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Abstract. A comprehensive investigation of the stochastic response of an isolated cable-stayed bridge
subjected to spatially varying earthquake ground motion is performed. In this study, the Jindo Bridge built
in South Korea is chosen as a numerical example. The bridge deck is assumed to be continuous from one
end to the other end. The vertical movement of the stiffening girder is restrained and freedom of
rotational movement on the transverse axis is provided for all piers and abutments. The longitudinal
restraint is provided at the mainland pier. The A-frame towers are fixed at the base. To implement the
base isolation procedure, the double concave friction pendulum bearings are placed at each of the four
support points of the deck. Thus, the deck of the cable-stayed bridge is isolated from the towers using the
double concave friction pendulum bearings which are sliding devices that utilize two spherical concave
surfaces. The spatially varying earthquake ground motion is characterized by the incoherence and wave-
passage effects. Mean of maximum response values obtained from the spatially varying earthquake ground
motion case are compared for the isolated and non-isolated bridge models. It is pointed out that the base
isolation of the considered cable-stayed bridge model subjected to the spatially varying earthquake ground
motion significantly underestimates the deck and the tower responses.
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1. Introduction

Base isolation of structures is a viable solution for earthquake protection. Using base isolation,

responses of structures such as buildings, bridges, tanks and pipelines are shifted to a higher

fundamental period. Base isolations have been commonly used recently in the construction of new

structures and retrofitting of existing structures. The double concave friction pendulum (DCFP)

bearing is an innovative and viable isolation system that is becoming widespread application for the

earthquake protection of structures. The DCFP consists of two spherical stainless steel surfaces and

an articulated slider covered by a Teflon-based high bearing capacity composite material. The

concave surfaces may have the same radii of curvature. Also, the coefficient of friction on the two

concave surfaces may be the same or not. 

Experimental and analytical results on the behaviour of a system having concave surfaces of both

equal and unequal radii and both equal and unequal coefficient of friction at the upper and lower

sliding surfaces were presented by Tsai et al. (2006). Constantinou (2004), Fenz and Constantinou

(2006) described the principles of operation of the DCFP bearing and presented the development of

the force-displacement relationship based on equilibrium. The theoretical force–displacement

relationship was verified through characterization testing of bearings with sliding surfaces having

the same and then different radii of curvature and coefficients of friction. Finally, practical

considerations for analysis and design of DCFP bearings were presented. Hyakuda et al. (2001)

presented the description and response of a seismically isolated building in Japan where DCFP

bearings are utilized. Zayas et al. (1989) introduced one of the most effective sliding isolation

systems, namely the friction pendulum system, which utilizes friction to dissipate the transmitted

energy to the structure.

The dynamic responses of extended structures like bridges, pipelines and dams are significantly

affected by spatially varying earthquake ground motions. The earthquake response analysis of long-

span non-isolated bridges subjected to spatially varying earthquake ground motions was investigated

by Perotti (1990), Harichandran et al. (1988), Zembaty and Rutenberg (1998) and Zerva (1991).

Recently, Soyluk and Dumanoglu (2004) carried out stochastic analysis of non-isolated cable-stayed

bridges for delayed support excitations and concluded that any seismic analysis of even moderately

long span non-isolated cable-stayed bridges requires the consideration of the wave-passage effects.

Additionally, Soyluk et al. (2004) presented various random vibration and deterministic analyses of

non-isolated cable-stayed bridges to asynchronous ground motion. It was found that the structural

response values show important amplifications depending on the decreasing ground motion wave

velocities. Ates et al. (2005, 2006) studied the stochastic response of isolated highway bridges by

friction pendulum systems to spatially varying earthquake ground motions and reported that friction

pendulum systems have important effects on the stochastic responses of bridges to spatially varying

earthquake ground motions. Lou and Zerva (2005) investigated the effects of the spatially varying

earthquake ground motions on the seismic response of a skewed, multi-span and RC highway

bridge.

