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Abstract. The present contribution addresses the parallelization of advanced simulation methods for
structural reliability analysis, which have recently been developed for large-scale structures with a high
number of uncertain parameters. In particular, the Line Sampling method and the Subset Simulation
method are considered. The proposed parallel algorithms exploit the parallelism associated with the
possibility to simultaneously perform independent FE analyses. For the Line Sampling method a
parallelization scheme is proposed both for the actual sampling process, and for the statistical gradient
estimation method used to identify the so-called important direction of the Line Sampling scheme. Two
parallelization strategies are investigated for the Subset Simulation method: the first one consists in the
embarrassingly parallel advancement of distinct Markov chains; in this case the speedup is bounded by
the number of chains advanced simultaneously. The second parallel Subset Simulation algorithm utilizes
the concept of speculative computing. Speedup measurements in context with the FE model of a multi-
story building (24,000 DOFs) show the reduction of the wall-clock time to a very viable amount (<10
minutes for Line Sampling and ≈ 1 hour for Subset Simulation). The measurements, conducted on clusters
of multi-core nodes, also indicate a strong sensitivity of the parallel performance to the load level of the
nodes, in terms of the number of simultaneously used cores. This performance degradation is related to
memory bottlenecks during the modal analysis required during each FE analysis. 

Keywords: structural reliability; stochastic structural mechanics; parallel computing; Monte Carlo
simulation.

1. Introduction 

Structural reliability is defined as the probability that a structure will maintain a certain

performance standard during operation. In terms of the structural response, this implies that

threshold levels of the stress, deformation, acceleration etc. will not be exceeded. The definition of

reliability in a probabilistic framework is consistent with the generally acknowledged observation

that significant random uncertainty remains associated with the parameters of numerical models (see

e.g., Schuëller 2007), which are used to forecast the structural performance and which are nowadays

indispensable tools in design and analysis. 

While the evaluation of the reliability, or its complement, the failure probability, is conceptually

straightforward - it merely involves the solution of a multi-dimensional integral -, its application to

numerical models of large-scale structures is usually far from trivial, mainly because of the

enormous computational efforts required. Various methods have been developed, such as the First
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and Second Order Reliability Methods (FORM, SORM) (Ditlevsen and Madsen 1996) and

Importance Sampling (Rubinstein 1981), as well as advanced simulation-based methods proposed

more recently (Au and Beck 2001, Schuëller et al. 2004, Koutsourelakis et al. 2004). The latter

have been specifically developed for analyzing the reliability of structural models which involve a

very large number of uncertain parameters. 

All of the above methods have in common that the computational cost of performing a reliability

analysis is a multiple (often by orders of magnitude) of the computational cost of a deterministic

analysis performed with a given numerical (finite element) model. This is because instead of

running the analysis code only once, the reliability analysis involves its repeated execution. The

large computational efforts associated with a full-scale reliability analysis have inhibited a deeper

penetration in engineering practice. Significant efforts for reducing these efforts by adopting more

efficient and parsimonious algorithms, as mentioned above, have been made. However, even with a

greatly improved computational efficiency on the algorithmic side, the computational effort of

reliability analysis remains massive, in particular in the context of high-fidelity numerical models of

large-scale structures. 

An additional remedy for reducing the wall-clock time, i.e., the time between the submission of a

reliability analysis job and its completion, consists in the distribution of the computations on a

number of distinct processors, which then work on the solution of the reliability problem

simultaneously. The use of parallel processing for structural reliability analysis is nowadays a

potentially viable option for most analysts in engineering practice, thanks to the affordability of

computer hardware. 

The efficiency of parallel processing in general depends on the degree of parallelism of the

analysis task, i.e., on the relative amount of computations that can be performed in parallel. This

parallelism clearly depends on the characteristics of the algorithm itself: for instance, direct MCS

enjoys a very high degree of parallelism, since different samples can be computed completely

independently of each other; on the other hand, algorithms which are inherently sequential, such as

Markov chains, have a relatively low degree of parallelism. 

Background and existing literature The computational mechanics community has been heavily

using parallel processing for decades (see e.g., Sotelino 2003, Alonso et al. 2007). In the past,

particular emphasis has been given to domain decomposition and sub-structuring (see e.g., Farhat

and Lesoinne 1993), which govern the work distribution and are hence central issues of parallel

structural analysis. In addition, the development of parallel solvers (see e.g., Bitzarakis et al. 1997,

Wriggers and Boersma 1998) and parallel time stepping algorithms (see e.g., Krysl and Bittnar

2001, Farhat et al. 2006) has been pursued with impetus. The latter class of algorithms are relevant

in structural dynamics, as is the parallel solution of eigenvalue problems (Mackay and Law 1996,

Saleh and Adeli 1996). 

Naturally, parallel computing is particularly suitable in situations that require repeated execution

of analysis tasks, such as structural optimization (Papadrakakis et al. 2003, Umesha et al. 2005).

Despite of this, quite paradoxically, parallel computing has not been emphasized so far in stochastic

structural analysis and reliability analysis, although the importance of parallel computing in this

field has long been recognized (see e.g., Ghanem and Kruger 1996, Schuëller (Ed.) 1997). In the

field of structural dynamics, Johnson et al. (1997) investigated the performance of massively

parallel platforms for the MCS of stochastic dynamics problems, in particular for the evolution of

the transition PDF governed by the Fokker-Planck equation. This work was extended in (Johnson et

al. 2003), which included also the topic of the parallel random eigenvalue problem, which had been
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introduced in (Székely et al. 1998, Székely and Schuëller 2001). In the context of dynamics, the

parallel MCS-synthesis of seismic ground motion has been addressed in (Shinozuka and Deodatis

1997). Considering stochastic structural mechanics in general, parallel computing has been used

with the stochastic finite element method (SFEM). The parallelization of MCS-and weighted

integral-based SFEM is described in (Papadrakakis and Kotsopulos 1999, Charmpis and

Papadrakakis 2005), whereas in (Keese and Matthies 2005) the parallelization of the Spectral SFEM

equations is addressed. Parallel computing is also instrumental for the relatively recent field of

reliability based optimization(Valdebenito and Schuëller 2008), in which the reliability is to be

estimated for each iteration of the outer loop, represented by the optimization process. 

Purpose and outline of the present contribution In the present contribution, the use of parallel

processing in the context of structural reliability analysis is investigated, with special emphasis on

advanced simulation methods for the reliability estimation. More specifically, the Line Sampling

method and the Subset Simulation method are parallelized. It is envisioned that by combining these

efficient simulation methods with the power of parallel processing, the key objective of making

structural reliability analysis of large-scale structures an affordable undertaking can be met. 

Two case studies have been performed and are presented in this manuscript: the first consists in a

multi-story building modeled with about 24, 000 DOF’s, to which the parallel versions of both the

Line Sampling and the Subset Simulation algorithm have been applied. The second case study

involves a much simpler numerical model of a shear beam, with the purpose to study the parallel

algorithmic efficiency of advanced reliability algorithms. In particular, the potential of the

parallelization approach based on speculative computing is investigated in the context of Subset

Simulation. 

2. Methods of analysis 

2.1 Structural reliability analysis 

2.1.1 General remarks 

The assessment of the reliability of structures requires a quantitative definition of failure. For this

purpose it is common practice to define a so-called performance function g(X), which characterizes

the state of the structure and which is therefore a function of the vector of the uncertain parameters X 

g(X) such that (1)

where S and F denote the safe set and the failure set, respectively. The reliability of a structure can

then be quantified by its complementary quantity, the probability of failure pF 

(2)
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In the above equation, fX(x) denotes the multi-dimensional probability density function (PDF) of

the random vector X. Since in most cases of interest to structural reliability it is possible to

expediently represent the vector of (possibly non-Gaussian) uncertain parameters in terms of a

vector of standard normal variables (zero mean, unit variance, mutually uncorrelated) by means of a

suitable transformation - cf. for instance (Schuëller et al. 2004) - it will be assumed in the sequel

without loss of generality that X is a vector of standard normal random variables. 

