

while  are the reliability constraints, where  is the target probability

of failure for the j-th reliability constraint. Note that there is another class of RBO problems where

the failure probability is in the objective function. This class of RBO problems is not the focus of

this paper.

The RBO problem in (2) cannot be easily solved using common optimization algorithms because

of the reliability constraints. An obvious way of solving the RBO problem is to conduct a search,

which may or may not require evaluating the gradients and Hessians of the functions in (2), in the θ

space. This approach was adopted by Papadrakakis and Lagaros (2002), Tsompanakis and

Papadrakakis (2004), Youn et al. (2004), etc. On the other hand, if the failure probability functions

 can be obtained beforehand, the reliability constraints can then be

transformed into ordinary constraints, so the RBO problem can be turned into an ordinary

optimization problem that can be solved using suitable optimization algorithms. This approach was

taken by Gasser and Schüeller (1997) and Jensen (2005).
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3. Equivalence between reliability and factor of safety

In this paper, the proposed novel approach is able to transform all reliability constraints into

ordinary ones by first estimating the quantile functions of the “normalized” performance indices,

, where  is a “nominal” performance index. An example of  is to take

 but fix Z at certain chosen nominal values, e.g., their mean values. Quantile functions are

inverse functions of the cumulative density functions (CDF)

(3)

where  is the inverse of the CDF, and p is the probability of interest. If  is the

quantile function of the normalized performance index , we have

or (4)

For the convenience of later discussions, the normalized performance index  will be

denoted by .

Based on the theorem developed in Ching and Hsu (2008), it turns out that the  quantile

of a normalized performance index  , namely , is exactly the equivalent

safety factor if the target failure probability is , i.e.: the reliability constraint is the same as a

safety factor constraint with the safety factor equal to . In the next paragraph, the

theorem will be briefly reviewed. A new theorem will be later proposed to generalize the existing

theorem.

3.1 Theorem developed by Ching and Hsu (2008)

Let D be the prescribed allowable design region in the θ space. The safety-factor approach of

design is to enforce the following constraint

(5)

where  is the designated safety factor; in general, it may depend on θ. On the other hand, the

reliability-based design approach is to enforce the following constraint during the design process

(6)

The theorem states that the two constraints in (5) and (6) are equivalent if the safety factor 

and  satisfy the following relation

(7)

Proof: It is desirable to show that if the safety factor  and  satisfy (7), the two statements

in (5) and (6) are equivalent. To demonstrate the equivalence between (5) and (6), we need to show

that under (7), (5) implies (6), and also the negation of (5) implies the negation of (6). Proof that

(5) implies (6): If (5) is true, there must exist  such that . Since
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 and also  is a decreasing function of x

(8)

Therefore, (5) implies (6). The proof for the other direction is skipped since it is similar. 

According to (7), it is clear that the safety factor  for target failure probability  is exactly

the  quantile of , i.e.: . If the quantile  can be known

beforehand, the reliability constraint in (6) is exactly the same as the safety-factor constraint in (5)

where the safety factor  is replaced by . Therefore, the reliability constraint (6)

can be transformed in an ordinary constraint (5) so that the RBO problem can be solved as an

ordinary optimization problem.

Unfortunately, finding or estimating the quantile function  can be extremely challenging

except the following special case: if the distribution of the normalized performance index 

does not vary with θ, its quantile  should be independent of θ, so 

becomes . In this case,  can be easily found because it is simply the

 quantile of  where θ is treated as random and uniformly distributed over D.

Therefore, the property that the distribution of  does not vary with θ is essential for the

theorem to be practically useful.

The key to make the distribution of  invariant in D is a proper choice of the nominal

performance function . In Ching and Hsu (2008), it is argued that finding a nominal function

 such that the distribution of  is roughly invariant over θ is usually not a difficult task.
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In their opinion, both  or  may be acceptable. The rationale

is as follows: although the distribution of  may change dramatically with θ (see Fig. 1(a)),

the distribution of  or  usually does not (see Fig. 1(b)) due

to the cancellation effect between  and  (or ).