Due to the flexibility of cable-stayed bridges, the deck has a large displacement response under

earthquake ground motions. Therefore, the connections between the deck and the tower of cable-

stayed bridges become important for earthquake ground motions. The connection between the tower

and the deck will reduce the deck displacement but will increase the base shear of the tower. In

order to overcome this issue, base isolation technique is considered by providing isolation bearings

at the supports of the deck. So far, very limited research was conducted for the effectiveness of
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seismic isolation systems on cable-stayed bridge systems (Ali and Abdel-Ghaffar 1994, Wesolowsky

and Wilson 2003, Soneji and Jangid 2006). These studies were performed for uniform ground

motions and showed that the isolation in cable-stayed bridges could significantly reduce the

seismically induced forces at the towers of the bridges. However, the isolation system increased the

horizontal displacement responses of the deck. Jung et al. (2004) proposed a hybrid control strategy

combining passive and semi-active control systems for the seismic protection of cable-stayed

bridges. It was reported that the performance of the proposed hybrid control strategy was quite

effective in protecting seismically excited cable-stayed bridges. Soneji and Jangid (2006, 2007)

examined the efficacy of hybrid control system for the seismic protection of cable-stayed bridges

subjected to near-field ground motion and reported that the hybrid system significantly enhances the

seismic performance of cable stayed bridges.

Although cable-stayed bridges have been analysed for different isolation systems, the effects of

the isolation mechanisms on the stochastic response of cable-stayed bridges when subjected to

spatially varying ground motions are not taken into account so far. The objective of this paper is to

determine the relative importance of using double concave friction pendulum bearings for the

isolation of a cable-stayed bridge system in the stochastic earthquake response analysis when the

bridge system is subjected to the spatially varying earthquake ground motion. For this purpose, total

responses at the deck and the towers are compared for the isolated and non-isolated bridge models.

Frequencies of occurrences of the deck bending moments are also presented.

2. Cable-stayed bridge model

In this study, the Jindo Bridge, shown in Fig. 1, built in South Korea is chosen as a numerical

example. Jindo Bridge has three spans; the main span of 344 m and two side spans of 70 m. The

stays are arranged in a fan configuration and converged at the top of the A-shaped frame towers.

The stiffening girder and the towers of the Jindo Bridge were made from steel. A 2% damping

coefficient is adopted for the response calculations. Because the purpose of this study is to compare

the results of the spatially varying ground motion rather than to study the effect of bridge geometry,

only one mathematical model is considered.

The stiffening girder is of hexagonal shape and continuous from one end to the other. In cable-

stayed bridge systems, continuous stiffening girders are preferred at most. For the proper

Fig. 1 The Jindo Bridge
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functioning of the bridge deck it is necessary to provide transverse restraint at each pier and

abutment and longitudinal restraint at one pier or abutment. The vertical movement of the girder is

restrained and freedom of rotational movement on the transverse axis is provided for all pier and

abutments. The longitudinal restraint is provided at the mainland pier. 

In order to investigate the stochastic response of the Jindo Bridge, two-dimensional mathematical

model is used for calculations. It has been shown that a two-dimensional analysis of the cable-

stayed bridge provides natural frequencies and mode shapes which are in close agreement with

those obtained by the three-dimensional analysis (Garevski et al. 1988). Therefore a two-

dimensional analysis is carried out in the vertical direction plane of the Jindo Bridge in order to

achieve the stochastic response to spatially varying earthquake forces. The fact that this 2-D model

has a relatively small number of degrees of freedom makes it more attractive by saving on

computer time. Obviously, if actual design values for the responses are desired 3-D model should be

taken into account. The bridge is modelled using beam-column elements for deck and towers and

truss elements for cables. The chosen finite element model is represented by 420 degrees of

freedom. The stiffening girder and towers are represented by 139 beam elements.

