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technologies nowadays. An alternative approach for large deflection analysis of the orthotropic, elliptic
membranes – subject to gravitational, uniform pressures often found in nano-sensors – is described in this
paper. The material properties of membranes are assumed to be orthogonally isotropic and linearly elastic,
while the principal directions of elasticity are parallel to the coordinate axes. Formulating the potential
energy functional of the orthotropic, elliptic membranes involves the strain energy that is attributed to in-
plane stress resultant and the potential energy due to applied pressures. In the solution method, Rayleigh-
Ritz method can be used successfully to minimize the resulting total potential energy generated. The set
of equilibrium equations was solved subsequently by Newton-Raphson. The unparalleled model
formulation capable of analyzing the large deflections of both circular and elliptic membranes is verified
by making numerical comparisons with existing results of circular membranes as well as finite element
solutions. The results are found in excellent agreements at all cases. Then, the parametric investigations
are given to delineate the impacts of the aspect ratios and orthotropic elasticity on large static tensions
and deformations of the orthotropic, elliptic membranes.
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1. Introduction

Nano-technology draws much incentive from a huge number of researchers and scholars in

diverse fields in recent years. One of the applications used in nano-technology is the membrane.

Generally membranes are very emaciated with the 1000-8000 nm (×10−9 m) in depth. Although

almost of membrane applications lay on physics and nano-science, there are a number of civil

engineering applications of structural membranes such as the pneumatic structures in long span

fabrics, and inflatable shells in roof structures. In addition, the pressure sensors in electronic micro/

nano chips, coating films resisting the dynamic abrasion, corrosion, chemical attack, or any-

substance permeation in mechanical elements, beams, girders, etc., and landing and magnetic

balloons in modern spacecraft, or even cell tissues and textures are some of apparent applications of

membrane mechanism. 

A brief overview of literatures related to membrane problems in the twentieth century is

presented. Hencky (1915) developed the stress propagation model for circular membranes under

pressures in polar coordinates. Tayler’s series was employed to assume the deflection and stress

functions, made up of the unknown parameters and membrane radius. However, the recent finding

shows that the accuracy of Hencky’s model is impaired slightly unless the series is kept 12 terms at

most (Fitcher 1997). After 1970s, there existed some investigations about membrane probes. Kao

and Perrone (1972) applied Hencky model to flat arbitrary membranes. Finite difference method

was embroiled in the numerical computation for static equilibrium solutions. Analogously, Storåkers

(1983) studied Hencky model via shooting optimization method. Galerkin and Rayleigh-Ritz

methods were used to scrutinize the orthotropic rectangular membranes by Kondo and Uemura

(1972). Since the modern applications of membranes are of substantially small pieces (nano-size),

therefore the accuracy and precision of the model for predicting the membrane behaviors is

necessary. A system that meets the need is “Micro-Electo Mechanical Systems (MEMS),” which has

been developed for the electronic pressure sensors. This system has been investigated by

Voothuyzen and Berveld (1984) and Sheplak and Dugundji (1998). From most of the literature, it

can be indicated that the preceding membrane research tasks only deal with isotropic materials, and

membranes of circular shape. They mostly exploit simply polar coordinates, thereby resulting in

their convenient analyses of just these limited types. This can not be applied to all situations.

Recently, there are a number of studies on membrane structures. The majority of these studies

imposed finite elements in the static analyses (Wu et al. 1996, Bonet 2000, Bouzidi et al. 2003).

Bouzidi and Le van (2004) reported that traditional finite element theory had troublesome

procedures. They then developed a numerical approach for analyzing hyperelastic circular and

rectangular membranes, and proved that their method using Newton method in energy minimization

could be well used in such analyses. However, the procedures of such approach are still complicated

and limited to a circle shape of curved membranes. Simultaneously, to enhance the capacity of

various-shape membrane analysis, the present study is an endeavor that implements the alternative

approach on the basis of energy method. An additional aim is at being practicable to all elliptic,

circular or strip membranes. 

In this study, the total potential energy of membranes includes strain energy that is ascribed to

axial stretching and virtual work due to uniform load burdens. Material properties of the membranes

studied are assumed orthogonally isotropic and of elliptic profiles. Bending rigidity and their own

weight are neglected. The membranes are considered irresistible to compressions and obey Hooke’s

law. Lessening the convergence of results, finite element method becomes inexpedient for meshing
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the elements because of the membrane appearance. Compared to FEM, Rayleigh-Ritz method is

therefore judged more apt to treat the mesh functional for the stiffness matrix, hence leading to a

more accurate solution. The simplicity and practicality of this computer method could also attract a

large number of researchers or engineers in related fields, particularly in nano-membranes or nano-

textiles.