However, there are some cases where the above two choices of  are not proper, i.e.: the

distribution of the resulting  significantly varies in D. For these cases, the quantile

 varies with θ, and it is extremely challenging to find such a varying quantile

function. If the procedure for invariant quantile is employed for these cases, the conversion from

reliability constraints to safety-factor constraints may be misleading.

4. New theorem

A more generalized theorem of equivalence between safety factor and reliability is proposed in

this paper to resolve the aforementioned difficulty. The new theorem is in fact a generalization of

the old theorem proposed by Ching and Hsu (2008): the new theorem does not require the

distribution of  to be invariant; instead, it requires a weaker condition: there exists a

monotonically increasing mapping Lθ such that the distribution of  is invariant over θ.

The response of such a Lθ mapping may vary with θ, and its varying response somehow

counteracts the varying behavior of  so that the distribution of  becomes

invariant over θ.

4.1 Theorem (equivalence between reliability and safety factor)

If there exists a monotonically increasing function  such that the distribution of

 is invariant over θ in D, the following two constraints are equivalent

(9)

and

(10)

where  is the inverse function of Lθ. Moreover, the functional relationship between the pair

 is as follows 

(11)

where θ is treated as random and uniformly distributed over D.

Let us prove the theorem as follows. First note that if the distribution of  is invariant

over θ in D, (11) is equivalent to

(12)
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Proof of the new theorem: To demonstrate the equivalence between (9) and (10) under the

premise, we need to show that under (12), (9) implies (10), and also the negation of (9) implies the

negation of (10). Proof that (9) implies (10): If (9) is true, there must exist  such that

. Since  and also  is a decreasing

function of x

(13)

Proof that the negation of (9) implies the negation of (10): If (9) is false, there must exist 

such that  . Since  and also  is a

decreasing function of x, it is clear that

(14)

End of the proof. Note that this theorem does not assume any distribution type for .

If the Lθ function is an identity map, i.e.: , the new theorem reduces to the old one. The

inclusion of the Lθ function in the new theorem adds a new degree of freedom into the old theorem

so that the new theorem may now be applied to handle the cases where the distribution of 

varies with θ. Also notice that in the new theorem, η* is now the  quantile of ,

denoted by , where θ is treated as random and uniformly distributed over D.

Moreover, this quantile  does not depend on θ. Also,  is

now the safety factor corresponding to the target failure probability . That is to say, the reliability

constraint (10) is equivalent to the safety factor constraint , where the

quantile  can be found by solving (11) for η*.

4.2 Choice of the Lθ function

A key to implement this new theorem is to find a suitable monotonically increasing Lθ function

such that the distribution of  is invariant over θ in D. As discussed previously, for

most cases the choice of  , i.e.: the old theorem, works reasonably well. However, for

some special cases,  works less satisfactorily: these are the cases where the distribution

of  varies over θ. For these cases, it would be beneficial to use a non-identity Lθ

mapping.

In this study, it is proposed to first estimate the CDF of  and take the estimated CDF as

Lθ. This choice of Lθ will definitely work well because any random variable after being mapped by

its CDF will be distributed uniformly over the [0,1] interval. Therefore, under this choice

 is always uniformly distributed over [0,1] regardless the value of θ, hence the

distribution of  is obviously invariant over θ. Furthermore, it is more important to

estimate the right tail of the CDF for  accurately, i.e.: the region where  value is

large, rather than the main body of the CDF or the left tail. This is because a large  value

corresponds to small failure probability, which is of interest to engineering designs. Therefore, a

better strategy is to only estimate the CDF of  for its right tail.
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In particular, the generalized Pareto distribution (GPD) is proposed to fit the right tail of .

Pickands (1975) found that for many distributions, their tails can be well approximated by GPD.