As known, the dynamic behaviour of cable-stayed bridges depends on the connection type used

between the tower and deck. If the deck is swinging freely at the towers, the resulting dynamic

forces will be very small. This connecting type will result very flexible bridge system under existing

loads. However, rigid connection between the deck and tower will control the movements of the

deck but will result large dynamic forces under earthquake ground motions. Therefore, in this study

the connection of the deck to the tower of the non-isolated bridge system is provided by elastic

links to control the bridge responses. For the isolated bridge system, isolation bearing are provided

at the support points of the deck.

Although non-linear analysis of cable-stayed bridges reflects a more realistic behaviour of the

bridge, linear dynamic analysis was found to be economical and justified for moderately long span

bridges without losing the accuracy to a great extent (Morris 1974, Fleming and Egeseli 1980,

Nazmy and Abdel-Ghaffar 1987, 1990, 1992). Since the cable-stayed bridge model under study has

a centre span of 344 m, a linear dynamic analysis should be sufficient. The cable stays are modelled

with 28 truss elements and the non-linearity of the inclined cable stays is considered with an

equivalent modulus of elasticity. 

Since the primary objective of this study is to perform a parametrical study associated with the

spatial variability of ground motions and its effects on the response of base isolated cable-stayed

bridges, the soil-structure interaction is not considered. Although the soil-structure interaction is

important for long span bridges (Betti et al. 1993), the non-consideration of the soil-structure

interaction in this study is caused by the avoidance to model absorbing boundaries in the dynamic

analysis.

3. Double concave friction pendulum bearings

The double concave friction pendulum (DCFP) bearings are made of two concave surfaces which

are called as upper and lower and shown in Fig. 2 (Constantinou 2004, Fenz and Constantinou

2006). The concave surfaces may have the same radii of curvature. Also, the coefficient of friction

on the two concave surfaces may be the same or not. The maximum displacement capacity of the

bearing is 2d, where d is the maximum displacement capacity of a single concave surface. Note that
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due to rigid body and relative rotation of the slider, the displacement capacity is actually slightly

different from 2d. The force-displacement relationship for the DCFP bearing is given by the

following equation

(1)

where W is the vertical load, R1 and R2 are radii of the two concave surfaces, h1 and h2 are the part

heights of the articulated slider, vb is the total displacement (bearing displacement) and the sum of

the displacements on the upper and lower surfaces are given by

(2)

herein vb1 and vb2 are the displacements of the slider on the upper and lower concave surfaces,

respectively, and the individual displacements on each sliding surfaces are

(3)

(4)

in Eqs. (3) and (4), Ff1 and Ff 2 are the friction forces on the concave surfaces 1 and 2, respectively.

The forces are given by

(5)

(6)

where µ1 and µ2 are the coefficient of friction on the concave surfaces 1 and 2, respectively; 

and  are sliding velocities at the upper and lower surfaces, respectively; sgn (.) denotes the

signum function. Most applications of the DCFP bearings will likely utilize concave surfaces of

equal radii, namely, R1 = R2. Parts heights of the articulated slider h1 and h2 are nearly equal in most

cases. Thus, the effective coefficient of friction is equal to the average of µ1 and µ2, and is given by

F
W

R1 h1– R2 h2–+

-------------------------------------⎝ ⎠
⎛ ⎞vb
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-------------------------------------------------------------⎝ ⎠
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+=
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W
---------------⎝ ⎠
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F Ff 2–

W
---------------⎝ ⎠

⎛ ⎞ R2 h2–( )=

Ff 1 µ1Wsgn v·b1( )=

Ff 2 µ2Wsgn v·b2( )=

v·b1
v·b2

Fig. 2 The double concave friction pendulum bearing having equal radii of curvature
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(7)

In this study,  and µe is calculated as 0.05 by Eq. (7) due to variability

in properties µ1 = 0.045 and µ2 = 0.055.