2. Variational formulations

The nonlinear static equilibrium configuration is determined by considering the uniform pressures

distributed over the membrane. After facing the external forces, the membrane will deform – with

large deflections – from the initial position to static equilibrium configuration due to the

symmetrical burden. Fig. 1 portrays the typical geometry of elliptic membranes and Fig. 2 depicts

the member forces in an element of the membranes. 

Fig. 1 Typical geometry of elliptic membranes

Fig. 2 Resulting forces in a membrane element
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2.1 Strain energy 

In this case, the strain energy due to bending is neglected since the membrane has a very

emaciated depth, comparative to the width and the length of all of the membranes. Analogously, the

out-of-plane transverse-shear strain remains less and is then ignored. Thus, the axial strain due to in-

plane stress resultants (planar tensions) becomes significant and is expressed as follows.

 (1)

where,  represent the axial strains in x and y directions, and the transverse-shear strain in x-

y plane. The tensions in x and y directions and the transverse shear force in x-y plane are in terms

of nx, ny, nxy, respectively.

Arranged dimensionless, Eq. (1) turns to

 (2)

The lengths of membranes in x and y directions are communicated by a and b; vice versa, h

stands for the constantly uniform depth of membranes; Ex for the modulus of elasticity, conforming

to the principal elastic axis, X; ξ and η for non-dimensional coordinates (x/a, y/b); and, , and

 for non-dimensional tensions ( , and ), respectively. 

Hooke’s law is applied to the stress-strain relation, considering the membrane property as an

orthotropic material. The non-dimensional matrix form of the relation reads

 (3)
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and

where; EX and EY are moduli of elasticity with respect to the principal elastic axes, X and Y

respectively; GXY is the shear modulus in x-y plane; and,  and  are the poisson’s ratios in x and

y directions.

Considering a case in which the principal elastic axes are parallel to the coordinate axes (x-y in

Cartesian coordinates), θ that represents the angle between those 2 coordination systems approaches

nil so that the Eq. (3) becomes 

(5)

In Lagrangian coordinates with large-deflection theory, the strain-deformation relation can be

written as follows.

(6a)

(6b)

 (6c)

where u, v, and w are the displacements in x, y, and z direction respectively. 

Non-dimensional forms of the Eq. (6) are

(7a)

(7b)
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∂ŵ

∂ξ
-------

∂w

∂η
-------+ +=



630 Somchai Chucheepsakul, Sakdirat Kaewunruen and Apiwat Suwanarat

where , and  represent the dimensionless displacements in x, y, and z direction (u/a, v/a, w/a)

respectively. Also, λ stands for the major/minor radius ratio (a/b).

Replacing Eqs. (5) and (7) into Eq. (2) yields the following strain energy of membranes.

 (8)

2.2 Potential energy of distributed load

The potential energy of uniformly distributed pressure  can be presented by

(9)

The Eq. (9) can be re-arranged in the non-dimensional form as follows.

  (10)
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3. Rayleigh-ritz method

From Fig. 1 describing the geometry of a membrane, when the membrane is loaded, it deforms to

the static equilibrium whose total potential energy deems to be at lowest point. This is identical to the

energy principles in that the conservative systems stay in equilibrium when the total potential energy

leaves the lowest value. The assumed arbitrary displacement fields in Rayleigh-Ritz method are 

 (12a)

 (12b)

 (12c)

where ai, bi, and ci are unknown parameters; fi, gi, and hi represent the admissible shape functions

conforming to the membranes’ compatibility equations and essential boundary conditions.

By the principle of stationary potential energy, minimization of the total potential energy function

Π by differentiating Eq. (11) with respect to generalized coordinates ai, bi, and ci brings out the

governing differential equations of , and  respectively.

  (13a)

  (13b)

  (13c)

From the governing equations emerge  nonlinear stiffness equations. Newton-Raphson

procedure is thus utilized to treat numerically the nonlinear problem for determining unknown

parameters ai, bi, and ci. These parameters are then returned to place in Eqs. (12a), (12b), and (12c),

resulting in the generic displacement functions of membranes.

