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Abstract. The present problem is concerned with the study of deformation of micropolar thermoelastic
medium with voids under the influence of various sources acting on the plane surface. The analytic
expressions of displacement components, force stress, couple stress, change in volume fraction field and
temperature distribution are obtained in the transformed domain for Lord-Shulman (L-S) theory of
thermoelasticity after applying the integral transforms. A numerical inversion technique has been applied
to obtain the solution in the physical domain. The numerical results are presented graphically. Some
useful particular cases have also been deduced.
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1. Introduction 

The classical theory of heat conduction predicts infinite speed of heat transportation, if a material

conducting heat is subjected to a thermal disturbance, which contradicts the physical facts. Lord and

Shulman (1967) incorporated a flux rate term into the Fourier’s law of heat conduction and

formulated a generalized theory admitting finite speed for thermal signals. Green and Lindsay

(1972) have developed a temperature rate dependent thermoelasticity by including temperature rate

among the constitutive variables which does not violate the classical Fourier’s law of heat

conduction when the body under consideration has a centre of symmetry and this theory also

predicts a finite speed of heat propagation. Recently Green and Naghdi (1991) established a new

thermomechanical theory of deformable media that uses a general entropy balance. The generalized

thermoelasticity theories are supposed to be more realistic than the conventional theory in dealing

with practical problems involving very large heat fluxes and or short time intervals, like those

occurring in laser units and energy channels.
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Classical theory of elasticity is inadequate to represent the behavior of some modern engineering

structures like polycrystalline materials and materials with fibrous or coarse grain. The study of

these materials requires incorporating the theory of oriented media. “Micropolar Elasticity” termed

by Eringen (1966) is used to describe the deformation of elastic media with oriented particles. A

micropolar continuum is a collection of interconnected particles in the form of small rigid bodies

undergoing both translational and rotational motions. The force at a point of a surface element of

bodies of these materials is completely characterized by a stress vector and a couple stress vector at

that point.

The theory of linear elastic materials with voids is one of the most important generalizations of

the classical theory of elasticity. This theory has practical utility in investigating various types of

geological, biological and synthetic porous materials for which the elastic theory is inadequate. This

theory is concerned with elastic materials consisting of a distribution of small pores (voids), in

which the void volume is included among the kinematic variables and in the limiting case of

vanishing this volume, the theory reduces to the classical theory of elasticity.

A non linear theory of elastic materials with voids was developed by Nunziato and Cowin

(1979). Later Cowin and Nunziato (1983) developed a theory of linear elastic materials with voids,

for the mathematical study of the mechanical behavior of porous solids. They considered several

applications of the linear theory by investigating the response of the materials to homogeneous

deformations, pure bending of a beam and small amplitudes acoustic waves. Iesan (1985) derived

the basic equations of micropolar elastic materials with voids. Scarpetta (1990) studied the

fundamental solutions in micropolar elasticity with voids. Marin (1995, 1996a, 1996b, 1998)

discussed different type of problems in micropolar theory of elastic solid with voids. Kumar and

Choudhary (2002, 2003) discussed source problems in micropolar elastic medium with voids.

Scalia, Pompei and Chirita (2004) studied the spatial behavior in a cylinder made of an isotropic

and homogeneous thermoelastic material with voids. Kumar and Ailawalia (2005) studied the

response of micropolar elastic half-space with voids due to moving load. Mondal and Acharya

(2006) investigated the effect of voids on the propagation of surface waves in a homogeneous

micropolar elastic medium with voids. Recently Singh (2007) discussed wave propagation in

generalized thermoelastic materials with voids.

In the present problem we have obtained the closed form expressions for two dimensional

displacement, stresses, change in volume fraction field and temperature distribution due to

mechanical\thermal sources in a micropolar thermoelastic medium with voids for Lord-Shulman (L-

S) theory of thermoelasticity. The deformation at any point of the medium due to mechanical\

thermal sources is useful to analyze the deformation field around mining tremors and drilling into

the crust of earth. It can also contribute to theoretical consideration of the seismic and volcanic

sources since it can account for the deformation field in the entire volume surrounding the source

region.