While conceptually simple, the evaluation of the integral in Eq. (2) is usually a complex task,

particularly when applied to large-scale structural systems. This is mainly because the evaluation of

the indicator function  is usually time consuming, since it is necessary to perform a full FE

analysis in order to determine whether a realization of the input parameters leads to failure. In the

present work Monte Carlo Simulation based methods (Rubinstein 1981, Schuëller et al. 2004) have

been adopted, which are robust and generally applicable methods for estimating pF. 

2.1.2 Monte Carlo Simulation (MCS) 

The Monte Carlo estimator  for the probability of failure pF = P[F] has the form

, (3)

where  is the variance of the estimator, N is the number of samples and X(k) denotes the k-th

realization of the set of input variables. The resulting coefficient of variation (C.o.V.) is a measure

of the accuracy of the estimate  

 (4)

It should be noted that  is independent of the dimensionality of the random vector X. From

Eq. (4) it is clear that for the estimation of small failure probabilities pF a very large number

(proportional to 1/pF) of samples is needed for an accurate estimate, i.e., an estimate with a

moderate value of . Consequently, for complex structural systems with high target reliability

levels, direct MCS is usually not a viable option. For this purpose advanced MCS techniques (Au

and Beck 2001, Schuëller et al. 2004) have been developed, which aim at reducing the variance of

the estimator of pF, with the effect that a smaller number of samples suffices. Two methods that are

particularly robust with respect to dimensionality, i.e., to the number of uncertain parameters, are

presented in the next sections. 

2.1.3 Line sampling 
The Line Sampling method is a robust sampling technique particularly suitable for high-

dimensional reliability problems, in which the performance function g(X) exhibits moderate non-

linearity with respect to the uncertain parameters X. The key step consists in the identification of a

direction in the high-dimensional input parameter space, pointing to regions which strongly

contribute to the overall failure probability. This important direction is denoted by eα in Fig. 1. The

multi-dimensional space that is orthogonal to eα is denoted by y⊥.

Once an important direction eα has been identified, the Line Sampling algorithm starts with the

generation of random samples y⊥(j) in the space y⊥. To each sample j there corresponds a line ,

which has the same direction as eα. The intersection point of each line  with the limit state (gy(y)
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= 0) can be represented as  and hence defines the distance  of this point from the

space y⊥. Both the limit state (gy(y) = 0) and consequently the intersection point are not defined

explicitly, but implicitly. Consequently, for each line  the intersection point has to be found by

evaluating the limit state function for several samples along that line, i.e., by computing

gy , . In most cases of practical interest, Nc is around 5.

For each sample j, the value  supplies a sample for the corresponding sample failure probability

(5)

where Φ denotes the Gaussian cumulative distribution function.

Repeating this procedure for a number NL of lines, the estimator  of the probability of failure

and the associated sample variance are then

, (6)

With the above approach the variance of the estimator of the probability of failure  can be

considerably reduced. Generally, a relatively low number NL of lines have to be sampled to obtain a

sufficiently accurate estimate.

Line Sampling - identification of the important direction with statistical gradient

estimation The identification of a suitable important direction is critical for the efficiency of Line

Sampling. For problems in which the dependence of the performance function is only moderately

non-linear with respect to the parameters modeled as random variables, the direction corresponding

to the gradient vector of the performance function in the underlying standard normal space leads to

highly efficient Line Sampling, as demonstrated in a number of publications. For high-dimensional
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problems it is possible to approximate the gradient vector by an efficient iterative procedure based

on Monte Carlo sampling (Pradlwarter 2007, Pellissetti et al. 2007). 

The main steps of the algorithm are briefly reviewed next, for more detailed information the

reader is referred to the above references: An initial set of N0 samples of the random input

parameters of the model is generated with Direct MCS, however with a greatly reduced coefficient

of variation; this ensures that the limit state function is still sufficiently linear with respect to the

input parameters. The corresponding response samples are computed and the correlations between

the input parameters and the sample deviation of the limit state function from the nominal value are

estimated. For the NFD input parameters with the largest absolute values of the correlation the

corresponding components of the gradient are determined accurately, with a separate finite

difference calculation. The contribution of these input parameters can then be removed from the

sample deviation; with the updated sample deviation the iteration cycle is restarted and the next set

of important parameters is extracted, based on the correlations. As the algorithm converges, i.e., the

convergence measure ε approaches the target value εmin (typically 0.9 or 0.95), the magnitude of the

updated sample deviations will decrease steadily. 

It is a characteristic of this algorithm that after a certain number of gradient components has been

identified, the convergence rate decreases, because the ranking of the relative importance based on a

limited number of samples deviates from the true ranking and hence the algorithm starts to

determine the gradient components of spurious important parameters (so-called failures in the

terminology of the algorithm). In order to speed up convergence, it is hence beneficial to enrich the

initial sample pool by additional ∆N samples, whenever the accumulated number of failures mf

exceeds a user-defined threshold mcr. 

2.1.4 Subset simulation 

The Subset Simulation method is a Markov Chain Monte Carlo (MCMC) method introduced for

structural reliability problems by Au and Beck (2001). Subset Simulation overcomes the

inefficiency of direct MCS in estimating small probabilities, by expressing the failure probability pF

as a product of larger, conditional probabilities. This is achieved by defining a decreasing sequence

of failure events (subsets)  such that Fm = F and , implying that

. In Fig. 2 the subsets  are delimited by curved lines; the actual failure

domain (“region of interest”) consists in the shaded area. The total probability of failure pF is then 

(7)

Through the appropriate definition of the intermediate failure domains, the probabilities P(F1) and

,  can be made sufficiently large so that their estimation can be performed with a

rather small number of samples, say 100. 

The algorithm of Subset Simulation (SS) starts with a set of N1 samples generated by direct (or

“plain”) MCS, i.e., N1 independent samples of the uncertain parameter vector X are generated. In

Fig. 2 these initial samples are represented by the eight smaller dots clustered around the origin of

the two-dimensional space, in the lower left portion of the figure, as well as by the two larger dots. 

The boundary of the first subset F1, indicated by the dashed line, is then defined implicitly, such

that P(F1) × 100% of the samples fall within F1. A suitable value for P(F1) could be 0.2, hence 20%

of the initial samples would be in F1. It should be noted that the implicit definition of the failure

domain is accomplished in terms of the limit state function, cf. Eq. (1). More specifically 
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(8)

where g1 ≥ 0 is the threshold value defining the intermediate failure domain F1. Clearly, in Fig. 2

the two larger dots correspond to those samples of the initial MCS, which belong to F1. 

From here on it is necessary to perform conditional sampling; more specifically, in order to

estimate P(Fi+1/Fi) it is necessary that the samples used for the estimate be within Fi. As described

in (Au and Beck 2001), Markov Chain Monte Carlo sampling (MCMC) (Metropolis and Ulam

1949) can be used to efficiently obtain the conditional samples. Fig. 2 exemplifies the procedure for

i = 1, i.e., for conditional sampling in F1. The initial samples of the new level, associated with F1,

are represented by the larger dots. The subsequent states of the Markov chains, indicated by the dots

connected by lines in Fig. 2, are obtained by generating new samples according to some probability

density (“proposal density”), centered around the previous state. Before being accepted as a new

actual state, it is verified whether the “candidate state” is located in F1 by virtue of Eq. (8). If the

result of this check is negative, the candidate vector is discarded and the “new” state of the Markov

chain is identical to the previous one. It should be noted that in Fig. 2 only accepted candidates are

shown, since all chain samples are inside F1. 

