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Abstract. The paper aims at analyzing the stress distribution around an underground opening that is
subjected to non-symmetrical surface loading with emphasis on opening shapes with sharp corners and the
stress concentrations developed at these locations. The analysis is performed utilizing the BIE method
coupled with the Neumann’s series. In order to implement this approach, the special recurrent relations for
half plane were proven and the modified Shanks transform was incorporated to accelerate the series
convergence. To demonstrate the capability of the developed approach, a horseshoe shape opening with
sharp corners was investigated and the location and magnitude of the maximum hoop stress was
calculated. The dependence of the maximum hoop stress location on the parameters of the surface loading
(degree of asymmetry, size of loaded area) and of the opening (the opening height) was studied. It was
found that the absolute magnitude of the maximum hoop stress (for all possible surface loading locations)
is developed at the roof points when the opening height/width ratio is relatively large or when the
pressure loading area is relatively narrow (compared to the roof arch radius), and contrarily, when the
opening height/width ratio is relatively small or when the surface pressure is applied to a relatively wide
area, the absolute magnitude of the maximum hoop stress is developed at the bottom sharp corner points. 
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1. Introduction

Shallow tunnels in soil are commonly used for different purposes such as utility conduits,

transportation tunnels etc. Shallow tunnels with a limited soil cover depth from ground surface are

sensitive the surface loading (Szechny 1973, Fernando et al. 1996, Fernando and Carter 1998,

Guzina et al. 2003). Commonly a symmetrical surface loading is considered in the stress analysis of

an underground opening, mainly for simplicity, however a non-symmetrical loading may yield

extreme stress conditions around the opening (Moser 2001, Hatzor et al. 2002). 

When the opening (cavity) has a circular shape, the analysis can be carried out using analytical or

semi-analytical solution techniques (Moore 1987, Karinski et al. 2003), that are based on the

application of Fourier series (Small and Wang 1988) or Fourier-Bessel series (Karinski et al. 2004,

2007), as well as of using the Muskhelishvili’s method complex variables theory (Chen 1994). For

other cavity shapes numerical methods are applied. The most widely employed numerical technique
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is the finite element method (FEM) (Kumar 1985, Dajapakse and Senjuntichi 1995, Moore and

Branchman (1994). When the soil medium may be considered linear, the boundary integral equation

method (BIEM) (Brebbia and Walker 1980, Talles 1983, Antonio and Tadeu 2002, Manolis 2003)

may be applied, and when the entire medium is linear and only the near field is not linear, the

coupled FEM-BIEM method (Kim et al. 2000, Surjadinata et al. 2006, Andersen and Jones 2006)

may be used. 

Commonly standard nodal collocation schemes are utilized in applications of the BIEM that lead

to a linear algebraic system of equations (Brebbia and Walker 1980, Cruse 1973, Cavalcanti and

Telles 2003). Another approach to solve the boundary integral equations is to apply the Neumann-

type series (Hurty and Rubinstein 1964, Karal and Keller 1964) that avoids the need to solve a large

system of equations with a densely populated matrix of non zero terms. Perlin (1984) proved that

the Fredholm alternatives are valid for the integral equations with the singular kernel of Kelvin-

Somiliagna type that are typical for elastostatics. Therefore, the solution of such equations may also

be represented in the form of Neumann’s series. This approach includes a regular representation of

singular integrals and is using some special recurrent relationships, which were obtained for a both

internal (relating to a bounded finite medium) and external (Antes et al. 2007) (relating to an

infinite medium includes cavities) problems.

The convergence of the Neumann’s series depends on the boundary curvature and its differential

properties, but some special methods (Kantorovich 1958) may efficiently accelerate this

convergence. One of these methods is the Shanks transform (Shanks 1955, Antes et al. 2007) which

is widely used in the solution of electrodynamics integral equations (Rogier-Hendrik and De-Zutter

2002) but has not yet been implemented in elestostatics and elastodynamics problems.

