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Abstract. The literature regarding the free vibration analysis of Bernoulli-Euler and Timoshenko beams
on elastic soil is plenty, but the free vibration analysis of Reddy-Bickford beams on elastic soil with/
without axial force effect using the Differential Transform Method (DTM) has not been investigated by
any of the studies in open literature so far. In this study, the free vibration analysis of axially loaded
Reddy-Bickford beam on elastic soil is carried out by using DTM. The model has six degrees of freedom
at the two ends, one transverse displacement and two rotations, and the end forces are a shear force and
two end moments in this study. The governing differential equations of motion of the rectangular beam in
free vibration are derived using Hamilton’s principle and considering rotatory inertia. Parameters for the
relative stiffness, stiffness ratio and nondimensionalized multiplication factor for the axial compressive
force are incorporated into the equations of motion in order to investigate their effects on the natural
frequencies. At first, the terms are found directly from the analytical solutions of the differential equations
that describe the deformations of the cross-section according to the high-order theory. After the analytical
solution, an efficient and easy mathematical technique called DTM is used to solve the governing
differential equations of the motion. The calculated natural frequencies of one end fixed and the other end
simply supported Reddy-Bickford beam on elastic soil using DTM are tabulated in several tables and
figures and are compared with the results of the analytical solution where a very good agreement is
observed and the mode shapes are presented in graphs. 

Keywords: differential transform method; elastic soil; free vibration; partial differential equation;
Reddy-Bickford beam.

1. Introduction

The analysis of beams has been performed over the years mostly using Bernoulli-Euler beam
theory. The classical Bernoulli-Euler beam is well studied for slender beams, where the transverse
shear deformation can be safely disregarded. This theory is based on the assumption that plane
sections of the cross-section remain plane and perpendicular to the beam axis. The cross-sectional
displacements are shown in (Fig. 1(a)), and expresses as

  (1)u x z t, ,( ) z–
∂w0 x t,( )

∂x
---------------------⋅=
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 (2)

where  is the lateral displacement of the beam neutral axis, z is the distance from the beam
neutral axis (Timoshenko 1921).

For moderately thick beams Bernoulli-Euler beam theory can be modified in order to take into
account the transverse shear effect in a simplified way. For example, the well-known Timoshenko
beam theory predicts a uniform shear distribution, so necessitating the use of a so-called shear
factor (Cowper 1966, Murthy 1970, Gruttmann and Wagner 2001). The cross-sectional
displacements of Timoshenko beam theory are shown in (Fig. 1(b)) and the equations for
Timoshenko beam theory which relaxes the restriction on the angle of shearing deformations are

 (3)

 (4)

where  represents the rotation of a normal to the axis of the beam. Han et al. presented a
comprehensive study of Bernoulli-Euler, Rayleigh, Shear and Timoshenko beam theories (Han et al.

1999).

w x z t, ,( ) w0 x t,( )=

w0 x t,( )

u x z t, ,( ) z φ x t,( )⋅=

w x z t, ,( ) w0 x t,( )=

φ x t,( )

Fig. 1 Cross-section displacements in different beam theories (Wang et al. 2000). (a) Bernoulli-Euler Beam
Theory, (b) Timoshenko Beam Theory, (c) Reddy-Bickford Beam Theory 
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 The real shear deformation distribution is not uniform along the depth of the beam, so that
Timoshenko beam theory is not recommended for composite beams, where the accurate
determination of the shear stresses is required. Especially, it was found that the Timoshenko shear
deformation theory has some major numerical problems such as locking in the numerical analysis
for composite materials. The other problem was the need to supply an artificially derived shear
correction factor. Although some remedies were devised, as a result, several higher-order theories
have emerged. These theories, with small variations, are due to Bickford, Levinson, Heyliger and
Reddy, Wang et al. and others all relax the restriction on the warping of the cross-section and allow
variation in the longitudinal direction of the beam which is cubic (Bickford 1982, Levinson 1981,
Heyliger and Reddy 1988, Wang et al. 2000). 