In Eq. (1), the first term is the stiffness of the pendulum component (spring forces) and the

second term is the stiffness of the friction component. The natural period of vibration is given by

the following equation 

(8)

where g is the acceleration of gravity; Re is the effective radius of curvatures. Eq. (8) shows that the

natural period of vibration is independent of mass, but it is controlled by the selection of the radius

of the spherical concave surfaces. In this study, the period of the isolation system is calculated as

2.75 sec depending on the radii of the two concave surfaces. The important parameter is employed

as  = 1.88 m. The lateral restoring stiffness of the DCFP bearing (spring

forces) is given by the following equation

(9)

It is also shown in Eq. (9) that the stiffness of the pendulum depends on the weight carried by

bearing. The coefficient of the friction of the two concave surfaces depend on the bearing pressure

and given by Eq. (10)

(10)

where fmax and fmin are the maximum and minimum mobilized coefficients of friction, respectively;

and a is a parameter that controls the variation of the coefficient with the velocity of sliding. In this

study fmax, fmin and a are used as 0.0572, 0.0087 and 50 s/m, respectively at 70 MPa bearing

pressure (Constantinou 2004).

4. Governing equation of motion

The equation of motion of a non-isolated structural system can be written as

(11)

where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively;  and

 are vectors of total accelerations, velocities and displacements, respectively and {F} is a vector

of input forces.

The degrees of freedom can be defined as known and unknown. The known degrees of freedom

are associated with those of the structure-foundation interface. The unknowns are related to degrees

of freedom of the structure. The former degrees of freedom will be denoted henceforth as the vector

vg, and the latter as vr. Here, the subscript g denotes the ground degrees of freedom and r denotes

µe

µ1 R1 h1–( ) µ2 R2 h2–( )+
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----------------------------------------------------------=
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T 2π
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g
------------------------------------- 2π
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g
-----= =
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W
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-------------------------------------=
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the response degrees of freedom. Eq. (11) can be rearranged by separating the degrees of freedom

into two groups as known and unknown (Abdel-Ghaffar and Stringfellow 1984).

(12)

It is possible to separate the total displacement vectors as quasi-static and dynamic components as

follows

(13)

where the subscript s denotes quasi-static component and d denotes dynamic component.

Substituting of Eq. (13) into Eq. (12), the equation of motion of the dynamic component of the

response degrees of freedom can be written as

(14)

where {Feff} is the vector of effective forces acting on the response degrees of freedom and is equal

to

(15)

If all time-dependent terms are omitted from Eqs. (14) and (15), only the last term of Eq. (15)

remains and this must be equal to zero. This means that

(16)

where  is the ground displacement shape matrix,  is the quasi-static displacement. The

damping contribution to the vector of effective forces can be expected to be small and therefore, it

is frequently neglected regardless of the type of damping involved (Clough and Penzien 1993). If

the effective force expression is arranged by using Eqs. (16) and (14), the equation of motion of the

dynamic components, , of the response degrees of freedom can be written as

(17)

The equations of motion of an isolated bridge subjected to spatially varying earthquake ground

motion can be expressed as

(18)

(19)

where mb, cb and kb are mass, damping and stiffness of the base isolation system;  and vb are

acceleration, velocity and displacement of the DCFP; µe is the effective coefficient of friction on the

concave surfaces of the DCFP and W is the total weight carried by the DCFP. Eq. (19) then is a

non-linear differential equation due to the presence of friction. This non-linear governing equation

of motion can be written in a corresponding equivalent linearized form as Jangid and Banerji (1998)
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(20)

where ce is an equivalent damping constant that is obtained by minimizing the mean square of the

difference between Eqs. (19) and (20), given by

(21)

where  is the root mean square value of velocity of the DCFP and  is the damping constant of

the DCFP. It should be noted that the non-linear behaviour of the DCFP still exists in Eq. (20) due

to the dependence of ce on the root mean square value of velocity of the DCFP. This analysis

procedure is well known as equivalent linearization technique in non-linear stochastic analysis. It

can be shown that the mean square relative velocity of isolation systems can be expressed as

(Jangid and Banerji 1998, Constantinou and Papageorgiou 1990)

(22)

where ξb and ωb are natural frequency and damping ratio of isolation system;  is the power

spectral density function of the ground motion. 