2. Formulation and solution of the problem 

We consider a homogeneous micropolar thermoelastic solid with voids in the undeformed state.

We take the origin on the plane surface and z-axis normally into the medium, which is represented

by . A mechanical\thermal source is assumed to be acting at the plane surface  of the

rectangular Cartesian co-ordinates. The field equations and constitutive relations for micropolar

z 0≥ z 0=
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thermoelastic medium with voids in the absence of body forces, body couples and heat sources can

be written by following Cowin and Nunziato (1983) and Lord-Shulman (1967) as 

(1)

(2)

  (3)

and

(4)

(5)

(6)

where

 are material constants, ρ is the density of micropolar thermoelastic solid with

voids, j is microinertia, K* is the coefficient of thermal conductivity, C* is the specific heat at

constant strain; τ0 is the thermal relaxation time;  is the displacement vector,  is microrotation

vector, ψ is change in volume fraction field, tij is force stress tensor, mij is couple stress tensor and

 and ζ* are material constant due to the presence of voids.

Since we are considering a two-dimensional problem, the components of displacement vector and

microrotation vector are 

,  (7)

Using Eq. (7), the field Eqs. (1)-(4) and introducing non-dimensional quantities defined by

(8)

where

in the resulting equations, we obtain the equations in non-dimensional form (after suppressing the

primes). Introducing potential functions defined by

(9)
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in the dimensionless equations, where  and  are scalar potential functions, we

obtain

(10)

(11)

(12)

(13)

and

(14)

Applying Laplace transform with respect to time ‘t’ defined by

, (15)

and then Fourier transform with respect to ‘x’ defined by

, (16)

on Eqs. (10)-(14) and then eliminating  and  from the resulting expressions, we obtain

 (17)

and
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,

, ,

 

 (19) 

 

The solutions of Eqs. (17) and (88) satisfying the radiation conditions are

 (20)

(21)

 (22)

 (23)

 (24)

where  and  are roots of Eqs. (17) and (18) respectively and

,

, (25)

3. Applications

3.1 Mechanical forces

The boundary conditions at the interface z = 0 are

, , , , (26)

where  is Dirac delta function and  specify the vertical traction distribution function along

x-axis, F is the magnitude of force applied. 

Applying Integral transforms defined by Eqs. (15) and (16) on the boundary conditions (26) and

using Eqs. (5)-(9) and Eqs. (20)-(24), we obtain the expressions for displacement components, force

stress, couple stress, change in volume fraction field and temperature distribution for micropolar

thermoelastic medium with voids as 
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(27)

(28)
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(30)
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where 

, ,

 ,

,

,

,

 
 (35)

3.2 Thermal sources

The boundary conditions at the interface z = 0 are

, , , ,  (36)

The expressions for displacement, microrotation, force stress, tangential couple stress, change in

volume fraction field and temperature distribution are given by Eqs. (27)-(34) with  replaced by
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,

,

(37)

3.3 Concentrated force/thermal point source

In order to determine displacements and stresses due to concentrated normal force described as

Dirac delta function we use . The Fourier transform of  with respect to

pair  will be

(38)

3.1.2 Uniformly distributed force/source

The solution due to distributed force/source applied on the half space is obtained by setting 
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The expressions for displacement, microrotation, force stress, couple stress, change in volume

fraction field and temperature distribuition may be obtained as given by Eqs. (27)-(34), by replacing

the value of  and  from Eqs. (38)-(40) in case of concentrated, uniformly distributed and

linearly distributed mechanical and thermal sources respectively.