In this paper, Reddy-Bickford beam theory is used, which seems a good compromise between
accuracy and simplicity (Bickford 1982, Wang et al. 2000). The cross-sectional displacements of
Reddy-Bickford beam theory are shown in (Fig. 1(c)) and according to Reddy-Bickford beam
theory, the displacements of the rectangular beam can be written as Wang et al. 2000, Reddy 2002,
Reddy 2007)

 (5)

 (6)

where γ = 4/(3 · h2); h is the height of the beam. Yesilce and Catal compared the free vibration
analysis of Reddy-Bickford pile with the results of Timoshenko pile by using analytical method
(Yesilce and Catal 2008).

Bernoulli-Euler beam theory does not consider the shear stress in the cross-section and the
associated strains. Thus, the shear angle is taken as zero through the height of the cross-section.
Timoshenko beam theory assumes constant shear stress and shear strain in the cross-section. On the
top and bottom edges of the beam the free surface condition is thus violated. The use of a shear
correction factor, in various forms including the effect of Poisson’s ratio, does not correct this fault
of the theory, but rather artificially adjusts the solutions to match the static or dynamic behavior of
the beam. Reddy-Bickford beam theory and the other high-order theories remedy this physical
mismatch at the free edges by assuming variable shear strain and shear stress along the height of the
cross-section. Then there is no need for the shear correction factor. The high-order theory is more
exact and represents much better the physics of the problem. It results in a sixth-order theory
compared to the fourth order of the other less-accurate theories. This yields a six-degree-of-freedom
element with six end forces, a shear force, bending moment and a high-order moment, at the two
ends of the beam element. 

Previously, numerous researchers studied the behavior of beams supported by elastic foundations
(Hetenyi 1955). Doyle and Pavlovic solved the partial differential equation for free vibration of
beams partially attached to elastic foundation using variable separating method and neglecting axial
force and shear effects (Doyle and Pavlovic 1982). West and Mafi solved the partial differential
equation for free vibration of an elastic beam on elastic foundation that is subjected to axial force
by using initial value method (West and Mafi 1984). Yokoyama studied the free vibration motion of
Timoshenko beam on two-parameters elastic foundation (Yokoyama 1991). Esmailzadeh and Ohadi
investigated vibration and stability analysis of non-uniform Timoshenko beams under axial and
distributed tangential loads (Esmailzadeh and Ohadi 2000). 