The present paper aims at developing the implementation of the BIE method coupled with the

Neumann’s series for the analysis of the buried opening in soil, with emphasis on opening contours

having sharp corners that lead to hoop stress concentrations. The case of a non symmetrical surface

loading is considered, as it may yield higher stresses compared to the case of symmetrical surface

loading, and thus determine a critical state of stress around the opening. To accelerate the series

convergence the modified Shanks transform is proposed. 

2. Basic relationships

Consider the second boundary problem (where boundary stresses are given) for a half plane which

occupies a domain D− with a boundary S (see Fig. 1).

If a force Tν = {T1(q), T2(q)} is applied at a given point q = {y1, y2} of the boundary S, the

integral equation for the displacement u = {u1, u2} at a certain point of the domain p = {x1, x2} is

given in the following form 

  (1)

Where Γ2(p, q) and Γ(p, q) are the stress operator and the Green function respectively.

For a half plane, these functions consist of two parts: the singular term (marked by the index “k”)

which is the corresponding function for the plane and the additional regular term (marked by the
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index “c”) (Talles 1983, Melan 1932) 

  (2)

For a two-dimensional problem, the singular terms are the following

 (3)

 

 (4)

The additional terms  (Talles 1983) for the Green function  and for the stress operator

, which do not contain the singularities, are presented in Appendix A.

3. Solution of the basic Eq. (1) by Neumann series 

Consider the problem in which the displacements function satisfies the Hölder-Lipschitz condition

of order 1

; (5)

The solution of the displacements function is presented in the form of Neumann’s series by

powers of the parameter λ as follows

(6)

Substitution of Eq. (6) into Eq. (1) and further equating coefficients of equal powers of λ, leads to

the following recurrent relationships 
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 (7)

The integral term in Eq. (7) is singular; therefore it can’t be calculated by using any quadrature

formula. The regularization is performed by a procedure that had been suggested by Perlin (Parton
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 ,

  (8)

,

Hence the following relationships for the stress function are

  (9)

  (10)

The corresponding relationship on the boundary S is found from Eqs. (9-10) due to the well

known procedure of the determination of the boundary value of a function (Brebbia and Walker

1980) as follows 

  (11)

 Multiplying Eq. (11) by the constant vector u(q1) yields 

  (12)

where E is the identity 2×2 matrix.

Adding the integral  to the left-hand side and to the right-hand side of Eq. (12) one

obtains the following identity 

  (13)

For the half plane the stress operator is given as a sum (2) and therefore Eq. (13) takes the

following form
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Fig. 1 The problem domain
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 (14)

The additional part  of the stress operator is regular and the following condition is valid

 (15)

Therefore, the identity in Eq. (14) becomes 

(16)

Substitution of Eq. (16) into the recurrent expression (7) yields the following recurrent relationship

 (17)

Hereafter it is assumed that the boundary “S” (see Fig. 1) does not intersect with the half plane

boundary at the source point (i.e.,  in Fig. 16). Therefore as it was already mentioned earlier,

the additional part of the stress operator  is regular, and therefore the second integral of the right-

hand side of Eq. (17) is regular as well.

On the other hand, the singular part of the stress operator  has a singularity of the order of 1/r,

the displacements function satisfies condition (7), and the first integral of the right-hand side of

Eq. (17) is also regular. The relationship (17) is the regular form of the base recurrent formulas (7)

and can be calculated by any known quadrature rule.

4. Modified Shanks Transform

As was already mentioned earlier, the solution of the boundary integral Eq. (1) may be presented

in the form of Neumann’s series (6). Its convergence depends on the boundary form, on its

curvature, on the differential properties and the presence of corner points (Parton and Perlin 1984,

Mikhlin 1965, Schnack and Tuerke 1997).

To accelerate the solution convergence, the following Shanks transform (Shanks 1955) of the

partial sum   may by applied
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 (20)

∆Sn = Sn+1 − Sn;  is the order of the Shanks transform.

This transform exists in the case of Dkn ≠ 0 only. But in that approach one needs to evaluate the

differences ∆Sn and the above determinants at any step of calculation. To avoid such inconveniences

the following modified Shanks transform (Antes et al. 2007) is suggested.