Once the pre-defined number of steps of the chains has been reached, the algorithm proceeds with

the definition of yet another intermediate failure domain. For instance in Fig. 2 two samples of the

two chains are seen to be in F2. These samples are the initial states of the chains of the next level,

i.e., the one associated with F2. This procedure is repeated until the intermediate failure domains

have converged to the actual failure domain, i.e., until gi ≤  0. 

2.2 Parallel reliability analysis 

2.2.1 Parallelism in simulation-based stochastic structural mechanics 
In stochastic structural mechanics there are mainly two levels of parallelism, a high level, coarse-

grain parallelism associated with the stochastic algorithms and a low level parallelism related to the

deterministic problem. 

X F1∈ g X( ) g1<⇔

Fig. 2 Subset Simulation method
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High level parallelism This level of parallelism is associated with the stochastic analysis

method used to propagate the uncertainty to the response quantities of interest. In the case of Monte

Carlo simulation-based algorithms, the computationally expensive part consists in the repeated

execution of computations with system matrices which differ in some way from the nominal ones.

With these algorithms, a significant number of repeated executions can be carried out independently

from each other, before synchronization is required. 

The high level parallelism is shown conceptually in the left portion of Fig. 3, where two different

realizations of the entire structural domain are mapped to two different processing units, P1 and P2. 

Low level parallelism of the deterministic analysis A second, lower level of parallelism is

associated with the deterministic problem: in order to exploit the parallelism at this level, the most

time consuming computational tasks required for a single solution of the deterministic problem are

re-defined in a way that permits a parallel execution for as great a portion of the overall work as

possible. This may be done by performing the iterative solution of systems of linear equations in

parallel. In context with FE models domain decomposition methods (Farhat and Lesoinne 1993) can

be applied for this purpose. The right portion of Fig. 3 sketches the basic idea of domain

decomposition based parallelization, where the physical domain is divided into subdomains Ω1 and

Ω2, which are separated by the boundary Γ. 

The goal of parallel efficiency is typically more difficult to accomplish at this lower level of

parallelism, since two of the main factors, load balancing and communication, are more difficult to

control, compared to the high level parallelism inherent in most stochastic algorithms. However, the

potential benefits of parallelizing the deterministic analysis increase with the size of the

deterministic problem. Therefore, the question of which level of parallelism to exploit first depends

strongly on the size of the underlying FE model. The present paper does not provide answers to this

question; however, the importance of dealing with this aspect in future research is emphasized. 

2.2.2 Parallel line sampling 
Parallelization of statistical gradient estimation The statistical gradient estimation algorithm

for approximating the gradient of the performance function in the space of the uncertain parameters

can provide the important direction for Line Sampling and is amenable to parallel processing. In

Fig. 3 Task decomposition and mapping; left: sample set decomposition, right: domain decomposition 
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particular, the time-consuming steps of the algorithm, namely i.) those in which MC samples are

generated, and ii.) those in which individual gradient components are approximated by finite

difference, may be parallelized. In the present study, the parallelization is implemented following

the master-slave paradigm. A continuous numbering of the algorithmic steps has been introduced

along the right margin in the presentation of all parallel algorithms of this manuscript. 

In this algorithm, as highlighted in the above pseudo code, the FE analysis performed by the

workers for each MC sample and for each input data set -corresponding to one gradient component

- is independent and requires no communication between the worker and the master or among the

workers. The associated portions of the algorithm, i.e., the FE analyses, account almost entirely for

the execution time of the algorithm. In comparison, the generation and the transfer of the input data

samples and the output data requires a negligible amount of time. 

Two aspects related to the parallel loops in Algorithm 1 (steps 3 through 5; 8 through 10; 13

through 15) are noteworthy and apply also to all the other algorithms presented in the sequel (i.e.,

Algorithms 2 through 5): 

Algorithm 1: Parallel statistical gradient estimation algorithm
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1. each worker corresponds to a hardware resource; in the case studies presented here each core

represents a worker. 

2. The number of iterations executed in the parallel for-loops may exceed the number of workers.

In this case, at least some workers process more than one iteration. 

3. Each worker processes one iteration at a time. The higher granularity that would be achieved

by batching several iterations is not essential in structural reliability analysis with even the

most basic FE models, since the overhead associated with the dispatch of each batch of

iterations is negligible compared to the computational cost of the FE analysis. Hence, the

reduction of the overall overhead via reduction of the number of batches (and the consequent

increase in the granularity) is not justified, especially since with higher granularity the

efficiency of the dynamic load balancing inherent in the master-slave paradigm deteriorates. 

Besides the input data sets sent by the master to the workers, there is no additional need for

shared variable data between master and workers. Furthermore, workers do not need to share any

variable data among themselves. Typically, there is a substantial amount of invariable data that all

workers need, in particular related to the definition of the FE model. 

It should be noted that in the sequential version the parameter ∆N takes on rather moderate

values, of the order of 20-30, and and even more so NFD, especially for a low specified value of mcr.

For the above parallel version of the algorithm, however, it is advantageous to tune the parameters

N0, ∆N and NFD of the statistical gradient estimation algorithm such that each available worker

evaluates at least one sample. This is the case if these parameters are greater than or equal to the

number of workers nw  

Line-wise parallelization The Line Sampling method, previously described and illustrated in

Fig. 1, has significant inherent parallelism, since the individual lines, along which samples of the

limit state function are evaluated, can be processed independently. The consideration of this fact

leads to an embarrassingly parallel Line Sampling algorithm with the coarsest possible partition;

with reference to Eq. (6), each of the sample failure probabilities, , associated with a given batch

of NBL lines, is evaluated in parallel. 

N0 nw≥

N∆ nw≥

NFD nw≥

pF

j( )

Algorithm 2: Line Sampling using line-wise parallelization
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For a given target accuracy, let the total number of lines required to achieve convergence of the

estimator in Eq. (6) be denoted by NL. Then the degree-of-parallelism (DOP) and the speedup of the

above line-wise parallelization can be quantified as follows 

(9)

The bound on S(nw) expresses that once the number of workers nw reaches the number of lines

NL, no additional speedup can be materialized by adding more workers. Clearly, this affects the

efficiency, which experiences a steady deterioration for increasing nw

(10)

It should be noted that in view of the fact that each worker corresponds to one hardware unit,

these expressions may be viewed as relating to hardware resources. 

Sample-wise parallelization A finer partition -and hence a higher degree-of-parallelism can be

achieved by considering that in the application to real engineering problems the sample failure

probability  associated with each line in Fig. 1 is approximated by evaluating the performance

function on a grid of points, indicated by circled dots in the figure, and subsequent interpolation of

the performance function between the evaluated points. 

Denoting the number of grid points of each line by Nc, for a given batch of NBL lines, a total of Nc

· NBL samples are to be evaluated for each batch, a task that is clearly embarrassingly parallel. 