u x z t, ,( ) z φ x t,( ) γ z
3

φ x t,( ) ∂w x t,( )
∂x

------------------+⋅ ⋅–⋅=

w x z t, ,( ) w0 x t,( )=
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DTM was applied to solve linear and non-linear initial value problems and partial differential
equations by many researches. The concept of DTM was first introduced by Zhou and he used
DTM to solve both linear and non-linear initial value problems in electric circuit analysis (Zhou
1986). Chen and Ho solved eigenvalue problems for the free and transverse vibration problems of a
rotating twisted Timoshenko beam under axial loading by using DTM (Chen and Ho 1996, 1999).
DTM was applied to solve a second order non-linear differential equation that describes the under
damped and over damped motion of a system subject to external excitation by Jang and Chen
(1997). Chen and Liu considered first order both the linear and non-linear two-point boundary value
problems by using DTM (Chen and Liu 1998). In the other study, Jang et al. investigated the linear
and non-linear initial value problems by using DTM (Jang et al. 2000). Malih and Dang applied
DTM to the free vibration of Bernoulli-Euler beams (Malih and Dang 1998). Hassan studied the
solution of Sturm-Lioville eigenvalue problem and solved partial differential equations by using
DTM (Hassan 2002a, 2002b). Ayaz obtained numerical solution of linear differential equations by
using DTM (Ayaz 2004). Bert and Zeng used DTM to investigate analysis of axial vibration of
compound bars (Bert and Zeng 2004). Kurnaz et al. studied n-dimensional DTM to solve partial
differential equations (Kurnaz et al. 2005). Özdemir and Kaya investigated flapwise bending
vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by DTM (Özdemir and
Kaya 2006). In the other study, the out-of-plane free vibration analysis of a double tapered
Bernoulli-Euler beam, mounted on the periphery of a rotating rigid hub is performed using DTM by
Ozgumus and Kaya (2006). Catal suggested DTM for the free vibration analysis of both ends
simply supported and one end fixed, the other end simply supported Timoshenko beams resting on
elastic soil foundation (Catal 2006, 2008). Catal and Catal calculated the critical buckling loads of
partially embedded Timoshenko pile in elastic soil by DTM (Catal and Catal 2006). Ho and Chen
investigated the vibration problems of an axially loaded non-uniform spinning twisted Timoshenko
beam by using DTM (Ho and Chen 2006). Bildik et al. expressed the definitions and operations of
DTM and Adomian’s decomposition method on different partial differential equations (Bildik et al.
2006). Free vibration analysis of a rotating, double tapered Timoshenko beam featuring coupling
between flapwise bending and torsional vibrations is performed using DTM by Ozgumus and Kaya
(2007). In the other study, Kaya and Ozgumus introduced DTM to analyze the free vibration
response of an axially loaded, closed-section composite Timoshenko beam which features material
coupling between flapwise bending and torsional vibrations due to ply orientation (Kaya and
Ozgumus 2007). Ertürk and Momani presented a numerical comparison between DTM and
Adomian’s decomposition method for solving fourth-order boundary value problems (Ertürk and
Momani 2007). DTM was applied to construct semi numerical-analytic solutions of linear sixth-
order boundary value problems with two-point boundary value conditions by Ertürk (2007).
Numerical solution to buckling analysis of Bernoulli-Euler beams and columns were obtained using
DTM and harmonic differential quadrature for various support conditions considering the variation
of flexural rigidity by Rajasekaran (2008). In this study, solution technique is applied to find the
buckling load of fully or partially embedded columns such as piles. Since previous studies have
shown DTM to be an efficient tool and it has been applied to solve boundary value problems for
many linear, non-linear integro-differential and differential-difference equations that are very
important in fluid mechanics, viscoelasticity, control theory, acoustics, etc. Besides the variety of the
problems to that DTM may be applied, its accuracy and simplicity in calculating the natural
frequencies and plotting the mode shapes makes this method outstanding among many other
methods. 
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In this study, the free vibration analysis of a rectangular and one end fixed, the other end simply
supported Reddy-Bickford beam resting on elastic soil is performed. At the beginning of the study,
the governing equations of motion are obtained applying Hamilton’s principle and Winkler
hypothesis and considering rotatory inertia. In the solution part, the equations of motion, including
the parameters for the relative stiffness, stiffness ratio and nondimensionalized multiplication factor
for the axial compressive force, are solved using analytical method and an efficient mathematical
technique, called DTM. Finally, the natural frequencies of Reddy-Bickford beam are calculated, the
mode shapes are plotted and effects of the parameters, mentioned above, are investigated by using
the computer package, Matlab. Unfortunately, a suitable example that studies the free vibration
analysis of Reddy-Bickford beams on elastic soil with/without axial force effect using DTM has not
been investigated by any of the studies in open literature so far. 

2. The mathematical model and formulation

A Reddy-Bickford beam resting on elastic soil is presented in (Fig. 2). It is assumed that the
elastic soil that the beam is on behaves due to Winkler hypothesis. 