4. Particular cases

Case 4.1: Neglecting voids effect (i.e., ), we obtain the corresponding

expressions for displacements, microrotation, stresses and temperature distribution as 

(41)
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ũ3

F

∆*
----- iξ ∆1

*
e

q
1
z–

∆2

*
e

q
2
z–

+( ) q3

′∆3

*
e

q
3

′ z–

– q4

′∆4

*
e

q
4

′ z–

–[ ]=

t̃31
F

∆*
----- s1∆1

*
e

q
1
z–

s2∆2

*
e

q
2
z–

s3
*∆3

*
e

q
3

′ z–

s4
*∆4

*
e

q
4

′ z–

+ + +[ ]=

t̃33
F

∆*
----- r1∆1

*
e

q
1
z–

r2∆2

*
e

q
2
z–

r3
*∆3

*
e

q
3

′ z–

r4
*∆4

*
e

q
4

′ z–

+ + +[ ]=

φ̃ 2

F

∆*
----- a1

*∆1

*
e

q
1
z–

a2

*∆2

*
e

q
2
z–

+[ ]=

m̃32

Fω
2
γ

ρc1

4∆*
-------------- a1

*
q1∆1

*
e

q
1
z–

a2

*
q2∆2

*
e

q
2
z–

+[ ]–=

T̃
F

∆*
----- c3

*∆3

*
e

q
3

′ z–

c4

*∆4

*
e

q
4

′ z–

+[ ]=

∆*
G s3

*
b4

*
s4
*
b3

*
–( ) H r3

*
b4

*
r4
*
b3

*
–( )–=

∆1 2,

*
±a2

*
q2Φ̃ ξ( ) s3

*
b4

*
s4
*
b3

*
–( )= ∆3 4,

*
Hb4 3,

* Φ̃ ξ( )±=

r3 4,

*
q3 4,
′2 ξ

2
λ

ρc1

2
---------– c3 4,

*
–= c3 4,

*
q3 4,
′2 ξ

2
p
2

+( )–[ ]=

q3 4,
′2 C

*2
4D

*
–( )

1/2

2.
--------------------------------, C

*
2ξ

2
p
2

a12 1 ε+( )+ +[ ]–= =

D
*

ξ
2

p
2

+( ) ξ 2
a12+( ) εa12ξ

2
+= s3 4,

*
2µ K+( )iξq3 4,

′
=



Influence of various sources in micropolar thermoelastic medium with voids 725

4.1a: The expressions for displacements, microrotation, force stress, couple stress and temperature

distribution can be obtained for a concentrated, uniformly and linearly distributed force by replacing

 from Eqs. (38)-(40) respectively, in Eqs. (41)-(47).

4.1b: The expressions for displacement, microrotation, force stress, couple stress and temperature

distribution for thermal source are given by Eqs. (41)-(47) with  replaced by 

in Eq. (48) where

, (49)

The expressions for displacements, stresses and temperature distribution can be obtained for a

thermal point source, uniformly and linearly distributed thermal sources by replacing  from

Eqs. (38)-(40) respectively, in Eqs. (41)-(47) and using Eq. (49).

Case 4.2: Neglecting thermal effect, the expressions for displacements, microrotation, stresses and

change in volume fraction field are obtained as 

(50)
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(52)
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 (56)

where 
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,

 

, (57)

4.2a: Again the expressions for displacements, microrotation, force stress, couple stress and

change in volume fraction field can be obtained for a concentrated, uniformly and linearly

distributed force by replacing  from Eqs. (38)-(40) respectively, in Eqs. (50)-(56).

Case 4.3: Neglecting micropolarity effect, the expressions for displacements, force stress, change

in volume fraction field and temperature distribution are obtained as 

(58)
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4.3a: The expressions for displacements, force stress, change in volume fraction field and

temperature distribution can be obtained for a concentrated, uniformly and linearly distributed force

by replacing  from Eqs. (38)-(40) respectively, in Eqs. (58)-(63).

4.3b: The expressions for displacement, force stress, change in volume fraction field and

temperature distribution for thermal source are given by Eqs. (58)-(63) with  replaced by

 in Eq. (64) where

(65) 

The expressions for displacements, stresses and temperature distribution can be obtained for a

thermal point source, uniformly and linearly distributed thermal sources by replacing  from

Eqs. (38)-(40) respectively, in Eqs. (58)-(63) and using Eq. (65).