Compared to the line-wise parallel Line Sampling, cf. Eqs. (9) and 10, the above sample-wise

parallelization exhibits clearly a higher degree-of-parallelism and hence a less restrictive bound on

the speedup and the efficiency, 

DOP NL        S nw( )⇒ NL≤=

E nw( ) NL/nw, for nw NL≥≤

pF

j( )

Algorithm 3: Line Sampling using sample-wise parallelization 
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DOP = Nc · NL  S(nw)  ≤ Nc · NL   E(nw)  ≤ Nc · NL /nw, for nw ≥  Nc · NL (11)

As will be exemplified in section 3.3, this advantage of algorithm 3 over algorithm 2 is

particuarly relevant for problems in which line sampling performs very well, in which case the

number of lines NL required for convergence can be quite low and hence the bound on the

parallelism of algorithm 2 becomes particularly severe. 

2.2.3 Subset simulation 

Chain-wise parallelization As mentioned previously, the Subset Simulation method consists in

advancing Markov chains with the objective to approach the failure domain gradually. 

The parallelism of Subset Simulation stems from the fact that at each level a number of Markov

chains are advanced concurrently and independently. This is indicated in Fig. 2, where the two

chains are clearly independent of each other. The mutual independence of the Markov chains at a

given level gives rise to the most straightforward approach for parallelizing the Subset Simulation

method, in which the individual chains are mapped to different processors. 

In the above algorithm, the number of concurrent chains is equal to NC = FiN0, where Fi is the

intermediate failure probability. The degree-of-parallelism of this chain-wise parallelization is equal

to the number of chains, which then bounds the speedup that can be achieved 

⇒ ⇒

Algorithm 4: Subset Simulation using parallel chain advancement 
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 (12)

From the above it follows that once the number of workers nw reaches the number of chains NC,

additional workers will be useless, as the wall-clock time and hence the speedup will stagnate. This

lacking benefit of using more workers results in a steadily decreasing efficienc 

E(nw) ≤  NC/nw, for nw ≥  NC  (13)

It should be noted that the above equations exclusively address the parallelism of the MCMC part.

Including the initial direct MCS in the analysis of the parallelism, leads to a slightly more

advantageous situation, since direct MCS has a higher degree of parallelism, namely equal to the

number of initial samples N0, which is usually between 102 and 103. 

Parallelization by speculative computing As discussed in the previous section, the parallelism

of Subset Simulation is exhausted once the number of workers reaches the number of Markov

chains advanced at a given level. In the present section an approach is discussed, through which the

wall-clock time of the Subset Simulation algorithm can be further reduced. 

The presented approach consists in evaluating the limit state function of potential future states of

the Markov chains in advance. This type of approach is referred to as “speculative computing” in

the literature (cf. e.g., Leite and Topping 1999). 

In order to apply speculative computing to Subset Simulation it is necessary to construct a so-

called speculative tree, the root of which corresponds to the current state of the chain. Fig. 4

schematically shows a speculative tree of degree three, i.e., including all the possible states of the

Markov chain after three future steps. The current state of the chain is indicated by the cross (“Step

0”). The potential states after one step are indicated in the right portion of the figure by the small

circles (“Step 1”). While one of the potential states corresponds to a new state (in Fig. 4 this new

state is located to the lower right of the current state), the other potential state after one step is

identical to the current state. This case materializes if the candidate state is rejected, i.e., if it lies

outside the subset corresponding to the current level. 

Based on the above, the following parallel algorithm for Subset Simulation can be formulated,

where NSteps is the number of steps simultaneously advanced with the speculative tree and Noff is the

total number of off-springs, i.e., potential new states, for each chain. For these offsprings the

performance function needs to be evaluated. 

DOP NC      S nw( ) NC≤⇒=

Fig. 4 Schematic sketch for speculative tree associated with a given state (“Step 0”) in the Markov chain 
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In order to analyze the potential reduction of the wall-clock-time afforded by this approach, it is

necessary to quantify the total number of off-springs Noff in the speculative tree, for a given Steps,

i.e., a given number of steps to be advanced at once. For a single chain the following holds 

(14)

Clearly, in a parallel program with nw workers, the number of samples that can be processed in

parallel at once, N(1), is bounded by nw, i.e., N(1) ≤ nw. Since NC chains are advanced concurrently,

the number of simultaneous samples has to be distributed among the NC chains and the maximum

number of off-springs that can be computed simultaneously for each Markov chain is then 

(15)

In view of Eq. (14) 

(16)

Noff Noff

k( )
2
k 1–

2
NSteps 1–=

k 1=

NSteps

∑=

k 1=

NSteps

∑=

Noff

1( )
N

1( )
/NC nw/NC≤=

NSteps

1( ) log2
nw

NC

------- 1+⎝ ⎠
⎛ ⎞≤

Algorithm 5: Subset Simulation using multi-step parallel chain advancement
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If only speculative trees of full degree are considered, the number of steps that the Markov chain

can be advanced at once is obtained by rounding down the right-hand side of the previous

inequality

(17)

Assuming that nw > NC, the wall-clock time for subset simulation on nw workers, using

speculative trees is then as follows, 

(18)

where N1 is the number of samples of the initial plain MCS step, T(1) is the sequential execution

time of a single evaluation of the performance function, NL is the number of intermediate failure

domains in the Subset Simulation algorithm and NK is the number of states of a single chain. 

Clearly, speculative computing is merely concerned with reducing the wall-clock time. The

efficiency E(nw) of the associated parallel algorithm will be rather poor, in particular as the degree

of the speculative tree increases, because the number of discarded samples rapidly increases. 

2.2.4 Lower level parallelisms in line sampling and subset simulation 

The parallel algorithms presented in the previous two subsections have in common that

exclusively the high level parallelism, associated with the complete independence of individual FE

analyses, is exploited. With reference to section 2.2.1 it is noted that lower levels of parallelism do

exist. The specifics of the lower level parallelisms clearly depend on the type of FE analysis, such

as linear static analysis, non-linear quasi-static analysis, modal analysis (eigenvalue extraction),

transient linear dynamic analysis, non-linear dynamic analysis, etc. 

While the use of this lower level parallelism is not within the scope of this work, it can play a

role in further reducing the wall-clock time of both Line Sampling and Subset Simulation. This is

because for both algorithms there is a limit on the parallelism associated with the independence of

individual FE analyses, since the algorithms involve synchronization steps, such as the evaluation of

convergence parameters. 

As the case study presented next demonstrates, the number of samples that can be evaluated

simultaneously is frequently in the range of 30 to 50 or even below. Since the number of workers

available in modern computing infrastructure is often well above that number, it is worthwhile to

pursue further improvement of the wall-clock time of Line Sampling and Subset Simulation by

proceeding to the next lower level of parallelism. More specific options in this regard are discussed

in section 3.5, based on observations related to the first case study. 

3. Case study - Multi-story building modeled with finite elements 

3.1 General remarks 

The present section addresses the reliability analysis of a multi-story building with uncertain

NSteps

1( )
floor log2

nw

NC

------- 1+⎝ ⎠
⎛ ⎞ if nw NC≥

          1                   otherwise⎩
⎪
⎨
⎪
⎧

=

T nw( ) ceil
N1 T 1( )⋅

nw
-------------------- NL+ ceil

NK

NSteps

1( )
------------ T 1( )⋅ ⋅=
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loading and uncertain structural properties, recently investigated by (Pradlwarter and Schuëller 2008,

submitted). The building is depicted in Fig. 5; more specifically, the left portion shows the first

eigenmode of the structure, while on the right the floor plan is shown. The finite element model of

the structure has been constructed and solved with the software code FEAP (Zienkiewicz and Taylor

2000); the model consists of 4,046 nodes, 5,972 elements, for a total of 24,276 DOFs.