The relation between displacement function w(x, t) of the beam on elastic soil and the distributed
force q(x, t) existing at the elastic soil under the beam can be written as

 (7)

where , C0 is the modulus of subgrade reaction, b is the width of the beam.
Using Hamilton’s principle and Eqs. (5) and (6) and considering rotatory inertia, the equations of

motion for a rectangular Reddy-Bickford beam on elastic soil can be written as

(8)

(9)

q x t,( ) CS w x t,( )⋅=

CS C0 b⋅=

68
105
--------- EIx

∂2
φ x t,( )

∂x
2

--------------------⋅ ⋅–
16
105
--------- E⋅ Ix

∂3
w x t,( )

∂x
3

---------------------⋅ 8
15
------ AG φ x t,( ) ∂w x t,( )

∂x
------------------+⋅ ⋅+ +  =
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105
---------–

m Ix⋅
A

----------- ∂2
φ x t,( )

∂t
2

--------------------⋅ ⋅ 16
105
---------

m Ix⋅
A

----------- ∂3
w x t,( )

∂x ∂t
2⋅
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m
∂2

w x t,( )

∂t
2

---------------------⋅–
8
15
------ AG

∂φ x t,( )
∂x

------------------ ∂2
w x t,( )

∂x
2

---------------------+⋅ ⋅ 16
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--------- EIx

∂3
φ x t,( )

∂x
3

--------------------⋅ ⋅ 1
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∂4
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4

---------------------⋅ ⋅–+ +

CS– w x t,( ) N
∂2
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2

---------------------⋅–⋅ 1
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∂x
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Fig. 2 A beam on elastic soil
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where  represents the rotation of a normal to the axis of the beam, m is mass per unit length
of the beam, L is length of the beam, N is the axial compressive force, A is the cross-section area, Ix
is moment of inertia, E, G are Young’s modulus and shear modulus of the beam, respectively, x is
the beam position, t is time variable.

Assuming that the motion is harmonic we substitute for  and  the following 

 (10)

 (11)

and obtain a system of two coupled ordinary equation as 

(12)

(13)

where z = x/L.

It is assumed that the solution is 

 (14)

 (15)

and substituting Eqs. (14) and (15) into Eqs. (12) and (13) results in 

(16)

(17)

Eqs. (16) and (17) can be written in matrix form for the two unknowns P and C as

φ x t,( )

w z t,( ) φ z t,( )

w z t,( ) w z( ) sin ω t⋅( )⋅=

φ z t,( ) φ z( ) sin ω t⋅( )⋅=
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 (18)

where

(19.a)

 (19.b)

 (19.c)

and the non-trivial solution will be when the determinant of the coefficient matrix will be zero.
Thus, we have a sixth-order equation with the unknowns, resulting in six values and the general
solution functions can be written as 

 (20)

(21)

The twelve constants, C1, ..., C6 and P1, ..., P6 will be found from Eqs. (16), (17) and boundary
conditions.

The expression for bending rotation  is given by

 (22)

The shear force function Q(z, t) can be obtained by using Eqs. (20) and (21) as

(23)

Similarly, the bending moment function M(z, t) can be obtained by using Eqs. (20) and (21) as

  (24)

The higher-order moment function Mh(z, t) can be obtained as

  (25)
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3. The differential transform method (DTM)

Partial differential equations are often used to describe engineering problems whose closed form
solutions are very difficult to establish in many cases. Therefore, approximate numerical methods
are often preferred. However, in spite of the advantages of these on hand methods and the computer
codes that are based on them, closed form solutions are more attractive due to their implementation
of the physics of the problem and their convenience for parametric studies. Moreover, closed form
solutions have the capability and facility to solve inverse problem of determining and designing the
geometry and characteristics of an engineering system and to achieve a prescribed behavior of the
system. Considering the advantages of the closed form solutions mentioned above, DTM is
introduced in this study as the solution method. DTM is a semi-analytic transformation technique
based on Taylor series expansion and is a useful tool to obtain analytical solutions of the differential
equations. Certain transformation rules are applied and the governing differential equations and the
boundary conditions of the system are transformed into a set of algebraic equations in terms of the
differential transforms of the original functions in DTM. The solution of these algebraic equations
gives the desired solution of the problem. The different from high-order Taylor series method is;
Taylor series method requires symbolic computation of the necessary derivatives of the data
functions and is expensive for large orders. DTM is an iterative procedure to obtain analytic Taylor
series solutions of differential equations (Ozgumus and Kaya 2007).