Let’s add together the previous and the following rows of the determinant (20) beginning from the

first row (and placing the result into the “following” row). Therefore Eq. (20) takes the form 

 (21)

Expanding Eq. (19) for all ∆Sj (j = n − k, n − k + 1,…n + k − 1), reducing corresponding terms and

changing the unit row position according to the term number, one obtains the following

determinants sum 

(22)

Substitution of Eqs. (21), (22) into Shanks transform (18) and division of the numerator and
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 (24)

Therefore, applying this type of Shanks transform enables the solution of the system of n linear

algebraic equations, with a relatively limited number of iterations n.

5. Consideration of the surface load

When a part of the half plane surface S2 (Fig. 2) is loaded, this loaded segment must be included

in the boundary S for which the integration is performed. Therefore Eq. (1) is obtained in the

following form 

 (25)

Where S1 is the cavity boundary, S = S1US2.

The integral kernels are presented as a sum of singular and regular parts (see (2)). For the regular
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singular integrals with the kernel of the type 1/r have a property of additibility by the measure.

As it was already mentioned earlier, it is assumed that the boundary “S1” (see Fig. 2) does not

intersect with the half plane boundary . Furthermore the integral kernels have a form

(3,4). Therefore all the singular integrals of Eq. (25) are under the conditions of the Kupradze’s

theorem (Kupradze et al. 1979) and may be represented as a sum by S1 and S2 separately. Therefore

the recurrent relationships (17) take the following form

(26)

Note that the part S2 of the half plane is finite, and therefore the usage of the Green’s tensor for

the half plane enables to avoid integration over the infinite domain.

6. Analysis of a circular cavity

To compare the results obtained by the present approach (Neumann’s series and Shanks

transform) with known results, analysis will be carried out for a circular cavity of a radius r0 that is

buried in a half-plane at depth H below the surface. The stress distribution around the opening will

be calculated for the following data: top surface is loaded by a symmetrical load ps (see Fig. 3)

uniformly distributed along a segment of width 2L. Young’s modulus E = 30 MPa and Poisson ratio

ν = 0.46. The comparison of the calculated results with the proposed model (hoop stress σθθ

normalized with respect to the surface pressure ps) with the closed form solution presented by

Bulichov (1989) shows good agreement (see Table 1). The analysis was carried out using a 96

linear elements subdivision of the cavity perimeter and 200 elements on the loaded part of the half

plane surface. For the circular cavity only 15 iterations (26) were needed to achieve this accuracy.
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Table 1

θ
0

H/r0 = 1.25 H/r0 = 2

L/r0= 0.31 L/r0= 1.25 L/r0 = 10 L/r0= 0.5 L/r0= 2.0 L/r0=16

Test BIE Test BIE Test BIE Test BIE Test BIE Test BIE

0 −0.21 −0.21 −0.39 −0.39 1.23 1.24 −0.17 −0.17 −0.31 −0.31 1.35 1.35

15 −0.19 −0.19 −0.31 −0.30 1.34 1.35 −0.14 −0.14 −0.21 −0.20 1.43 1.44

30 −0.13 −0.12 −0.05 −0.04 1.62 1.64 −0.05 −0.05 0.12 0.12 1.65 1.66

45 −0.00 −0.00 0.38 0.39 2.02 2.05 0.10 0.10 0.62 0.63 1.95 1.96

60 0.17 0.17 1.01 1.01 2.50 2.51 0.31 0.31 1.28 1.28 2.26 2.27

75 0.42 0.42 1.84 1.85 2.97 2.98 0.56 0.56 1.99 1.99 2.52 2.53

90 0.79 0.79 2.91 2.92 3.46 3.48 0.95 0.84 2.65 2.65 2.69 2.70

105 1.33 1.31 4.19 4.20 4.05 4.07 1.13 1.12 3.03 3.03 2.75 2.76

120 2.13 2.10 5.41 5.42 4.77 4.79 1.32 1.30 2.91 2.92 2.70 2.70

135 3.20 3.14 5.89 5.90 5.43 5.46 1.24 1.23 2.18 2.18 2.50 2.50

150 3.73 3.65 4.85 4.85 5.30 5.32 0.64 0.64 1.03 1.03 2.14 2.15

165 0.51 0.54 1.21 1.23 3.30 3.32 −0.41 −0.40 −0.06 −0.06 1.76 1.77

180 −3.60 −3.50 −1.80 −1.76 1.44 1.47 −1.00 −0.99 −0.52 −0.52 1.58 1.59

Fig. 4 Hoop stress distribution for circular cavity: 1 − ∆/r0 = 0, symmetrical loading (▲ the test solution,  -
present solution); 2 − ∆/r0 = 1; 3 − ∆/r0 = 2