5. Inversion of the transform

The transformed displacements, microrotation and stresses are functions of y, the parameters of

Laplace and Fourier transforms p and ξ respectively, and hence are of the form . To get

the function in the physical domain, first we first invert the Fourier transform and then Laplace

transform by using the method applied by Sharma and Kumar (1997).

6. Numerical results and discussions 

We take the case of magnesium crystal (Eringen 1984) like material (micropolar elastic solid)

subjected to mechanical and thermal disturbances for numerical calculations. The physical constants

used are 
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The void parameters are taken as 

, ,

,

The variations of normal displacement u3, normal force stress t33, tangential m32 couple stress,

Volume fraction field ψ and temperature distribution T with distance ‘x’ at the plane z = 1.0 for at

t = 0.1 and 0.5 Lord-Shulman (L-S) theory have been shown for (a) micropolar thermoelastic solid

with voids (MTESWV) by solid line (________) at t = 0.1 and dashed line (_ _ _ _) at t = 0.5 (b)

micropolar thermoelastic solid (MTES) by solid line with centered symbol (*
___

*
_____

*) at t = 0.1 and

dashed line with centered symbol (*
_ _

*
 _ _

*) at t = 0.5 and (c) thermoelastic solid with voids

(TESWV) by solid line with centered symbol dashed line with centered symbol (�__
�

__
�) at

t = 0.1 and dashed line with centered symbol (�----�----�) at t = 0.5 respectively. These

distributions are shown in Figs. 1-20 for non-dimensional thermal relaxation time τ0 = 1.0 and for

isothermal boundary.

7. Discussions for various cases

7.1 Mechanical forces

7.1.1 Concentrated force

The variations of normal displacement are similar in nature for a particular medium at different

times. These variations are less oscillatory for MTES. The values of normal displacement for

MTESWV and TESWV increase initially and then oscillate with increase in horizontal distance.

The increase is more sharp at t = 0.1. Also these variations for MTESWV and TESWV are of

comparable magnitude in the range . These variations of normal displacement are

shown in Fig. 1.
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2.0 x 10.0≤ ≤

Fig. 1 Variation of Normal displacement u3 with
distance x (Concentrated force: Isothermal
boundary)

Fig. 2 Variation of Normal force stress t33 with
distance x (Concentrated force: Isothermal
boundary)
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The values of normal force stress for MTESWV and TESWV lie in a very short range as

compared to the values for MTES. The values of normal force stress for a medium with voids

(MTESWV and TESWV) are very close to each other in the range . These variations

of normal force stress for different mediums are shown in Fig. 2.

It is observed form Fig. 3 that the variations of tangential couple stress are oscillatory in nature

for both the mediums (MTESWV and MTES). These variations are more oscillatory for MTESWV.

In the initial range, the values of tangential couple stress increase sharply for MTESWV whereas

the behaviour is opposite in nature for MTES.

Fig. 4 depicts that the change in volume fraction field is very less for TESWV i.e., significant

micropolarity effect is observed. Near the point of application of source, the value of temperature

distribution at a particular time is maximum for TESWV and minimum for MTES. These values of

temperature distribution for different medium decrease in magnitude with increase in horizontal

distance. The variations of temperature distribution are shown in Fig. 5. 

4.0 x 10.0≤ ≤

Fig. 3 Variation of Tangential couple stress m32 with
distance x (Concentrated force: Isothermal
boundary)

Fig. 4 Variation of change in Volume fraction field
V with distance x (Concentrated force:
Isothermal boundary)

Fig. 5 Variation of Temperature distribution T with distance x (Concentrated force: Isothermal boundary)
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7.1.2 Uniformly distributed force

When uniformly distributed force is applied on the boundary of the surface then the variations of

normal displacement and normal force stress are more oscillatory in nature for MTESWV in

comparison to the variations obtained for MTES and TESWV. With increase in time the magnitude

of oscillations of normal displacement and normal force stress decrease. These variations of normal

displacement and normal force stress are shown in Figs. 6 and 7 respectively.