A function , which is analytic in a domain D, can be represented by a power series with a
center at , any point in D. The differential transform of the function  is given by

 (26)

where  is the original function and  is the transformed function. The inverse
transformation is defined as

 (27)

From Eqs. (26) and (27) we get

 (28)

Eq. (28) implies that the concept of the differential transformation is derived from Taylor’s series
expansion, but the method does not evaluate the derivatives symbolically. However, relative
derivative are calculated by iterative procedure that are described by the transformed equations of
the original functions. In real applications, the function  in Eq. (27) is expressed by a finite
series and can be written as 

 (29)

Eq. (29) implies that  is negligibly small. Where  is series size and the value

of  depends on the convergence of the eigenvalues.
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Theorems that are frequently used in differential transformation of the differential equations and
the boundary conditions are introduced in (Table 1) and (Table 2), respectively. 

3.1 Using differential transformation to solve motion equations 

Eqs. (12) and (13) can be rewritten as follows

(30)

(31)
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Table 1 DTM theorems used for equations of motion
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Table 2 DTM theorems used for boundary conditions
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where 

(Frequency factor)  (32.a)

(Relative stiffness)  (32.b)

(Stiffness ratio)  (32.c)

(Nondimensionalized multiplication factor for the axial force)  (32.d)

The differential transform method is applied to Eqs. (30) and (31) by using the theorems
introduced in (Table 1) and the following expression are obtained

(33)

 (34)

where  and  are the transformed functions of w(z) and φ(z), respectively. 
The boundary conditions of Reddy-Bickford beam resting on elastic foundation and one end

fixed, the other end simply supported shown in (Fig. 3) are given below (Wang et al. 2000) 

 (35.a)

(35.b)

(35.c)

(35.d)

(35.e)

(35.f)
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Ix⋅ ⋅

4 A L⋅ ⋅
---------------------- 7

2
--- β L⋅ ⋅–⎝ ⎠

⎛ ⎞ Φ k( )
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--------------------⋅ 56
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4
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k 1+( ) k 2+( ) k 3+( ) k 4+( )⋅ ⋅ ⋅
-------------------------------------------------------------------------⋅ ⋅+ +
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w z 0=( ) 0=

w′ z 0=( ) 0=

φ z 0=( ) 0=

w z 1=( ) 0=

M z 1=( ) 0=

Mh z 1=( ) 0=

Fig. 3 One end fixed and the other end simply supported beam on elastic soil
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Applying the differential transform method to Eqs. (35.a)-(35.f) and using the theorems introduced
in (Table 2), the transformed boundary conditions are obtained as 

for z = 0;  (36.a)

for z = 1;  (36.b)

where  and  are the transformed functions of  and , respectively.
Substituting the boundary conditions expressed in Eqs. (36.a) and (36.b) into Eqs. (33) and (34)

and taking ,  and , the following matrix expression is obtained 

 (37)

where c1, c2 and c3 are constants and  and  (j = 1, 2, 3) are polynomials of
ω corresponding .

In the last step, for non-trivial solution, equating the coefficient matrix that is given in Eq. (37) to
zero one determines the natural frequencies of the vibrating system as is given in Eq. (38) 

 (38)

The jth estimated eigenvalue,  corresponds to  and the value of  is determined as

 (39)

where  is the jth estimated eigenvalue corresponding to  and ε is the small tolerance
parameter. If Eq. (39) is satisfied, the jth estimated eigenvalue,  is obtained. 