5. Stochastic response

The variance of the ith total response for the spatially varying ground motion is expressed as Ates

et al. (2006)

(23)

in which  is the variance of the ith quasi-static response component;  is the variance of the

ith dynamic response component and  is the covariance between the ith quasi-static and

dynamic components. The variance of the ith quasi-static component can be written as

(24)

in which  is the ith quasi-static component of the spectral density function of the structural

response; r is the number of restrained degrees of freedom;  is the cross-spectral density

function of accelerations between supports � and m; and  and  are equal to static

displacements for unit displacements assigned to each support points. The variance of the ith

dynamic response component may be defined as

(25)

where  is the ith dynamic component of the spectral density function of the structural

response;  is the frequency response function; n is the number of free degrees of freedom; ψ
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is the eigenvectors; and Γ is the modal participation factor. The covariance of the ith quasi-static

and dynamic components is obtained as

(26)

5.1 Expected maximum value

The expected maximum value is considered to be the most important parameter in the stochastic

analysis of structures affected by seismic loads. This value is the mean value of all maximum

values. The expected maximum value depending on the peak factor and the root-mean-square

response can be expressed as

(27)

Standard deviation of the expected maximum value is expressed as

(28)

where λ0 is the zeroth spectral moment, p and q are the peak factors, the functions of the duration

of the motion and the mean zero crossing rate, respectively (Der Kiureghian 1980).

Frequency of occurrence is described as the average number of times that the line (y(t) = 0) is

crossed by the response in a unit of time. For Gaussian process of zero average, the average number

of times in the zero level crossed by the process in a unit of time is expressed as

(29)

where λ2 is the second spectral moment The spectral moments can be expressed in terms of power

spectral density function and frequency (Akkose et al. 2007, Dumanoglu and Sever 1990). Because

the zero level is crossed two times for each cycle, frequency of occurrence for the response process

will be equal to ν/2 and defined by Eq. (29).

5.2 Spatially varying earthquake ground motion model

Because of the complex nature of the earth crust, earthquake ground motions will not be the same

at distances of the dimensions of long span structures, such as bridges. It is obvious that because of

travelling with finite velocity, coherency loss due to reflections and refractions and difference of

local soil conditions at the supports, earthquake ground motions will be subjected to significant

variation at the support points of the bridge. This variation causes internal forces due to quasi-static

displacements. In the case of uniform ground motions, quasi-static displacements normally do not

produce internal forces. Therefore, while analysing large structures, spatially varying earthquake

ground motions should be considered and total displacements have to be used in expressing the

governing equation of motion. The spatially varying earthquake ground motion includes

incoherence, wave-passage and site-response effects. The wave-passage effect results from

differences in the arrival times of waves at support points. The incoherence effect results from the

reflections and refractions of seismic waves through the soil during their propagation. The site-
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response effect results from differences in local soil conditions at the support point. These effects

are characterised by the coherency function in frequency domain.

The cross-spectral density function of the earthquake ground motion, between support points �

and m is expressed as Harichandran and Wang (1988)

(30)

where  denotes the coherency function. The power spectral density function is assumed to be

of the following form modified by Clough and Penzien (1993)

(31)

where So is the amplitude of the white-noise process; ωf and ξf are the resonant frequency and

damping of the first filter, and ωg and ξg are those quantities of the second filter.

In this paper, So is obtained for each soil type by equating the variance of the ground acceleration

to the variance of the east-west component of Erzincan, Turkey, earthquake in 1992. The calculated

values of the intensity parameter for each soil type are shown in Table 1. Homogeneous soft,

medium and firm soil types (Fig. 3) are used for the non-isolated and isolated bridge supports and

the filter parameters proposed Der Kiureghian and Neuenhofer (1991) are utilised as shown in

Table 1. 