3.1 Boundary conditions of membranes

In general, elliptic membranes with simple supports prohibit displacements in x, y, and z directions

except rotational angles at edges. The forced boundary conditions of the membranes considered can

be expressed as  at supports; thereby, the generalized coincident displacement

functions are presented as follows.
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 (14c)

It is noticeable that simply the first parts of Eqs. (14a), (14b), and (14c) concur with the boundary

conditions of the membranes. The remaining portions of the equations are 2-dimension polynomial

series. Axisymmetry exists when applied pressures are constant, . Then the Eqs. (14a),

(14b), and (14c), matching the axisymmetric deformations, become

  (15a)

 (15b)

 (15c)

As witnessed, the Eq. (15a) additionally includes ξ; the Eq. (15b) also has an extra η; and, the

whole countable numbers (m and n) remain only even figures – all for compromising the boundary

condition set. 

Factors involved in solutions analyzed by Rayleigh-Ritz method are: 

• The chosen functions must form the complete set function that must be satisfiable to the forced

boundary conditions. Fig. 3 illustrates the number of terms in complete sets of polynomial

function relations in two independent variables (ξ and η); for example, the quadratic polynomial

function establishes the complete set if its formula comprises 3 terms: 1, , and . The

convergence to exact solutions is seemingly enhanced if the chosen functions also meet the

natural boundary conditions.

• The number of series terms influences both the accuracy and the time used alterably: the more

series terms, the more the accuracy. However, it is more time consuming to compute more series

terms.

To modify the equilibrium equations into Rayleigh-Ritz format, the total potential energy Π,

Eq. (11), is replaced by the Eqs. (15a) and (15b). Minimization of the substitute equation in

accordance with Eqs. (13a) and (13b) initiates the nonlinear algebraic equations. After having

spatial integration on throughout the membrane area, the Newton-Raphson algorithm is focused in
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order to carry out the undetermined constants of the algebraic equations. The displacement fields are

thus completely defined and lead to nonlinear static solutions. 

4. Results and disscussions

In this study, the result validation is made to confirm the correction of the mathematical model

related to literatures dealing with circular membranes. Then, the parametric studies are done to

divulge the impacts of Poisson’s ratios, moduli of elasticity, and axis length ratios so-called aspect

ratios (λ = a/b) on nonlinear static behaviors: internal forces, displacements.

4.1 Result validation

This model is modified to compare with the existing results of circular membranes (Hencky 1915,

Fitcher 1997). The properties of membranes used in the verification are: λ = 1, ,

, and . Varying the number of series’ terms used, Table 1 shows the

comparisons of results with solutions by series expansion (Hencky 1915) and by the shooting

method (Fitcher 1997). 

Table 1 shows that the results are in excellent agreement with those found in other reports.

Although the 6×6×6-term element is ample to use in the scrutiny, the 10×10×10-term element is

employed in this investigation, in order to get the strikingly accurate results that accompany well-

fitting schedule. A finite element model of circular membrane has been developed using the

nonlinear membrane elements in STRAND7 (2002). Table 2 depicts the nonlinear solutions of the

circular membrane. Clearly, the Rayleigh-Ritz and finite element solutions are in very good

agreement.

νx νy 0.3= =

Ey/Ex 1= Gxy/Ex 0.385=

Table 1 Comparison of displacements and internal tensions at the center of circular membranes

Number of terms 
in series

Displacements, 

Fitcher (1997) by 
series expansions

Storåkers (1983)
by shooting 

optimizations

This study
by Rayleigh-Ritz

% Difference

Fitcher
(1997) 

Storåkers
 (1983)

1 × 1 × 1 6.5345E-02 6.5300E-02 6.7924E-02 3.95 4.02

3 × 3 × 3 6.5345E-02 6.5300E-02 6.5141E-02 -0.31 -0.24

6 × 6 × 6 6.5345E-02 6.5300E-02 6.5359E-02 0.02 0.09

10 × 10 × 10 6.5345E-02 6.5300E-02 6.5342E-02 0.00 0.06

Number of terms 
in series

Internal tensions, 

Fitcher (1997) by 
series expansions

Storåkers (1983)
by shooting 

optimizations

This study
by Rayleigh-Ritz

% Difference

Fitcher
(1997) 

Storåkers 
(1983)

1 × 1 × 1 4.3110E-03 4.3103E-03 4.4525E-03 3.28 3.30

3 × 3 × 3 4.3110E-03 4.3103E-03 4.2707E-03 -0.93 -0.92

6 × 6 × 6 4.3110E-03 4.3103E-03 4.3237E-03 0.29 0.31

10 × 10 × 10 4.3110E-03 4.3103E-03 4.3039E-03 -0.16 -0.15

ŵ 0 0,( )

n̂
x

0 0,( ) n̂
y

0 0,( )=
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Table 2 Nonlinear finite element solutions of circular membranes