The procedure that is explained below can be used to plot the mode shapes of Reddy-Bickford
beam. The following equalities can be written by using Eq. (37)

(40.a)

  (40.b)

Using Eqs. (40.a) and (40.b) the constants c2 and c3 can be obtained in terms of c1 as follows 

(41.a)
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N

∑ k( ) Mh

k 0=

N

∑ k( ) 0= = =

M k( ) Mh k( ) M z( ) Mh z( )

W 2( ) c1= Φ 1( ) c2= Φ 2( ) c3=

A11

N( )
ω( )  A12

N( )
ω( )  A13

N( )
ω( )

A21

N( )
ω( )  A22

N( )
ω( )  A23

N( )
ω( )

A31

N( )
ω( )  A32

N( )
ω( )  A33

N( )
ω( )

c1

c2

c3⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

⋅
0

0

0⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

Aj1

N( )
ω( ) Aj2

N( )
ω( ), Aj3

N( )
ω( )

N

A11

N( )
ω( )  A12

N( )
ω( )  A13

N( )
ω( )
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A31

N( )
ω( )  A32

N( )
ω( )  A33

N( )
ω( )
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A11 ω( ) c1⋅ A12 ω( ) c2⋅ A13 ω( ) c3⋅+ + 0=
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-------------------------------------------– c1⋅=
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 (41.b)

All transformed functions can be expressed in terms of ω, c1, c2 and c3. Since c2 and c3 have been
written in terms of c1 above,  and  can be expressed in terms c1 as follows 

 (42.a)

 (42.b)

 (42.c)

 (42.d)

The mode shapes can be plotted for several values of ω by using Eq. (42.a)

4. Numerical analysis and discussions

 For numerical analysis, one end fixed and the other end simply supported Reddy-Bickford beam
shown in (Fig. 3) is considered in the paper. Natural frequencies of the beam, ωi (i = 1, 2, 3) are
calculated by using computer program prepared in Matlab by the authors. Natural frequencies are
found by determining values for which the determinant of the coefficient matrix is equal to zero.
There are various methods for calculating the roots of the frequency equation. One common used
and simple technique is the secant method in which a linear interpolation is employed. The
eigenvalues, the natural frequencies, are determined by a trial and error method based on
interpolation and the bisection approach. One such procedure consists of evaluating the determinant
for a range of frequency values, ωi. When there is a change of sign between successive evaluations,
there must be a root lying in this interval. The iterative computations are determined when the value
of the determinant changed sign due to a change of 10−4 in the value of ωi. 

The numerical results of this paper are obtained based on a uniform, rectangular Reddy-Bickford
beam with the following data as:

m = 0.50968 kN·sec2/m; EIx = 1.900×104 kN.m2 ; L = 3.0 m; β = 10, 11 and 12; Nr = 0.25 and
0.50; α = 1, 10, 100, 1000 and 100000.

The values of CS are calculated due to relative stiffness values (α) and are presented in (Table 3).

c3

A12 ω( )  A11 ω( )

A22 ω( )  A21 ω( )

A12 ω( )  A13 ω( )

A22 ω( )  A23 ω( )

-------------------------------------------– c1⋅=

W k( ) Φ k( ) M k( ), , Mh k( )

W k( ) W ω c1,( )=

Φ k( ) Φ ω c1,( )=

M k( ) M ω c1,( )=

Mh k( ) Mh ω c1,( )=

Table 3 The values of CS due to relative stiffness values (α)

CS 

(kN/m2)

1 2.345679 × 102

10 2.345679 × 103

100 2.345679 × 104

1000 2.345679 × 105

10000 2.345679 × 106

α
CS L

4⋅
EIx

---------------=
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Table 4 The first three natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil for β = 10
and N

r
 = 0.25

Method

β = 10 and N
r
 = 0.25

α = 1 α = 10 α = 100

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 128.8873 316.2505 525.0289 144.0624 322.7327 528.9589 249.3478 381.5452 566.7606

66 128.8861 316.2635 524.6847 144.0613 322.7455 528.6172 249.3472 381.5560 566.4421