The CDF of the GPD is as follows 

(15)

where µ is the threshold,  is the shape parameter that depends on θ, and  is the scale

parameter that also depends on θ. Note that x must be greater than µ; if , x must be smaller

than . Its PDF is

(16)

To find the estimate of the Lθ function, i.e.: the right tail of , the following steps are

taken:

(1) Monte Carlo simulation samples of , denoted by , are taken, where

 is the i-th sample drawn from , and  is the i-th sample drawn from a uniform

distribution over the region D. Drawing such samples for N times will obtain .

(2) Only keep the G samples exceeding a chosen threshold µ and denote those samples by

, where  is the number of exceeding samples. In this paper, the

threshold µ is adaptively chosen so that there are 20% of the N samples exceeding the

threshold, i.e.: .

(3) Find the maximum likelihood estimate for  and  by maximizing the following

likelihood function:

(17)

or equivalently, by maximizing the logarithm of the likelihood function

(18)

In this study,  and  are taken to be linear functions of θ due to simplicity, i.e.:

 and  (m is the dimension of θ).

Under this setting, finding the maximum likelihood estimate for  and  is equivalent

to finding the  that maximizes the following log-likelihood

(19)
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5. Converting reliability constraints into ordinary ones under the new theorem

Once the Lθ function is obtained through the procedure described in the previous section, the

distribution of  should be roughly invariant over θ in D even though the distribution of

 may vary. Let us now consider multiple performance indices ,

where M is the total number of the considered performance indices, same as the total number of

reliability constraints. Also let  be the corresponding target failure probabilities.

For the j-th performance index, the  quantile of , i.e.: , can be

found by solving  in the following equation

(21)

where  is the Lθ function for the j-th performance index. The j-th reliability constraint can then

be converted into the safety factor constraint .

5.1 Solving the quantiles with Monte Carlo simulation

Although it seems nontrivial, the solution of the  quantile  can be quite

simple. Observe that 

(22)
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the exceeding samples are denoted by , the corresponding  value for a
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(23), i.e., the entire functional relationship between  and  can be obtained. Note that the

same N MCS samples can be repetitively used to estimate the entire functional relationships for all

performance indices; therefore, the -  relationships for all performance indices can be

estimated with N structural analyses. Once these -  relationships are obtained, the 
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2. For each performance index, find the maximum likelihood estimate for the  mapping. The -

 relationship for the j-th performance index can be estimated based on the following equation:

.

3. Based on the prescribed target failure probabilities , find the corresponding

quantiles  from the estimated -  relationships.

4. Solve the following ordinary optimization problem to get an approximate solution of the

original RBO problem

  s.t. , , (24)

6. Numerical examples

We present two examples in this section: (a) a consolidation problem; and (b) a retaining wall.

The goal of the first example is to demonstrate the validity of the new theorem, while the second

example is to demonstrate the use of the novel RBO approach. The failure event F, design

parameters θ and allowable design region D will be defined differently in the examples. 

For both examples, the following brute-force approach is adopted to verify the results from the

proposed approach: Let the region Ω be the intersection of design region D and the feasible set

formed by the deterministic constraints . The region Ω is then filled with

dense grid points, and at each grid point, the failure probability estimates are found with large-

sample Monte Carlo simulation. Then all the grid points where the failure probability estimates are

less than the target failure probabilities  are found. The set containing all these grid points is the

actual feasible set satisfying the j-th reliability constraint, named the jth reliability feasible set,

denoted by . This set will be compared with the set satisfying ,

i.e.: the approximation made by the proposed novel approach, named the jth safety-factor feasible

set, denoted by . If the safety-factor feasible set of a performance index is close to the reliability

feasible set, the novel approach is then verified to be effective for that performance index.

For the second example, a further verification for the RBO is taken: compute the objective

functions at the grid points that are in the intersection of all reliability feasible sets . Among

these grid points, the one minimizing the objective function represents the brute-force solution of

the RBO problem. This brute-force solution will be compared with the approximate solution

obtained with the proposed approach. 

For all examples, θ is treated as uncertain and its prior PDF is taken to be uniform over the

design region D, the sample number for both examples is taken to be N = 10,000.