The variations of tangential couple stress, change in volume fraction field and temperature

distribution are similar in nature to the variations obtained in case of concentrated force with

difference in magnitude. These variations of tangential couple stress, change in volume fraction field

and temperature distribution are shown in Figs. 8, 9 and 10 respectively. 

Fig. 6 Variation of Normal displacement u3 with
distance x (Uniformly distributed force:
Isothermal boundary)

Fig. 7 Variation of Normal force stress t33 with
distance x (Uniformly distributed force:
Isothermal boundary)

Fig. 8 Variation of Tangential couple stress m32 with
distance x (Uniformly distributed force:
Isothermal boundary)

Fig. 9 Variation of change in Volume fraction field
V with distance x (Uniformly distributed
force: Isothermal boundary)
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7.2 Thermal sources

7.2.1 Thermal point source

The values of normal displacement for MTES and TESWV increase sharply and then oscillate

with horizontal distance. However, these variations are opposite in nature for MTESWV. Also the

magnitude of sharpness decrease with increase in time. These variations of normal displacement for

different mediums are shown in Fig. 11.

While the variations of normal force stress are oscillatory in nature for MTESWV and TESWV in

the entire range, the values of normal force stress goes on decreasing for MTES. These variations of

normal force stress are depicted in Fig. 12.

Fig. 10 Variation of Temperature distribution T with distance x (Uniformly distributed force: Isothermal
boundary)

Fig. 11 Variation of Normal displacement u3 with
distance x (Thermal point source: Isothermal
boundary)

Fig. 12 Variation of Normal force stress t33 with
distance x (Thermal point source: Isothermal
boundary)
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It is observed from Fig. 13 that the variations of tangential couple stress are similar as discussed

in case of mechanical force. The values of change in volume fraction field for MTESWV at t = 0.1

are highly oscillatory in nature and the magnitude of these oscillations decrease with increase in

time. These variations, on neglecting micropolarity effect i.e., for TESWV are less oscillatory in

nature and hence these values lie in a short range. These variations may be observed in Fig. 14.

It is interesting to observe from Fig. 15 that the variations of temperature distribution for MTES

are similar to the variations obtained in case of mechanical forces. But the values of temperature

distribution for other mediums i.e., MTESWV and TESWV lie in a short range, which is in contrast

to the variations obtained on application of mechanical forces. 

Fig. 13 Variation of Tangential couple stress m32

with distance x (Thermal point source:
Isothermal boundary)

Fig. 14 Variation of change in Volume fraction field
V with distance x (Thermal point source:
Isothermal boundary)

Fig. 15 Variation of Temperature distribution T with distance x (Thermal point source: Isothermal boundary)
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7.2.2 Uniformly distributed thermal source

The variations of all the quantities are similar in nature with difference in magnitude to the

variations obtained on application of thermal point source. These variations of normal displacement,

normal force stress, tangential couple stress, change in volume fraction field and temperature

distribution are shown in Figs. 16-20 respectively. 

 

Fig. 16 Variation of Normal displacement u3 with
distance x (Uniformly distributed thermal
source : Isothermal boundary)

Fig. 17 Variation of Normal force stress t33 with
distance x (Uniformly distributed thermal
source : Isothermal boundary)

Fig. 18 Variation of Tangential couple stress m32

with distance x (Uniformly distributed
thermal source : Isothermal boundary)

Fig. 19 Variation of change in Volume fraction field
V with distance x (Uniformly distributed
thermal source : Isothermal boundary)
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8. Conclusions

Significant micropolarity and voids effect are observed on all the quantities. The variations of

change in volume fraction field and temperature distribution are similar in nature for concentrated

force and uniformly distributed force. Also the variations of tangential couple stress are similar for

both mechanical and thermal sources. 
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