Fig. 5 Maximum hoop stress for the circle cavity subjected by the non-symmetrical surface load
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The maximum error was obtain in the case of L/r0 = 0.31, H/r0=1.25 (θ = 180o) and was found to

be less than 3%. The stress distribution for this case is shown in Fig. 4 (line 1: triangles – closed

form solution, solid line – present solution). 

In the case of nonsymmetrical loading the location of the maximum stress is shifted (smaller

angle θ defines the location of the maximum stress for a resultant external force acting right to the

geometrical axis of symmetry) and its magnitude decreases as shown in Fig. 5. Here ∆ is the

distance between the load resultant location and the geometrical axis of symmetry. Examples of the

stress distributions for different non-symmetrical loadings are shown in the Fig. 4 (lines 2 and 3). 

7. Analysis of a horseshoe cavity 

When the cavity has sharp corner points where stress concentration may develop, the dependence

of the maximum hoop stress on the non-symmetrical surface load has a different nature. It may be

demonstrated in the examination of a horseshoe cavity (with an arch radius R and walls height A)

that is located in an elastic medium (E = 30 MPa, ν = 0.25). A non-symmetrical uniformly

distributed load with intensity ps is applied to a segment of width 2L (see Fig. 6). The arch centre

depth is H = 1.25R and the distance of the load resultant from the arch centre is denoted as ∆. The

calculations were performed with linear boundary elements: 8 elements along every wall and alopng

the cavity floor, 40 elements alongn the arch and 16 elements near every corner (points B and C in

Fig. 7) and 100 elements along the loaded part of the surface. The sharp corners B and C were

formed by circular arches of small diameter that equals to 0.1R. To obtain good accuracy 20-22

iterations (Eq. (26)) were performed. The dependence of the maximum hoop stress in the arch part

of the cavity and of the hoop stress at the corner point (B) on the load resultant offset from the

geometrical axis of symmetry, for A/R = L/R = 1 is shown in the Fig. 7. One can see that the stress

on the cavity arch decreases with increasing the distance ∆. On the other hand the “corner” hoop

Fig. 6 Horseshoe cavity
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Fig. 7 A/R = L/R = 1: 1 (▲) – maximum hoop stress on the arch; 2 (◆) – the stress in the “corner” point B

Fig. 8 Hoop stress distribution for A/R = L/R = 1

Fig. 9 A/R = 0.5, L/R = 1: 1 (▲) – maximum hoop stress on the arch; 2 (◆) – the stress in the “corner” point
B; 3 (■) - maximum hoop stress on the “equivalent” circle cavity
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stress initially increases to a certain maximum value (in this case it occurs when ∆/R ≈ 1.3). For this

example the arch and the corner maximum hoop stresses are approximately equal. Examples of

stress distributions for various values of ∆ are shown in Fig. 8.

When the cavity height A/R is relatively small, the maximum stress at the corner is larger than the

maximum stress on the roof arch. Fig. 9 shows the dependence of the maximum hoop stress on the

arch and the hoop stress at the corner point (B) for A/R = 0.5 and L/R = 1. The maximum stress at

the corner (the maximum of line 2) is larger than the maximum stress in the arch (the maximum of

line 1) by about 20%. Line 3 in Fig. 9 denotes the maximum hoop stress for a circular cavity

circumscribing around the examined opening (and may be referred to as an “equivalent circle

cavity”). One can see that in the present example the maximum stress on the equivalent circle

cavity is closed to the maximum stress on the opening’s roof arch. The normalized hoop stress

distribution along the cavity for the above example is shown in Fig. 10. 

