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Abstract. The time delay in active and semi-active controls is an important research subject. Many
researches on the time-delay control for deterministic systems have been made (Hu and Wang 2002, Yang
et al. 1990, Abdel-Mooty and Roorda 1991, Pu 1998, Cai and Huang 2002), while the study on that for
stochastic systems is very limited. The effects of the time delay on the control of nonlinear systems under
Gaussian white noise excitations have been studied by Bilello et al. (2002). The controlled linear systems
with deterministic and random time delay subjected to Gaussian white noise excitations have been treated
by Grigoriu (1997). Recently, a stochastic averaging method for quasi-integrable Hamiltonian systems with
time delay has been proposed (Liu and Zhu 2007). In the present paper, a stochastic optimal time-delay
control method for stochastically excited nonlinear structural systems is proposed based on the stochastic
averaging method for quasi Hamiltonian systems with time delay and the stochastic dynamical
programming principle. An example of stochastically excited and controlled hysteretic column is given to
illustrate the proposed control method.

1. Optimal time-delay control problem and its transformation

The stochastic optimal time-delay control problem of a nonlinear structural system can be

expressed as

(1)

(2)

where X is the n-dimensional structural displacement vector, M and C are respectively symmetric

positive-definite structural mass and damping matrices, Vs(X) ≥ 0 is the structural potential energy

with Vs(−X) = Vs(X), W(t) is the m-dimensional stochastic process vector assumed as Gaussian
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white noise with intensity 2D,  is the s-dimensional control force vector dependent on the

past states  and , τ is the delayed time in control, F and B are constant

matrices, J is the performance index of the infinite time-interval ergodic control, tf is the terminal

time and L(X, , U) is a continuous differential convex function. Eq. (1) is rewritten in the form

of quasi Hamiltonian equations

(3)

where Q = X, P = ,  is the Hamiltonian representing total structural

energy. It is assumed that the Hamiltonian system corresponding to (3) is completely integrable, as

many engineering structures are modeled generally. According to the stochastic averaging method

for quasi-integrable Hamiltonian systems with time-delay (Liu and Zhu 2007), the past structural

displacement and momentum can be expressed approximately by the present structural displacement

and momentum as

,  (4)

where Qi and Pi are the i-th elements of state vectors Q and P, respectively, ωi is the averaged

frequency of the i-th integrated sub-system. The following averaged Itô stochastic differential

equations with the corresponding performance index can be derived further

(5)

(6)

where Hr is the independent integral of motion, H = [H1, H2, …, Hn]
T, <·> denotes the averaging

operation, (Q, P) is the transformed control force vector, Bk(t) is the unit Wiener process, mr(H)

and σrk(H) are the drift and diffusion coefficients (Ying et al. 2003b). The optimal time-delay

control problem [(1) and (2)] has been converted into another optimal control problem without time

delay [(5) and (6)].

2. Optimal active and semi-active time-delay control laws

Based on the stochastic dynamical programming principle, the dynamical programming equation

for (5) and (6) is established as (Ying et al. 2003a)

(7)

where V is called the value function and λ is a constant. The optimal control law (Q, P) can be

determined by minimizing the left side of Eq. (7), which depends on the present structural

displacement and momentum. By using Eq. (4), the present structural states can be expressed

approximately by the past structural states as

U X
τ

X
·
τ,( )

X
τ

X t τ–( )= X
·
τ X

·
t τ–( )=

X
·
τ

Q
· ∂H

∂P
-------, P

· ∂H

∂Q
-------– C

∂H

∂P
-------– FW t( ) BU Q

τ
P

τ
,( )+ += =

MX
·

H P
T
M

1–
P/2 Vs Q( )+=

Q
τi Qi t( )cosω iτ Pi t( )sinω iτ/ω i–= P

τi Qi t( )ω isinω iτ Pi t( )cosω i+= τ

dHr mr H( ) BU Q P,( )( )i
∂Hr

∂Pi

---------〈 〉+ dt σrk H( )dBk t( )+=

J
1

tf
--- L H t( ) <U Q t( ) P t( ),( )>,( )dt

0

tf

∫
tf ∞→

lim=

U

L H <U>,( ) mr H( ) < BU( )i
∂Hr

∂Pi

--------->+
∂V

∂Hr

--------- σrk H( )σsk H( ) ∂2
V

2∂Hr∂Hs

---------------------+ +

⎩ ⎭
⎨ ⎬
⎧ ⎫

λ=

U

limmin

U
*



A stochastic optimal time-delay control for nonlinear structural systems 623

, (8)

Therefore, the optimal active time-delay control force dependent completely on the past structural

displacement and velocity is derived as follows

(9)

For the semi-active control using MR dampers, the control force U can be split into passive part

Ups and semi-active part Usa (Ying et al. 2003b). The passive part is incorporated in the structural

system. The semi-active part is determined by Eq. (9) according to Bingham model as

, (10)

The  dependent completely on the past structural displacement and velocity is an optimal

semi-active time-delay control force. In the case of ∂V/∂H1 = ∂V/∂H2 = … = ∂V/∂Hn ≥ 0, the optimal

semi-active time-delay control force becomes an optimal active time-delay control force so that the

semi-active MR dampers can implement the active time-delay control law without clipping in this

case.

Consider the nonlinear hysteretic column under stochastic support excitations and a time-delay

control force u  (Zhu et al. 2000). By using the proposed control method, the optimal active

and semi-active time-delay control force can be obtained, for  as

(11)
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Fig. 1 Control efficacy for different excitation intensity
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(12)

Taking r and g(H) such that dV/dH ≥ 0 yields . The mean square displacements of the

uncontrolled and controlled hysteretic columns can be calculated by using the stochastic averaging

method. The control efficacy can be evaluated by control effectiveness K and efficiency µ (Ying et

al. 2003b). Figs. 1(a) and 1(b) show the high control efficacy of the hysteretic column under the

proposed optimal time-delay control.
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