In this example uncertainties both in the structural parameters and in the loading are accounted

for. The uncertain structural parameters are denoted by Θ and the uncertain loading parameters are

denoted by ; their respective probability density functions are denoted by  and . It is

convenient to approach the reliability problem involving these uncertainties with a two-level

strategy, accounting at a first level for the uncertainties in the loading and at a second level for the

uncertainties of the structural parameters.

The analysis performed in this work is restricted to the linear domain, hence the equation of

motion resulting from the FE discretization has the form

(19)

where the dependence of the transient response on the uncertain structural and loading parameters is

made explicit by the notation .

Based on the investigations by (Pradlwarter and Schuëller 2008, submitted), who identified the

curvature at the position p-2 of the girder g-1 (cf. right portion of Fig. 5) of floor 5 as the most

critical response quantity, the limit state function (cf. Eq. (1)) is defined as follows

(20)

where  is the total curvature (sum of curvature due to static load and ground acceleration) at

Ξ pΘ θ( ) qΞ ξ( )

M Θ( )u·· t;Θ Ξ,( ) C Θ( )u· t;Θ Ξ,( ) K Θ( )u t;Θ Ξ,( )+ + f t;Ξ( )=

u t;Θ Ξ,( )

gθ Ξ( ) 0  ≥   κθ Ξ( ) 0.004– 0.004,[ ]∈⇔

gθ Ξ( ) 0  <   κθ Ξ( ) 0.004– 0.004,[ ]∉⇔

κθ Ξ( )

Fig. 5 FE model of multi-story building
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position p-2 of girder g-1 of floor 5. The subscript θ of κ and g indicates the dependence on the

value of θ.

For a given value θ of the uncertain structural parameters Θ the conditional failure probability has

the form, 

(21)

where  is evaluated according to Eqs. (2) and (20). For the analysis pursued in the sequel it

is convenient to utilize the β-value corresponding to 

(22) 

where  denotes the inverse standard Gaussian CDF. The calculation of the above conditional

pF and of the corresponding β for a specific value of the structural parameters θ can be performed

quite efficiently by evaluating the Karhunen-Loève expansion of the response, as detailed in

(Pradlwarter and Schuëller 2008, submitted). The computationally most demanding step of this

procedure is the solution of the generalized eigenvalue problem associated with the structural model

and its parameters θ. 

Since the structural parameters corresponding to θ are random, the conditional pF is a random

variable. The second-level reliability problem, now involving the uncertainties in the structural

parameters is then formulated by defining the following limit state function, 

(23)

In view of this definition the total pF obtained by evaluating the integral 

(24)

corresponds to the probability that for a random sample of the structural parameters the conditional

failure probability due to uncertain loading exceeds 2.275%. In the present manuscript the

estimation of the above integral is performed using Parallel Line Sampling (section 3.3) and Parallel

Subset Simulation (section 3.4). 

Computational aspects of the limit state function evaluation The application of the advanced

reliability methods described in the following sections requires the repeated evaluation of the limit

state function defined in Eq. (23). Each of these evaluations involves the following analysis steps

(in the parenthesis at the end the average execution time on the Xeon cluster - introduced in section

3.3 - is given): 

1. Assemby of the FE model with the parameters θ and export of mass and stiffness matrix to file;

this step is executed using the finite element program FEAP, around which a Perl script is

wrapped, in order to first modify the input file records corresponding to the uncertain structural

parameters and to trigger the FEAP run. (4 seconds) 

2. Eigenvalue and -vector extraction and construction of the Karhunen-Loève vectors of the

response. The eigensolution is the most time consuming task and is performed using the

function eigs of Matlab, which utilizes the iterative solver Arpack (Lehoucq et al. 1998). Since

pF θ( ) 1F θ ξ,( )qΞ ξ( ) ξd
 
∫=

1F θ ξ,( )
pF θ( )

β θ( ) Φ 1–
pF θ( )( )–=

Φ 1–
·( )

g Θ( ) 0    ⇔≥ pF Θ( ) 2.275%≤     ⇔ β Θ( ) 2≥

g Θ( ) 0    otherwise<

pF 1F θ( )pΘ θ( ) θd
 
∫=
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the parallel versions of the advanced MCS algorithms are implemented in C, the Matlab

function performing this analysis step is compiled into a C shared library utilizing the Matlab

compiler mcc, against which the C program handling the parallel sample evaluation (cf. the

following section 3.2) is linked at run-time. (18 seconds) 

3. Evaluation of the first excursion probability. Again, this step is implemented in a Matlab

function which is in turn compiled into a C shared library. (2 seconds) 

For a detailed explanation and the formulation of the above analysis steps it is referred to

(Pradlwarter and Schuëller 2008, submitted). 

3.2 Computing environment and implementation of the parallel algorithm 

Hardware The parallel reliability analysis of the multi-story building has been conducted using

two different compute clusters. The first one (hereafter referred to as Xeon cluster) consists of rack

server nodes with two Intel Xeon quad-core processors (2.33 GHz) per node, whereas the second

one (hereafter referred to as Opteron cluster) consists of rack server nodes with four AMD Opteron

dual-core processors (2.2 GHz) per node. Consequently, in both clusters each of the used nodes has

a total of eight available cores. As for the memory, the Xeon cluster has 6 GByte SDRAM per

node, whereas the Opteron cluster nodes have access to 16 GByte ECC RAM each. Finally, with

respect to the cache size, the Xeon cluster features 2 MB L2-Cache per core, versus 1 MB of the

Opteron cluster. 

Software The adopted parallel algorithms have been implemented utilizing Matlab for the high-

level control tasks of the advanced MCS algorithms, such as the generation of the input parameter

samples and the processing of the output of the limit state function evaluations. The Matlab-based

control program requests the evaluation of batches of samples from a C program called

taskpooldriver, which performs this evaluation in parallel with automatic load balancing achieved by

using the master-slave paradigm: the master hands out samples to the slaves one-at-a-time and upon

completion of a sample evaluation the corresponding slave obtains a new sample. This ensures that

faster slaves process more samples and consequently the cumulative idle time of all the slaves is

minimized. This master-slave paradigm has been implemented using the MPICH implementation of

the MPI library. 

On both utilized clusters the execution of taskpooldriver is handled by the Grid Engine, an open

source job management system sponsored by Sun Microsystems. The implementation avoids delays

related to the overheads associated with the job management system, such as queuing time or

library initialization. This is done by designing taskpooldriver so as to live for the entire duration of

the parallel reliability analysis: this way it is ready to distribute samples for parallel evaluation

immediately, whenever the algorithm requires it (parallel for loops in Algorithms 1 through 5). In

view of this, and considering that the timing started after start-up of taskpooldriver and ended prior

to its completion, the overheads introduced by the job management system can be neglected. 

The evaluation of the limit state function conducted by the slaves for each sample, consists in the

three analysis steps described in the last paragraph of the previous section. The Perl script driving

the first step is triggered using the function system available in C, whereas the compiled Matlab

functions implementing steps 2 and 3 are called directly from inside the C code. 
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3.3 Parallel line sampling 

Convergence behavior of the sequential algorithm The analysis presented in this section has

been conducted implementing the algorithm described in section 2.1.3, i.e., first the efficient

gradient estimation method has been utilized to identify the most important parameters, which leads

to the important direction required by the Line Sampling method, and then Line Sampling is

performed until convergence is achieved with respect to the specified CoV of the estimator. The

summary of the algorithm parameters and the convergence history of the algorithm in the sequential

mode are reported in Table 1. 