6.1 Consolidation

Consider a strip shallow foundation underlain by two soil layers: a sandy soil layer near the

ground surface and a clayey soil layer underneath (see Fig. 2). The thickness H of the clay layer is

uncertain. Besides H, the uncertainties include the saturated unit weight , compression index Cc,

re-compression index Cr, initial void ratio e0, and over-consolidation ratio OCR of the clay and the

Lj
θ ηj

*

PF j,

*

PF j,

* 1

N
---- I Lj

θ
Gj µ,

i( )[ ] ηj
*>( )

i 1=

0.2N

∑≈

PF j,

*
:j 1 … M, ,={ }

QL G( ) j, 1 PF j,

*
–( ):j 1 … M, ,={ } ηj

* PF j,

*

c0 θ( )
θ

limmin Lj
θ 1–

QL G( ) j, 1 PF j,

*
–( )[ ] Rj θ( )⋅ 1≤ j 1 … M, ,= cl θ( ) 0≤ l 1 … L, ,=

cl θ( ) 0≤ :l 1 … L, ,={ }

PF j,

*

Σj

R
Lj
θ 1–

QL G( ) j, 1 PF j,

*
–( )[ ] Rj θ( )⋅ 1≤

Σj

S

∩j 1=

M Σj

R

γsat
clay



136 Jianye Ching and Wei-Chi Hsu

saturated unit weight of the sand  and the unsaturated unit weight of the sand . The

uncertain variables are modeled as follows: H is Gaussian with mean value = 5 m and standard

deviation = 0.5 m; [ , , ] are Gaussian random variables with means equal to [18, 20,

18] kN/m3 and standard deviations equal to [1 1.5 1] kN/m3; [Cc, e0] are log-normal random

variables with means equal to [0.4, 0.8] and coefficients of variation (c.o.v.) both equal to [0.2, 0.1];

Cr is equal to Cc multiplied by a coefficient uniformly distributed over the interval [0.1, 0.3]; OCR

is uniformly distributed over the interval [1.0, 1.5]. The design parameters include the bearing

pressure of the shallow foundation  and the width of the foundation  of the wall. The

allowable design region is chosen to be the rectangle formed by the following two constraints:

 kN/m2 and m.

The long-term consolidation settlement of the foundation can be calculated as follows 

(25)

where  is the vertical effective stress at the middle

of the clayey layer before the foundation is constructed;  is the vertical stress increment due to

the construction of the foundation. According to the 2:1 method

(26)

The considered performance index is the exceedance of the consolidation settlement over 0.3 m 
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Fig. 2 The cross section of the consolidation example. θ1 and θ2 are the bearing pressure and foundation
width, respectively
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(27)

For this example, the nominal performance index is taken to be of the following form

(28)

that is, the exponential of a second-order polynomial, where the coefficients 

are estimated according to the following procedure: given the N MCS samples 

and , use least-square method to fit a second-order polynomial to the sample pairs

 to estimate . One can verify that such  is

similar to .

With a sample size N = 10,000, the estimated -  relationship is shown in Fig. 3. The

corresponding quantiles for the target failure probabilities of 0.01, 0.001 and 0.0001 are tabulated in

the figure. In Fig. 4, the resulting safety-factor feasible sets are shown as shaded regions for various

target failure probabilities. The results obtained from the old theorem developed by Ching and Hsu

(2008) are also shown in the figure for comparison. The borders of the feasible sets include several

break points: this is due to the coarse discretization in plotting the sets. Similar features will be seen

in the next numerical example.