Fig. 11 shows the dependence of the maximum hoop stress in the arch part of the cavity (line 1),

the hoop stress at the corner point B (line 2) and the maximum hoop stress on the equivalent

Fig. 10 Hoop stress distribution for A/R = 0.5, L/R = 1

Fig. 11 A/R = 2, L/R = 1: 1 (▲) – maximum hoop stress on the arch; 2 (◆) – the stress in the “corner” point
B; 3 (■) - maximum hoop stress on the “equivalent” circle cavity
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circular cavity (line 3) for A/R = 2 and L/R = 1. In this case the maximum stress at B (∆/R = 1.5) is

smaller than the maximum stress on the arch (∆ = 0) by about 6%. Note that the maximum stress on

the equivalent circle cavity significantly exceeds the maximum stress on the horseshoe cavity (by

about 36%) and therefore the horseshoe cavity is preferable.

From this example one can conclude that increasing the cavity height (relatively to the roof

radius) to some degree (about A/R = 1) leads to decrease of the maximum stress at the corners.

Further increase is meaningless because the maximum stress is located on the roof arch (and is

obtained for the symmetrical load) and this stress slightly increases with A/R. 

The hoop stresses at corner B (normalized with the surface pressure) for various opening heights

are shown in Fig. 12. One can see that when the height decreases the maximum stress increases and

it occurs at a smaller ∆. In all the calculations the maximum stress was found to develop between

∆/R = 1 (the surface loading resultant is located above the corner B) and ∆/R = 2 (the surface

loading left edge is located above the corner B).

When the relative loading length L/R along the surface increases, then both stresses (at the corner

 Fig. 12 Corner hoop stresses for various structure heights

Fig. 13 A/R = 1, L/R = 0.5: 1 (▲) – maximum hoop
stress on the arch; 2 (◆) – the stress in the
“corner” point B

Fig. 14 A/R = 1, L/R = 2: 1 (▲) – maximum hoop
stress on the arch; 2 (◆) – the stress in the
“corner” point B
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B and the maximum value on the roof region) increase as well, but the rate of the corner stress

increase is larger. Thus, if for L/R = 0.5 (the height A/R = 1) (see Fig. 13) the maximum stress in the

roof region is larger than the at the corner (by about 10%) For L/R = 2 (see Fig. 14) the stress at the

corner exceeds the maximum stress at the roof (by about 20%). As it was shown earlier the stresses

are approximately equal when A/R = L/R = 1 (Fig. 7). 

Figs. 13, 14 show that when a wide area is loaded (L/R = 2) the stress at the corner is sensitive to

any change of ∆ (similar to the case of L/R = 0.5), but the maximum stress at the roof region is

insensitive to moderate changes in ∆ (opposed to the case of L/R = 0.5). The normalized hoop stress

distribution for such wide surface loading (L/R = 2) is shown in Fig. 15. One can see that in the

case of a symmetrical loading (∆ = 0) of this length the tensile stress at the top of the structure is

very small opposed to the case of a relatively narrow loading (Figs. 8, 10). 

Fig. 15 Hoop stress distribution for A/R = 1, L/R = 2

Fig. 16 2D problem
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8. Conclusions

The paper develops the application of the BIE method coupled with the Neumann’s series for the

analysis of an underground unlined tunnel with sharp corners (horseshoe’s shape cavity), that is

subjected to non-symmetrical surface loading. The special recurrent relationships for half plane were

proven assuming that the cavity boundary does not intersect with the boundary of the half plane. To

accelerate the series convergence the modified Shanks transform was proposed. 

To examine the present approach the hoop stress distribution along the circular opening located in

the half plane and subjected to a surface non-symmetrical loading was examined. In the case of a

symmetrical loading distribution good correspondence with known analytical results was obtained. It

was shown that the maximum stress decreases with increasing asymmetry of the applied load

(increasing ∆).