The dimensionless complex coherency function is defined as Der Kiureghian (1996), Nakamura et

al. (1993)

(32)
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Fig. 3 Acceleration spectral density function for different soil conditions

Table 1 Filter and intensity parameter of filtered white-noise process for different soil types

Soil type ωf (rad/s) ξf ωg (rad/s) ξg S0 (m
2/s3)

Firm
Medium

Soft

15.0
10.0
5.0

0.6
0.4
0.2

1.5
1.0
0.5

0.6
0.6
0.6

0.00177
0.00263
0.00369
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passage effect and  denotes the complex valued site-response effect.

For the incoherence effect, resulting from reflections and refractions of waves through the soil

during their propagation, an extensively used model is considered. The model proposed by

Harichandran and Vanmarcke (1986) is defined as

(33)

(34)

where  is the distance between support points � and m; A, α, k, fo and b are 0.636, 0.0186,

31200, 1.51 Hz and 2.95, respectively (Zerva 1991, Dumanoglu and Soyluk 2002).

The wave-passage effect resulting from the difference in the arrival times of waves at support

points is defined as Der Kiureghian (1996), Nakamura et al. (1993)

(35)

where  is the apparent wave velocity and  is the projection of  on the ground surface

along the direction of propagation of seismic waves. The apparent wave velocities employed in this

study are selected as 300, 600 and 1200 m/s for soft, medium and firm soil types, respectively.

The site-response effect due to the differences in the local soil conditions is obtained as Der

Kiureghian (1996), Nakamura et al. (1993) 

(36)

where  is the local soil frequency response function representing the filtration through the

soil layers.

7. Numerical computations

Stochastic analysis of the isolated and non-isolated Jindo Bridge model is performed for the

spatially varying ground motion by taking into account the incoherence and wave-passage effects.

For the soil condition where the bridge supports are located, three different soil condition sets are

considered. All the supports are assumed to be founded on soft, medium and firm soil conditions.

Fig. 4 defines the 2D mathematical model of the Jindo Bridge with the details indicating the places

where the DCFP bearings are placed. The spatially varying earthquake ground motion is applied to

the bridge in the vertical direction. Fig. 5 shows the bridge system founded on different soil

conditions for vertically applied ground motions. The vertical input motion is assumed to travel

across the bridge from Jindo Island side to mainland side with finite velocities of 300 m/s, 600 m/s

and 1200 m/s for soft, medium and firm soil conditions, respectively. The analyses are carried out

with a recently developed computer code SVEM (Dumanoglu and Soyluk 2002), which is modified

to include the sliding bearing behaviour. In this study, total responses obtained at the deck and

towers are compared for isolated and non-isolated bridge models when subjected to the spatially

varying ground motions. Three different homogeneous soil conditions are also used herein for

comparison purposes.
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8. Numerical results

8.1 Mean of maximum deck responses

Eq. (27) is used to calculate the mean of maximum response values of the considered bridge

system. Figs. 6-8 give the mean of maximum total deck bending moments for the isolated and non-

isolated cable-stayed bridge models founded on firm, medium and soft soil conditions, respectively.

Mean of maximum bending moments obtained for the isolated bridge system are considerably

Fig. 4 2D Mathematical Modelling of the Jindo Bridge

Fig. 5 The Bridge subjected to spatially varying ground motions for different soil conditions
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smaller than the mean of maximum responses obtained for the non-isolated bridge system. The deck

bending moments obtained from the stochastic analysis of the isolated bridge model are decreased

around 30-55% if compared with the results obtained for the non-isolated bridge model. Depending

on the homogeneous soil conditions, while largest bending moments are obtained for the soft soil

Fig. 6 Mean of maximum total deck bending moments (firm soil)

Fig. 7 Mean of maximum total deck bending moments (medium soil)

Fig. 8 Mean of maximum total deck bending moments (soft soil)
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condition case, smallest bending moments are obtained for the firm soil condition case.