Contours Isometric Views Histograms
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4.2 Parametric studies

Figs. 4 and 5 demonstrate the influence of aspect ratios (λ) on the displacements and internal

tensions at the center of elliptic membranes. Based on the preliminary data of  = 0.001,

, , , and varying λ from 0 to 2, it is found that the central

displacement ( ) and internal x-direction tension ( ) change slightly at the interval of λ between 0

and 0.5. Moreover, they tend to be painstakingly reduced when λ values more than 0.5. Although

the y-direction tension ( ) prevails the increment at the early λ and the highest tension takes place

when λ reaches the value of 1.0, it tends to diminish after λ passes through 1.0.

Effects of Poisson’s ratios (ν) are illustrated in Figs. 6 and 7. Similarly, the data used in the study

are alike as mentioned except varying the Poisson’s ratios from 0 to 0.5. Apparently with the greater

ν, Fig. 6 marks that the central displacement ( ) tends to decrease. On the other hand, Fig. 7

signifies that the internal tensions (  and ) tend to ascend particularly for the case that λ is

q̂

νx νy 0.3= = Ey/Ex 1= Gxy/Ex 0.385=

ŵ n̂x

n̂y

ŵ

n̂x n̂y

Fig. 4 Influence of aspect ratios (λ) on non-
dimensional displacement ( ) at the center of
elliptic membranes

ŵ
Fig. 5 Influence of aspect ratios (λ) on non-

dimensional internal tensions  (  and ) at
the center of elliptic membranes

n̂
x

n̂
y

Fig. 6 Influence of Poisson’s ratios (ν) on non-dimensional displacement ( ) at the center of elliptic
membranes

ŵ
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equal to 0.5. Obviously the more λ, the lower , but also significantly lower tensions (  and ).

These results indicate the importance of λ, in addition to that of Poisson’s ratios, on displacements

ŵ n̂x n̂y

Fig. 7 Influence of Poisson’s ratios (ν) on non-dimensional internal tensions  (  and ) at the center of
elliptic membranes

n̂
x

n̂
y

Fig. 8 Influence of modulus ratios (Ey/Ex) on non-dimensional displacement ( ) at the center of elliptic
membranes

ŵ

Fig. 9 Influence of modulus ratios (Ey/Ex) on non-dimensional internal tensions (  and ) at the center of
elliptic membranes

n̂
x

n̂
y
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and internal tensions at the center of membranes.

Ranging from 0.5 to 2.0, the modulus ratios (Ey/Ex) play role in the displacements and internal

tensions of membranes as shown in Figs. 8 and 9. The decrement of the central displacement ( )

and the x-direction tension ( ) predominates while Ey/Ex ratios are higher. The manifest thriving of

the y-direction tension ( ) implies the more Ey comparative to Ex. Likewise, λ meaningfully

dominates the nonlinear static behaviors of the membranes.

5. Conclusions

Presented in this paper is an alternative approach, Rayleigh-Ritz method, for analyzing the large

deflection behaviors of orthotropic elliptic membranes. By energy principles, the total potential

energy is composed of the strain energies due to in-plane tensions and shear forces, and potential

energy of the uniformly distributed burdens. Rayleigh-Ritz method subsequently takes considerable

part in approximating displacement fields and Newton-Raphson algorithm then solves the algebraic

set of nonlinear equilibrium equations by stationary potential energy, for static solutions. Excellent

agreements of results make the mathematical model acceptable. Rayleigh-Ritz approximation fields

are profoundly applicable to various shapes of membranes.

Parametric studies describe the impacts of aspect ratios (λ), Poisson’s ratios (ν), and modulus

ratios (Ey/Ex) on the nonlinear static behaviors: displacements ( ) and internal tensions (  and

), all at the center of membranes. Clearly, reduction of the displacements happens when aspect

ratios, Poisson’s ratios, and modulus ratios enlarge. Also, the greater λ induces the considerably

lesser . The increasing ν causes the gradually higher ; however, the blooming Ey/Ex decreases

the  by degrees. Even though  behaves like  in case of parameter ν, its characteristic

opposes the one of  in case of parameter Ey/Ex and varies in case of parameter λ. Besides, it can

be concluded that the λ conspicuously predominates the effects of other parameters. 
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