Fig. 6 depicts the performance of the Line Sampling method if the above parameters are used. In

the left portion the value of the performance function -in this case the conditional β - is plotted for

different lines. Selecting a value of β = 2 as the limit state - as indicated in the left part of Fig. 6 -

leads to an ensemble of intersection points, the c-coordinate of which is utilized to compute the

Line Sampling estimate of pF, based on Eqs. (5) and (6). In the right portion of Fig. 6 estimates of

pf are shown for different values of the limit state of β, denoted by βcond,LS. The error bars

superimposed on the estimates delimit the interval obtained by offsetting the estimate by the square

root of its variance. The value of pF corresponding to the limit state indicated by the dashed line in

the right portion of the figure is given by the bar at βcond,LS = 2. The CoV corresponding to this

Table 1 Line Sampling - Algorithm parameters and convergence history 

Algorithm parameters 

Gradient estimation 

Initial Monte Carlo sample pool, N0 32 

Number of gradient components per stage, NFD 8 

Number of failures per stage triggering upgrade, mcr 2 

Size of Monte Carlo sample pool upgrade, ∆N 8 

Line Sampling 

Number of support points per line, Nc 4 

Convergence criteria 

Gradient estimation, εmin > 90% 

Line Sampling, CoV (pF) < 30% 

Convergence history No. FE 
runs 

Convergence 
measure in % 

Gradient estimation εmin 

Initial Monte Carlo sampling, N0 32 

Gradient component evaluation - stage 1, 8 84.6 

Monte Carlo sample pool upgrade, ∆N 8 

Gradient component evaluation - stage 2, 8 93.9 

Line Sampling CoV (pF) 

Evaluation of limit state function at line support points 13 × 4 0, 32, 59, 42, 44, 38, 33, 34, 
35, 36, 35, 31, 27 

Total number of FE runs 108

NFD

1( )

NFD

2( )



114 M.F. Pellissetti 

estimate, defined as the ratio of the square root of the variance over the estimate itself, amounts to

28.5% and hence satisfies the stopping criterion adopted in this case, namely that the CoV of the

estimate be below 30%.

Ideal speedup On the basis of the convergence history of the considered problem, listed in

Table 1, the ideal parallel performance of Line Sampling is analyzed. The performance of parallel

gradient estimation (Algorithm 1 in section 2.2.2) and that of Line Sampling (Algorithms 2 and 3)

is considered separately.

This analysis assumes a constant execution time of each FE analysis and neglects overheads, such

as the time required for transferring the input data sets from the master to the workers. The first

assumption, i.e., constant execution time, represents a stronger deviation from the actual behavior,

since the input data set transfer time is indeed negligible.

Under these circumstances and for the convergence history of this example the ideal execution

time of Algorithms 1-3 is given as

Figs. 7 and 8 show the corresponding ideal speedup for different numbers of workers.

The speedup of parallel gradient estimation is linear for nw ≤ 8. This corresponds to the minimum

size of sample batches used by the algorithm, namely the number of gradient components evaluated

per stage NFD and the number of Monte Carlo samples used for a sample pool upgrade ∆N. After

nw reaches the maximum size of sample batches arising in the algorithm, i.e. the sample size N0 of

the initial MC sampling, the speedup remains constant, as the execution time cannot be further

reduced (without tackling lower level parallelism).

A qualitatively similar behavior applies to the Line Sampling, where the speedup is close to linear

T1 nw( ) ceil
32

nw
-------⎝ ⎠

⎛ ⎞ 2 ceil
8

nw
-------⎝ ⎠

⎛ ⎞⋅ ceil
8

nw
-------⎝ ⎠

⎛ ⎞
+ +=

T2 nw( ) ceil
13

nw
-------⎝ ⎠

⎛ ⎞
=

T3 nw( ) ceil
13 4⋅
nw

------------⎝ ⎠
⎛ ⎞

=

Fig. 6 Line Sampling based reliability analysis of multi-story building
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for nw ≤ 16, in the case of Algorithm 2, and for nw ≤ 64, in case of Algorithm 3. 

Clearly, the latter algorithm can utilize effectively a higher number of workers due to its finer

granularity.

While these results apply quantitatively only for this case study, qualitatively the above statements

carry over to most cases of practical interest. Based on experience with the presented gradient

estimation and Line Sampling algorithm, similar convergence histories apply in numerous cases.

This suggests the general statement that the presented parallel gradient estimation and Line

Sampling algorithms are efficient for nw up to about 100.

Speedup measurements In this section results based on wall-clock measurements are reported

for the parallel Line Sampling of the multi-story building model. The more fine-grain parallelization

scheme represented by Algorithm 3 (sample-wise parallelization) has been used, even though in the

present case with a maximum number of workers of nw = 16 the ideal performance of the

Algorithm 2 (line-wise parallelization) would have been also satisfactory.

With reference to Table 1 the algorithm parameters of the corresponding parallel execution of

Fig. 7 Ideal performance of parallel gradient estimation for multi-story building

Fig. 8 Ideal performance of parallel Line Sampling for multi-story building
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Line Sampling are presented in Table 2. Two items are particularly noteworthy: firstly, the gradient

estimation performed with nw = 16 did not converge after the first stage, even though the number

of evaluated gradient components, 16, is equal to the number of components that sufficed for the

other cases of nw. This shows that with the initial sample pool of 32 samples the correlation-based

statistical importance measures are not sufficiently accurate to reveal all the most important

parameters, needed to achieve convergence. As for the other cases of nw, a sample pool upgrade is

needed to identify also the remaining important components. For nw the upgrade size ∆N is set

equal to nw, to avoid idle workers. Secondly, the total number of lines, NL, needed to achieve

convergence of the Line Sampling algorithm is larger for nw = 8 and 16 (NL = 14 and 16,

respectively), than for the other cases of nw (NL = 13). This is due to the fact that NL of the

sequential algorithm (nw = 1) is not a multiple of the number of lines per batch for nw = 8 and 16

(NBL = 2 and 4, respectively). Therefore, some lines of the last batch are evaluated in excess. 

Fig. 9 shows results based on speedup measurements of the parallel gradient estimation and Line

Sampling algorithm, with a convergence history according to Table 2. The results on the left relate

to the Xeon cluster, those on the right to the Opteron cluster. Speedup results are presented for

different cases of node loading, in terms of the number of cores simultaneously used on each node

(cpn, cores per node). For instance, for the triangular markers only one core (out of eight) per node

has been used, while the remaining seven cores remained idle. The number of utilized cluster nodes

corresponding to a given datum of the speedup plot is equal to the ratio nw/cpn. (This applies to

Fig. 12 as well.) 

Two types of results are shown in Fig. 9: the bold markers (“measured”) are based on the

measurement of the wall-clock times for the entire algorithm. The remaining markers (“estimated”)

are based on the measured wall-clock time of the sample evaluation progress of a reference batch,

as shown in Fig. 10. From this time-profile the execution time of a batch of N samples can be

estimated for any given combination of the number of workers nw and the number of used cores

per node cpn. The estimation has been conducted under the condition that nw is a multiple of cpn 

nw = nn · cpn, where nn . . . no. of used nodes (25)

Table 2 Parallel Line Sampling - Algorithm parameters 

Algorithm parameters nw 

1 2 4 8 16 

Gradient estimation 

Initial Monte Carlo sample pool, N0 32 32 32 32 32 

Gradient component evaluation - stage 1, ______ 8 ______ 16 

Monte Carlo sample pool upgrade, ∆N ______ 8 ______ 16 

Gradient component evaluation - stage 2, ______ 8 ______ 16 

Line Sampling 

Number of line batches 13 13 13 7 4 

Lines per batch, NBL 1 1 1 2 4 

Total number of lines, NL 13 13 13 14 16 

Samples per line, Nc ______ 4 ______

Samples per batch 4 4 4 8 16 

NFD

1( )

NFD

2( )
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and under the assumption that the same time profile applies to each node. In this case the number

of samples to be processed at most by each of the nodes is 

(26)

and the execution time of N is then simply obtained by intersecting the time profile of the selected

value of cpn with the horizontal line corresponding to a number of samples equal to Npn. The

reason for resorting to this estimation is that on the investigated clusters only two nodes each were

available, with exactly the same hardware configuration (Xeon) or for which exclusive use by the

author was granted, thus avoiding potential performance loss due to other simultaneously running

jobs on the same node (Opteron). 