In the case of a horseshoe cavity two points of extreme stresses were identified: a point on the

cavity roof (the location depends on the location of the resultant surface pressure) and a point at the

corner zone. When the surface load has a symmetrical distribution the maximum hoop stress occurs

in the roof area. When the surface pressure resultant is eccentric to the cavity geometrical axis of

symmetry the maximum hoop stress in the roof region decreases but the hoop stress variation with

∆ at the corner has a convex shape with a maximum magnitude at a certain distance. The

eccentricity of the surface pressure that yields the maximum corner stress depends on the opening

height and on the segment length of the applied pressure. It was shown also that the absolute

maximum (for all the surface load locations) is obtained in the roof when the opening is relatively

high or when the pressure acts over a relatively narrow segment. When the opening height is

relatively small or when the surface pressure acts over a relatively wide segment (relative to the

roof arch radius) the absolute maximum hoop stress is developed at the corner point. The special

geometry for which both local maxima are of the same magnitude may be of interest for design

purposes and was therefore examined in this analysis. This case is obtained when the opening’s wall

height and half the loaded segment length were equal to the roof radius.

For all examined cases it was found that 20 iterations only were sufficient to reach a very good

accuracy. 

Acknowledgements

This research was funded by the Ministry of National Infrastructure, Earth Sciences Division. The

research grant is greatly appreciated.

This work was supported by a joint grant from the Center for Absorption in Science of the

Ministry of Immigrant Absorption and the Committee for Planning and Budgeting of the Council

for Higher Education under the framework of the KAMEA Program. 

References

Andersen, L. and Jones, C.J.C. (2006), “Coupled boundary and finite element analysis of vibration from railway
tunnels – a comparison of two- and tree-dimensional models”, J. Sound Vib., 293(3-5), 611-625.

Antes, M.Y., Karinski, Y.S. and Yankelevsky, D.Z. (2007), “On the BIEM solution for a half space by neumann



694 Karinski Y.S., Yankelevsky D.Z. and Antes M.Y.

series”, Commun. Numer. Meth. Eng., 23(3), 197-211.
Antes, M.Y., Karinski, Y.S. and Yankelevsky, D.Z. (2007), “The modifiened shanks transform for the solution of

elastic problems by Boundary Integral Equation (BIE) method”, Communications in Numerical Methods in
Engineering, (in press)

Antonio, J. and Tadeu, A. (2002), “3D seismic response of a limited valley via bem using 2.5D analytical
green’s function for an infinite free-rigid layer”, Soil Dyn. Earthq. Eng., 22(8), 659-673.

Brebbia, C.A. and Walker, S. (1980), The Boundary Element Techniques in Engineering. London: Newnes-
Butterworths.

Bulichov, N.S. (1989), Mechanics of Buried Structures. Moscow.
Cavalcanti, M.C. and Telles, J.C.F. (2003), “Biot’s consolidation theory – application of bem with time

independent fundamental solution for poro-elastic saturated media”, Eng. Anal. Bound. Elem., 27(2), 145-157.
Chen, Y.Z. (1994), “Multiply circular hole problem for an elastic half-plane”, Comput. Struct., 52(6), 1277-1281.
Cruse, T.A. (1973), “Application of boundary integral equation method to three-dimensional stress analysis”,

Comput. Struct., 3, 509-527.
Dajapakse, R.K.N. and Senjuntichi, T. (1995), “Dynamic response of a multi-layered poroelastic medium”, J.

Earthq. Eng. Struct. Dyn., 24, 703-722.
Fernando, N.S.M. and Carter, J.P. (1998), “Elastic analysis of buried pipes under surface patch loadings”, J.

Geotech. Geoenviron. Eng., 124(9), 720-728.
Fernando, N.S.M., Small, J.S. and Carter, J.P. (1996), “Elastic analysis of buried structures subject to three-

dimensional surface loadings”, Int. J. Numer. Anal. Meth. Geotmech, 20, 331-349.
Guzina, B.B., Fata, S.N. and Bonnet, M. (2003), “On the stress-wave imaging of cavities in a semi-infinite

solid”, Int. J. Solids Struct., 40(6), 1505-1523.
Hatzor, Y.H., Talesnick, M. and Tsesarsky, M. (2002), “Continuous and discontinuous analysis of the bell-shaped

caverns at bet guvrin”, Israel. Int. J. Rock Mech. Mining Sci., 39(7), 867-886.
Hurty, W.C. and Rubinstein, M.F. (1964), Dynamics of Structures, London: Prentice-Hall.
Kantorovich, L.V. (1958), Approximate Methods of Higher Analysis. NY: Interscience.
Karal, F.C. and Keller, J.B. (1964), “Elastic, electromagnetic and other waves in random medium”, J. Math.