Homogeneous medium soil condition case results bending moments between the results obtained for

the firm and soft soil condition cases. For the isolated and non-isolated bridge models, the

incoherence and wave-passage effects are considered for the spatially varying ground motion. The

results clearly show that consideration of double concave friction pendulum bearings for the

isolation of the cable-stayed bridge system for the stochastic earthquake response analysis when the

bridge system is subjected to the spatially varying earthquake ground motion decreases the deck

bending moments. 

The mean of maximum total deck axial forces for the isolated and non-isolated cable-stayed

bridge models are given Figs. 9-11. The reduction of the deck axial forces obtained for the isolated

model is obvious, if the axial forces are compared with those obtained for the non-isolated bridge

model. Significant reduction of the axial forces is provided at the connection points between the

deck and towers. The reduction obtained for the homogeneous firm, medium and soft soil

conditions are about 56%, 55% and 28%, respectively. However, at the nodal points located at the

middle of the deck, the axial forces obtained for the isolated and non-isolated bridge models are

very close to each other. 

Fig. 9 Mean of maximum total deck axial forces (firm soil)

Fig. 10 Mean of maximum total deck axial forces (medium soil)
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Fig. 11 Mean of maximum total deck axial forces (soft soil)

Fig. 12 Mean of maximum total deck displacements (firm soil)

Fig. 13 Mean of maximum total deck displacements (medium soil)
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The mean of maximum total vertical deck displacements for the isolated and non-isolated cable-

stayed bridge models are compared in Figs. 12-14. The vertical displacements of the deck are

considerably decreased for the isolated system due to the DCFP bearings while all the supports of

the bridge are assumed to be founded on firm, medium and soft soil conditions, respectively.

Depending on the local soil conditions the vertical displacements obtained at the middle of the deck

for the isolated system causes 60%, 56% and 31% smaller responses than those of the non-isolated

system for firm, medium and soft soil conditions, respectively. 

8.2 Mean of maximum tower responses

The mean of maximum total bending moments, shear forces and axial forces obtained at the

mainland tower of the isolated and non-isolated cable-stayed bridge systems are compared in

Figs. 15-23. It is obvious that the member forces obtained for the isolated bridge system are, as

expected, significantly decreased by using the DCFP bearings, relative to the member forces

obtained for the non-isolated bridge model. Depending on the local soil conditions, while the largest

member forces are obtained at the soft soil conditions case, the smallest member forces are obtained

at the firm soil condition case. Although the decrement ratio obtained for each member force along

Fig. 14 Mean of maximum total deck displacements (soft soil)

Fig. 15 Mean of maximum total bending moments of the mainland tower (firm soil)
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Fig. 16 Mean of maximum total bending moments of the mainland tower (medium soil)

Fig. 17 Mean of maximum total bending moments of the mainland tower (soft soil)

Fig. 18 Mean of maximum total shear forces of the mainland tower (soft soil)
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Fig. 19 Mean of maximum total shear forces of the mainland tower (medium soil)

Fig. 20 Mean of maximum total shear forces of the mainland tower (soft soil)

Fig. 21 Mean of maximum total axial forces of the mainland tower (soft soil)
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the height of the isolated bridge tower is arbitrarily changing, the maximum decrement ratio

obtained for the member forces fluctuates around 37%, 39% and 43% for the bending moment,

shear force and axial force, respectively. Because the variations obtained for the Jindo Island tower

member forces are very similar, those results are not reported in this paper.

The variation obtained for the Jindo Island tower horizontal displacements is different from the

variation obtained for the member forces of the isolated and non-isolated systems (Figs. 24-26). For

the homogeneous firm soil condition case the horizontal displacements for the isolated system are

larger than the displacements of the non-isolated system along the height of the tower after 30 m.