Npn ceil N/nn( ) ceil
N cpn⋅

nw
----------------⎝ ⎠

⎛ ⎞
= =

Fig. 9 Speedup of parallel gradient estimation and Line Sampling for multi-story building, based on wall-
clock time measurements; left: Xeon, right: Opteron

Fig. 10 Time profile of sample evaluation progress of reference batch (Xeon) on a single node
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As seen from Fig. 9 the agreement between the measured speedup of the entire algorithm and the

speedup estimated from measurements of reference batches is reasonable enough to use the

estimated speedup for an assessment of the parallel performance on clusters of multi-core

processors. In particular, Fig. 9 shows that with increasing node loading, i.e. as cpn approaches

eight, the speedup and the efficiency deteriorate quite dramatically, compared to the ideal

performance. More specifically, the Xeon cluster (left) exhibits a greater sensitivity to the number of

busy cores on a given node, cpn. 

3.4 Parallel subset simulation 

Convergence behavior of the sequential algorithm The Subset Simulation algorithm applied in

the present case study corresponds to the description provided in section 2.1.4. The details on the

parameters convergence behavior of the algorithm in the sequential mode are reported in Table 3. The

number of samples evaluated at each level, N0 = 23 × 9 = 207, has been specified so as to obtain a

CoV of the intermediate  of about 20%. Indeed, for N0 = 207,  = 20.9%.

Ideal Parallel Performance Applying the same assumption as in the case of Line Sampling, the

ideal parallel performance of parallel Subset Simulation, using Algorithm 4 in section 2.2.2, can be

computed. 

For the convergence history reported in Table 3, the ideal wall-clock time amounts to 

pF
i

CoV pF
i

( ) 1 pF
i

/pF
i

N0–=

T4 nw( ) ceil
207

nw
---------⎝ ⎠

⎛ ⎞ 3 9 ceil
23

nw
-------⎝ ⎠

⎛ ⎞⋅ ⋅+=

Table 3 Subset Simulation - Algorithm parameters and convergence history 

Algorithm parameters

Direct Monte Carlo Simulation 

Initial Direct MCS (subset simulation level 1), N0 207 

Subset Simulation 

Number of concurrent chains per level, NC 23 

Number of steps per chain, NK 9 

Intermediate failure probability, Fi 0.1 

Proposal PDF for offspring generation uniform 

Window size for offspring generation, ∆ξ 0.8 

Convergence history No. FE 
runs 

Intermediate 
Limit State gi 

Direct Monte Carlo Simulation 

Initial Direct MCS (subset simulation level 1) 207 0.0227 

Subset Simulation 

Markov chain sampling - subset simulation level 2 
Markov chain sampling - subset simulation level 3 
Markov chain sampling - subset simulation level 4

23 × 9 
23 × 9 
23 × 9 

0.0210
0.001488

0.0 

Total 828 
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It is recalled that the algorithm parameters NC (number of simultaneously advanced Markov

chains) and NK (number of steps in each chain) depend on the required accuracy, expressed by

CoV( ). In the actual performance analysis, the parameters have been set such that CoV( )  ≈
20%. For a more comprehensive discussion, two additional cases are studied here, as summarized in

the following table:  

For cases 1 and 3 the above expression for T4(nw) has to be modified accordingly. 

Fig. 11 shows the ideal speedup for different numbers of workers. In general, the speedup of

parallel Subset Simulation (using Algorithm 4), similar to that of Line Sampling, is initially almost

linear with respect to nw. Depending on the specified accuracy (in terms of CoV( )), the speedup

remains nearly constant above a certain number of workers nw. This value of nw, from which on

the speedup stagnates, is larger if a higher accuracy is specified (i.e. CoV( ) is smaller), since in

this case a greater number of Markov chains, NC, is advanced and since the degree of parallelism of

Algorithm 4 is equal to NC (except in the initial phase). 

On the basis of these results, the presented algorithm for parallel Subset Simulation (Algorithm 4)

can - in fairly general terms -be considered as efficient for nw up to about 50 workers, if the

required accuracy is low (CoV( )  ≥  

20%) and up to 100 workers, if the required accuracy is

high.

Speedup measurements The results presented in this section are based on wall-clock

measurements of the multi-story building model and on the use of algorithm 4 in section 2.2.3. The

parameters of the Subset Simulation algorithm used in the parallel computation (i.e. the number of

Markov chains and of the steps at each level) are identical to those in the sequential version of the

algorithm, listed in Table 3. 

Fig. 12 depicts the dependence of the speedup on the number of workers nw and on the number

Case CoV( ) NK NC N0

1 11% 30% 9 10 90 

2 11% 20% 9 23 207 

3 11% 10% 9 90 810 

pF
i

pF
i

pF
i

pF
i

pF
i

pF
i

pF
i

Fig. 11 Ideal performance of parallel Subset Simulation for multi-story building
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of cores used on each node cpn, both for the Xeon (left) and the Opteron (right) cluster. The shown

speedup results have been estimated as described in section 3.3, based on wall-clock time

measurements leading to a time profile for a reference batch of 207 samples, as well as on the

convergence history listed in Table 3. 

The observations that may be gathered from these plots are qualitatively similar to those emerging

from the corresponding figure for Line Sampling, i.e. Fig. 9. As a general trend, the efficiency of

parallel Subset Simulation is slightly higher than that of parallel Line Sampling. This is related to

the fact that in Subset Simulation the number of samples contained in each batch of samples is

significantly larger than in Line Sampling. Indeed, in the initial Subset Simulation step a total of

207 samples have to be evaluated in parallel and also in the later steps, each sample batch

comprises 23 samples. In contrast, in Line Sampling the maximum number of samples processed in

parallel is 32 and at later stages mostly batches of only 8 are evaluated. Larger sample batches have

a beneficial impact on the speedup, because the load-balancing of the parallel sample evaluation

based on the master-slave paradigm becomes active only for a somewhat larger number of samples. 

It should however not be overlooked that the absolute execution time required for Subset

Simulation is significantly larger (about one order of magnitude) in this case study. 

Subset simulation including speculative computing The purpose of this example is to analyze

the potential for further reduction of the wall-clock time of parallel subset simulation by resorting to

speculative computing, as introduced with Algorithm 5 in section 2.2.3. For this purpose Fig. 13

compares the ideal speedup of parallel subset simulation based on parallel chain advancement

(Algorithm 4) with the parallel subset simulation algorithm including speculative computing

(Algorithm 5). It should be noted that these ideal speedup curves apply to the Subset Simulation of

the multi-story building, as presented in this paper, and to all other cases in which the number of

Markov chains is NC = 23, the number of steps in each chain NK = 9 and the subset simulation

converges after three levels. 