Phy., 3(4), 537-547.
Karinski, Y.S., Dancygier, A.N. and Leviathan, I. (2003), “An analytical model to predict static contact pressure

on a buried structure”, Eng. Struct., 25(1), 91-101.
Karinski, Y.S., Shershnev, V.V. and Yankelevsky, D.Z. (2004), “The effect of an interface boundary layer on the

resonance properties of a buried structure”, Earthq. Eng. Struct. Dyn., 33(2), 227-247.
Karinski, Y.S., Shershnev, V.V. and Yankelevsky, D.Z. (2007), “Analytical solution of the harmonic waves

diffraction by a cylindrical lined cavity in poroelastic saturated medium”, Int. J. Numer. Anal. Meth. Geomech.
(in press)

Kim, M.K., Lim, Y.M. and Rhee, J.W. (2000), “Dynamic analysis of layered half planes by coupled finite and
boundary elelments”, Eng. Struct., 22, 670-680.

Kumar, P. (1985), “Static Infinite Element Formulation”, J. Struct. Eng., 111(11), 2355-2372. 
Kupradze, V.D., Gegelia, T.G., Baseleisvili, M.O. and Burculadze, T.V. (1979), Three-Dimentional Problems of

Theory of Elasticity and Thermoelasticity. Amsterdam, NY, Oxsford: North-Holland Series in Applied Math.
and Mech., 25, 1-929.

Manolis, G.D. (2003), “Elastic wave scattering around cavities in inhomogeneous continua by the BEM”, J.
Sound Vib., 266(2), 281-305.

Melan, E. (1932), “Der Spannungszustand der Durch Eine Einzelcraft im Innert Deanspruchten Halbscheibe”, Z.
Angew. Math. Mech., 12, 343-346.

Mikhlin, S.G. (1965), Multidimensional Singular Integrals and Integral Equations. Oxford: Pergamon.
Moore, I.D. (1987), “Response of buried cylinders to surface loads”, J. Geotech. Eng., 113(7), 758-773.
Moore, I.D. and Branchman, R.W. (1994), “Three-dimensional analysis of flexible circular culverts”, J. Geot.

Eng., 120(10), 1829-1844.
Moser, A.P. (2001), Buried Pipe Design. McGraw-Hill.
Parton, V.Z. and Perlin, P.I. (1984), “Mathematical methods of the theory of elasticity”, Parts 1,2. Moscow: MIR.
Rogier-Hendrik, De-Zutter D. (2002), “A fast technique based on perfectly matched layers to model



Stresses around an underground opening with sharp corners due to non-symmetrical surface load 695

electromagnetic from wires embedded in substrates”, Radio Science, 37(2), 101-106.
Schnack, E. and Tuerke, K. (1997), “Domain decomposition with BEM and FEM”, Int. J. Numer. Meth. Eng.,
40(14), 2593-2610.

Shanks, D. (1955), “Non linear transformation of divergent and slowly convergent series”, Math. Phys., 34, 1-42.
Small, J.C. and Wang, H.K.W. (1988), The use of integral transforms in solving three-dimensional problems in

geomechanics”, Comput. Geotech., 6, 199-216.
Surjadinata, J., Hull, T.S., Carter, J.P. and Poulos, H.G. (2006), “Combined finite- and boundary-element analysis

of the effects of tunneling on single piles”, Int. J. Geomech., 6(5), 374-377.
Szechny, K. (1973), The Art of Tunneling. Budapest.
Talles, J.C.F. (1983), The Boundary Element Method Applied to Inelastic Problems. Springer. 



696 Karinski Y.S., Yankelevsky D.Z. and Antes M.Y.

Appendix A (see Fig. 16)

- The additional terms of the Green tensor:

where 

- The additional terms of the stress operator:

, where: 
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