The aforementioned brute-force approach is taken to examine the consistency of the novel

approach in converting reliability constraints into safety-factor constraints. The reliability feasible

sets obtained by the brute-force analysis are shown in Fig. 4, where the regions with label O

indicate the feasible region, while the label × regions are infeasible. The comparison shows that the

safety-factor feasible sets obtained by the new theorem are very close to the actual reliability

feasible sets. The safety-factor feasible sets obtained by the old theorem are also close to the actual

reliability feasible sets, but it is clear that the results from the new theorem are superior to those

from the old one.
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6.2 Retaining wall

Consider the retaining wall in Fig. 5 that is subject to self weight and earthquake excitation. The

backfill angle α is 20o. The uncertainties include the density γ and friction angle φ of the backfill

cohesiveless soil, friction angle between the wall and soil δ and peak horizontal and vertical

earthquake acceleration kh and kv. The uncertain variables are modeled as follows: γ and φ are

Gaussian random variables with means equal to [µγ µφ] = [17.5 KN/m3 33o] and standard deviations

Fig. 4 The safety-factor feasible sets (shaded regions) for Example 1 for various target failure probabilities
and their comparison with the actual reliability feasible sets (the region with label O). The plots in the
left column are based on the old theorem, while those in the right column are based on the new
theorem 
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equal to [σγ σφ] = [1.5 KN/m3 2o] (the Gaussian PDF for γ is truncated at zero, and the one for φ is

truncated at zero and 90o); kh and kv are log-normal random variables with means equal to [µkh

µkv] = [0.2 g 0.02 g] and coefficients of variation both equal to 0.2; δ is equal to φ multiplied by a

coefficient uniformly distributed over the interval [1/2, 3/4]. The design parameters include the

height  and the width  of the wall. Eight performance indices are considered: (a)

sliding of the wall under static loading; (b) overturning of the wall under static loading; (c) failure

of the foundation soil beneath the wall under static loading; (d) exceedance of the maximum

moment within the wall body over a appointed threshold under static loading; (e)-(h) same as (a)-

(d) but under earthquake loading. Furthermore, the designated moment thresholds of (d) and (h) are

120 kN·m and 160 kN·m respectively.

The following summarizes the eight performance indices that are based on the mechanical model

developed by Coulomb, which is based on simple force equilibrium of a triangular block behind the

retaining wall (1990) 

(29)
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Fig. 5 The cross section of the retaining wall. θ1 and θ2 are the height and width of the retaining wall,
respectively 
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where

(30)

and

(31)

The objective of this example is to minimize the volume of the concrete used to construct the

wall subject to the eight reliability constraints that the probabilities of failure of the first four

performance indices should not exceed 10−3 and that the probabilities of failure of the last four

performance indices should not exceed 10−2. The allowable design region is chosen to be the

rectangle formed by the following two constraints:  and . Therefore, the

RBO problem is as the following

s.t. (32)

where  is the volume of the concrete used to construct the wall.

As a first attempt, the nominal performance indices are taken to be  for all

performance indices. Compared to the first example, a different nominal performance index is taken

herein to demonstrate the effect of various choices of the nominal performance indices to the

analysis results. Although not shown here, the choice of the exponential of a second-order

polynomial in the first example works equally well for the current example. With a sample size N =

10,000, the estimated -  relationships are shown in Fig. 6. The corresponding quantiles for

the target failure probabilities are tabulated in the figure. In Fig. 7, the resulting safety-factor
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Fig. 6 The estimated  relationships with N = 10,000 samples for Example 2ηj

*
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feasible sets are shown as shaded regions. Fig. 8 shows the intersection of the eight safety-factor

feasible sets. The genetic algorithm (GA) is taken to find the solution of the optimization problem

subject to the safety-factor constraints to determine the approximate solution of the original RBO

problem, which is found to be .H* W*,( ) 3.0091m 3.9048m,( )=

Fig. 7 The safety-factor feasible sets for Example 2 and their comparison with the actual reliability feasible
sets (the region with label O)
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The aforementioned brute-force approach is taken to examine the consistency of the novel

approach in converting reliability constraints into safety-factor constraints. The reliability feasible

sets obtained by the brute-force analysis for the eight performance indices are shown in Fig. 7,

where the regions with label O indicate the feasible region, while the label  regions are infeasible.

The comparison shows that the safety-factor feasible sets are close to the actual reliability feasible

sets. The solution of the RBO problem obtained by the brute-force approach is  =

.