The horizontal displacement at the top of the tower obtained for the isolated system is 24% smaller

than the displacement obtained for the non-isolated system. Similar variation is also obtained for the

homogeneous medium soil condition case. Isolated bridge system yields larger displacements after

40 m along the height of the tower. At the top of the tower the difference between the isolated and

non-isolated tower displacements is 11%. The variation obtained for the soft soil condition case is

quite different. The horizontal displacements obtained for the non-isolated system are larger than

those of the displacements obtained for the isolated system. The difference between the responses of

the isolated and non-isolated systems at the top of the tower is calculated as 12%.

Fig. 22 Mean of maximum total axial forces of the mainland tower (medium soil)

Fig. 23 Mean of maximum total axial forces of the mainland tower (soft soil)
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8.3 Frequency of occurrence 

Frequencies of occurrences of mean of maximum total deck bending moments are calculated by

Eq. (29) and presented in Figs. 27-29 for firm, medium and soft soil conditions, respectively. For

firm soil condition case, the frequencies of occurrences of mean of maximum total deck bending

moments at the mid-span for the isolated and non-isolated systems are 1.32 Hz and 0.98 Hz,

Fig. 24 Mean of maximum total displacements of the
Jindo Island tower (firm soil)

Fig. 25 Mean of maximum total displacements of the
Jindo Island tower (medium soil)

Fig. 26 Mean of maximum total displacements of the Jindo Island tower (soft soil)
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Fig. 27 Average frequencies of occurrence of mean of maximum total deck bending moments (firm soil)

Fig. 28 Average frequencies of occurrence of mean of maximum total deck bending moments (medium soil)

Fig. 29 Average frequencies of occurrence of mean of maximum total deck bending moments (soft soil)
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respectively. The frequencies of occurrences are decreasing for the medium and soft soil conditions.

9. Conclusions

This study outlines an investigation about the stochastic responses of isolated and non-isolated

cable-stayed bridge systems subjected to spatially varying ground motions. For the isolated bridge

system, double concave friction pendulum bearings are placed between the deck and the towers as

base isolation devices. Filtered white noise ground motion is considered to model the earthquake

ground motion. The incoherence and the wave-passage effects are taken into account for the

spatially varying earthquake ground motion. The analyses are carried out for the isolated and non-

isolated bridges, separately. The mean of maximum response values of the isolated and non-isolated

bridge systems are compared with each other for different homogeneous soil condition cases. The

results obtained from this study can be categorized as:

(i) It is clear that depending on the type of local soil conditions the total response values decrease

from homogeneous firm soil to the soft soil condition case.

(ii) The mean of maximum deck member forces are considerably decreased (30-50%) due to the

DCFP bearings while all the supports of the bridge are assumed to be founded on

homogeneous firm, medium and soft soil conditions. 

(iii) Important reductions are also observed for the vertical deck displacements of the isolated

bridge system. The maximum reduction is reported at the middle of the deck as 60% forfirm

soil condition case. 

(iv) The member forces obtained at the mainland tower of the isolated bridge system are

significantly decreased by using the DCFP bearings, relative to the member forces obtained

for the non-isolated bridge model. The maximum decrement ratio obtained for the member

forces fluctuates around 37%, 39% and 43% for the bending moment, shear force and axial

force, respectively.

(v) Although the variations obtained for the mean of maximum horizontal tower displacements at

the isolated and non-isolated systems show similarity to the member force responses,

depending on the soil conditions the horizontal tower displacements of the isolated bridge

system can be smaller than the displacement responses obtained at the non-isolated bridge

system. 

(vi) Depending on the local soil conditions at the support points of the bridge system, significant

changes are reported for the frequencies of occurrences of the mean of maximum response

values of the isolated and non-isolated bridge systems. The frequencies of occurrences are

decreasing by changing the soil conditions from firm soil condition to soft soil condition at

the support points.
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