The left portion of Fig. 13 (logarithmic scale) indicates that by using speculative computing the

wall-clock time can be further reduced, even after the number of workers nw exceeds the number of

chain, NC = 23. For instance, with nw = 128 and nw = 256 the wall-clock time is reduced to about

Fig. 12 Speedup of parallel Subset Simulation for multi-story building, based on wall-clock time
measurements; left: Xeon, right: Opteron 



Parallel processing in structural reliability 121

one half and one third, respectively, of what can be achieved by chain-wise parallelization. This is

accomplished thanks to the use of a speculative tree of order two and three, respectively. 

Given that compute clusters of multi-core processors, in which the number of available workers

totals 200 or more, are rather common nowadays, it can be concluded that speculative trees of order

two and three can be effectively used to reduce the wall-clock time of subset simulation. In order to

achieve an additional reduction of the execution time a speculative tree of order 4 is needed; in

Fig. 13 the case of nw = 1, 024 corresponds to this order. In terms of efficiency the latter case is

already quite unfavorable, since a very large number of discarded samples is required at this point. 

For a more comprehensive assessment of its merits, the measured speedup of speculative

computing is to be compared with the corresponding speedup of alternative parallel subset

simulation algorithms, in particular those in which parallelisms at a lower level are exploited. While

the algorithmic efficiency will be inferior in most situations, due to the large number of discarded

samples, it is anticipated that from a practical point of view parallel subset simulation with

speculative trees of order two or three will prove useful if time-to-solution has highest priority.

Indeed, this approach permits the utilization of an existing FE model without modification and

hence in a black box fashion. This may not be the case if the parallelism at a lower level is to be

exploited. 

3.5 Speedup degradation on multi-processor multi-core server nodes 

The results in the previous sections indicate, both for Line Sampling and Subset Simulation, that

if the number of busy cores on the utilized nodes increases, then the observed speedup experiences

significant degradation compared to the algorithmic speedup. Obviously, for the analyzed multi-

story building the resources shared by the individual cores an a given node are on the critical path. 

The memory requirements due to the size of the mass and stiffness matrix (in total approximately

15 MB) are not nearly approaching the size of the available RAM, even if eight concurrent sample

evaluations are conducted on a single node. Consequently, the cache size constitutes a bottleneck, as

it is inferior to the memory required to store mass and stiffness matrix. The problem of cache

efficiency is recognized as a pressing problem in computational mechanics (Hartmann et al. 2008,

Fig. 13 Ideal wall-clock time (left) and speedup (right) of parallel subset simulation for multi-story building,
including speculative computing; T0 . . . execution time of one FE analysis on one worker 
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Coutinho et al. 2006), especially due to the fact that the performance growth of processing power

and memory is highly asymmetric to the disadvantage of the latter. Future investigations are

planned to address this issue in the context of advanced Monte Carlo based structural reliability. 

For this specific example, the following options for improving the performance on clusters of

multi-core nodes are currently being investigated. 

• Solver optimization: 

By far the greatest portion of the execution time is accounted for by the extraction of a small

subset of the eigenvalues of the structural matrices, using a solver performing Arnoldi iterations,

namely Arpack. In the present case study the solver has been used on directly through the

corresponding Matlab interface. Chances are that by optimizing the performance the observed

speedup degradation can be alleviated; alternatively, the performance of alternative eigensolvers

may be evaluated. 

• Use of a parallel eigensolver:

The Arnoldi iterations used to extract some of the eigensolutions can be parallelized. The

efficiency of parallelizing these iterations on multi-core nodes is then to be investigated in the

context of Line Sampling and Subset Simulation and the overall efficiency to be compared with the

efficiency of the high level parallel algorithms presented here. 

• Substructuring:

In order to reduce the size of the matrices, on which every worker (and hence core) operates,

substructuring techniques may be applied and each core may be assigned to handle the matrices

associated with only one substructure rather than the full size matrices of the complete system.

Again, the overall efficiency of parallel reliability analysis is to be measured; it is expected that the

efficiency of this approach increases with the size of the underlying FE model. 

3.6 Comparison parallel line sampling and subset simulation 

This final subsection of the case study is meant to provide an overview of the efficiency of the

parallel advanced Monte Carlo simulation procedures for reliability analysis. 

Fig. 14 depicts the execution time (in logarithmic scale) vs. the number of cores vs. the failure

Fig. 14 Comparison of Parallel Line Sampling and Subset Simulation for multi-story building on Xeon
cluster; left: estimate of failure probability pf; right: variability of the estimate (CoV) 
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probability estimate (left portion of the figure) and vs. the CoV of the estimate (right portion of the

figure). The shown results relate to Line Sampling (continuous) and Subset Simulation (dashed), as

well as for Direct Monte Carlo (DMCS, dash-dotted) simulation. For the latter method, the results

are an estimate, based on the requirement that the number of samples used in DMCS lead to a CoV

of the estimate  of 30%, based on Eq. (3). The meaning of the markers corresponds to that in

previous figures, e.g., Fig. 12, i.e., circular markers denote the case in which cpn = 8. 

The figure indicates that in the present example the Line Sampling method involves the smallest

wall-clock time. This is due to the only mildly non-linear dependence of the limit state function on

the scaling value c of the Line Sampling scheme (cf. Fig. 6), which implies that a small number of

samples is needed. For the present example the Subset Simulation method has a wall-clock time

that is almost an order of magnitude higher than Line Sampling. Furthermore, as indicated by the

right portion of the figure, the accuracy of the Subset Simulation algorithm run with the parameters

defined according to Table 3 is somewhat smaller in this case (60% CoV vs. ≈  30% of Line

Sampling). It should be noted that obviously this observation applies to this particular example and

cannot be expected to hold in general. Clearly, Direct MCS involves a wall-clock time that is

another order of magnitude higher and would further grow, if failure probabilities smaller than the

one estimated here would be interest, such as 10−6. 

4. Conclusions 

The present paper analyzed the parallel performance of advanced, simulation-based algorithms for

reliability analysis and justifies the following conclusions: 

• Both Line Sampling and Subset Simulation are suitable for parallel processing in that the

inherent degree of parallelism of these algorithms is significant and corresponds to the number

of samples that can be computed simultaneously in the course of these algorithms. This number

ranges from around 10 to about 100 in most applications, including the presented case study. 

• The limits on the exploited parallelism, i.e., the possibility to perform independent FE analyses,

are due to the need to update convergence measures in the case of Line Sampling and due to the

limited number of simultaneously advanced Markov chains in Subset Simulation. For the latter

method the wall-clock time can be further reduced by utilizing speculative trees of order two or

three. Speculative trees of order higher than that will in most cases be of low interest due to the

rapidly growing amount of discarded samples. 

• Alternative parallel reliability analysis algorithms can be formulated by exploiting lower levels

of parallelism, such as those associated with the solution of linear equation systems or

eigenvalue problems. Current efforts are directed towards implementing and comparing

alternative algorithms, in particular those which make use of parallel eigensolvers and/or

substructuring methods. 

• The FE model of a multi-story building (24,000 DOFs) has served as a case study of the

efficiency of the proposed parallel algorithms, both in terms of the ideal speedup and on the

basis of measurements of the wall-clock time. The reduction of the time-to-solution, due to the

advanced Monte Carlo simulation algorithms and due to parallelization is significant and ensures

- for this a medium-size problem - improved compatibility with the current pace of the design

workflow: 

p̂
F



124 M.F. Pellissetti 

• However, this case study also revealed the sensitivity of the measured performance to the load

level of the utilized nodes, in terms of the number of cores simultaneously performing FE

analyses. This issue can be expected to appear whenever the FE model used in the reliability

analysis exceeds a certain size. Since multi-core machines are becoming increasingly common, it

is therefore imperative to investigate strategies for alleviating this memory-related bottlenecks,

for instance by exploiting lower level parallelisms. 
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