More efforts are spent to examine the approximate solutions obtained with the proposed approach:

MCS with large samples is taken to evaluate the failure probabilities of all performance indices by

×

H* W*,( )
3m 3.8988m,( )

Fig. 8 The intersection of the eight safety-factor feasible sets for Example 2

Table 1 The results from the approximate method and brute-force method for Example 2

Brute-force method Approximate method

Objective function 11.70 11.76

Failure 
probability

0 0

0 0

0 0

4.00 × 10−6 4.00 × 10−6

9.99 × 10−3 1.00 × 10−2

0 0

0 0

1.40 × 10−5 2.10 × 10−5

PF a( )
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PF b( )
θ( )

PF c( )
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PF d( )
θ( )

PF e( )
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θ( )

PF h( )
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holding the design parameters at their approximate solution values to get the “attained” failure

probabilities. Table 1 lists the attained failure probabilities of all performance indices as well as the

attained value of the objective function for the brute-force solution and the approximate solution. It

is evident that all attained failure probabilities are satisfactorily bounded by the target failure

probabilities, and the performance index (e) dominates. The approximate solution is very close to

the brute-force result.

7. Conclusions 

1. The final solution obtained from the proposed RBO approach is an approximation of the exact

solution. The accuracy of the proposed method mainly depends on two factors: (a) the validity

of the premise that the distribution of  is invariant over D; and (b) the accuracy of

the Monte Carlo simulation. The aspect (b) can be easily improved by increasing the sample

size N or may be improved by using a more efficient simulation technique, e.g., importance

sampling and subset simulation. 

2. The current method is originated from a method proposed by Ching and Hsu (2008) that

requires the distribution of  to be invariant over θ. In some cases this requirement

cannot be easily achieved. The contribution of the current method is to introduce the Lθ

mapping to alleviate this restriction: now we only require the distribution of  to be

invariant over θ. From our experience, the introduction of the Lθ mapping is helpful: for the

cases where the distribution of  significantly varies over θ, the approximate feasible

region may deviate from the actual reliability feasible region. For these cases, the introduction

of the Lθ mapping, i.e., the current method, can help to reduce the deviation. However, when

the chosen  function is poor, it is found that the deviation usually cannot be completely

removed though reduced.

3. In essence, the purpose of the proposed method is to transform reliability constraints into

approximate ordinary constraints. Notice that even if the approximate constraints are close to

the actual reliability constraints, it is not for sure that the resulting approximate optimal solution

will be close to the actual solution. However, if the approximate ordinary constraints are close

to the actual reliability constraints, the following consequences can be guaranteed: (a) the

approximate optimal solution should be approximately feasible with respect to the actual

reliability constraints; and (b) the approximate optimal solution is the one that minimizes the

objective function among all the approximately feasible designs. The latter implies that even if

the resulting approximate optimal solution is not close to the actual solution, the corresponding

objective function value should be close to the actual optimal value.

4. Since the proposed method is based on Monte Carlo simulation, it inherits most advantages of

MCS: it is robust against uncertainty dimension and complexity of the target system. However,

it may also inherit the disadvantages of MCS: when there are rare failure modes, the proposed

method may require many samples to be able to capture those modes, therefore may require

much computational effort when finite element analyses are involved. To resolve this issue may

require more advance simulation methods, e.g. subset simulation: this topic is still an ongoing

research.

5. From our experience, the proposed method works well for many examples, besides the two

examples, although most of them are relatively simple examples. For complicated examples, as

Lθ G Z θ,( )[ ]

G Z θ,( )

Lθ G Z θ,( )[ ]

G Z θ,( )

R θ( )
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long as satisfactory  function and Lθ mapping can be chosen so that the distribution of

 is roughly invariant over θ, the proposed method will work well. However, the

method has not yet thoroughly tested over many complicated examples (e.g., those with

switching failure modes: failure modes depend on load level). For those examples, finding

suitable G function and L mapping may be challenging.
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