68 128.8860 316.2652 524.6387 144.0612 322.7472 528.5715 249.3471 381.5573 566.3995

70 128.8860 316.2654 524.6334 144.0612 322.7473 528.5661 249.3471 381.5574 566.3942

72 128.8860 316.2654 524.6323 144.0612 322.7473 528.5650 249.3471 381.5575 566.3934

74 128.8860 316.2654 524.6319 144.0612 322.7473 528.5649 249.3471 381.5575 566.3931

Analytic Method 128.8860 316.2654 524.6319 144.0612 322.7473 528.5649 249.3471 381.5575 566.3931

Method
α = 1000 α = 10000

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 690.2011 748.1845 857.5669 2149.0490 2168.3664 2208.4958

66 690.2010 748.1900 857.3563 2149.0487 2168.3680 2208.4140

68 690.2009 748.1907 857.3282 2149.0486 2168.3682 2208.4031

70 690.2009 748.1908 857.3245 2149.0486 2168.3685 2208.4018

72 690.2009 748.1908 857.3242 2149.0486 2168.3685 2208.4017

74 690.2009 748.1908 857.3241 2149.0486 2168.3685 2208.4015

Analytic Method 690.2009 748.1908 857.3241 2149.0486 2168.3685 2208.4015

N

N
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Table  5 The first three natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil for β = 10
and N

r
 = 0.50

Method

β = 10 and N
r
 = 0.50

α = 1 α = 10 α = 100

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 66.7847 230.6031 412.7813 92.7483 239.4155 417.7684 223.6573 314.2294 464.7050

66 66.7846 230.6039 412.7252 92.7482 239.4163 417.7130 223.6572 314.2300 464.6552

68 66.7846 230.6040 412.7185 92.7482 239.4164 417.7063 223.6572 314.2301 464.6492

70 66.7846 230.6040 412.7177 92.7482 239.4164 417.7056 223.6572 314.2301 464.6486

72 66.7846 230.6040 412.7176 92.7482 239.4164 417.7055 223.6572 314.2301 464.6485

74 66.7846 230.6040 412.7176 92.7482 239.4164 417.7055 223.6572 314.2301 464.6485

Analytic Method 66.7846 230.6040 412.7176 92.7482 239.4164 417.7055 223.6572 314.2301 464.6485

Method
α = 1000 α = 10000

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) 1 (rad/sec) 2 (rad/sec) 3 (rad/sec)

DTM

64 681.3413 716.2007 793.8224 2146.2197 2157.5393 2184.5335

66 681.3412 716.2009 793.7933 2146.2196 2157.5394 2184.5229

68 681.3412 716.2010 793.7898 2146.2196 2157.5394 2184.5220

70 681.3412 716.2010 793.7894 2146.2196 2157.5394 2184.5216

72 681.3412 716.2010 793.7893 2146.2196 2157.5394 2184.5215

74 681.3412 716.2010 793.7893 2146.2196 2157.5394 2184.5215

Analytic Method 681.3412 716.2010 793.7893 2146.2196 2157.5394 2184.5215

N

N
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Table 6 The first three natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil for β = 11
and N

r
 = 0.25

Method

β = 11 and N
r
 = 0.25

α = 1 α = 10 α = 100

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 136.0371 332.7289 568.8002 150.4931 338.8960 572.4312 253.1176 395.3109 607.5345

66 135.9678 333.3298 553.8136 150.4302 339.4859 557.5408 253.0802 395.8169 593.5239

68 135.9585 333.4140 552.0528 150.4220 339.5684 555.7917 253.0753 395.8877 591.8821

70 135.9575 333.4248 551.8105 150.4209 339.5792 555.5512 253.0747 395.8969 591.6548

72 135.9574 333.4256 551.7777 150.4208 339.5803 555.5169 253.0746 395.8977 591.6241

74 135.9574 333.4258 551.7728 150.4208 339.5804 555.5129 253.0746 395.8978 591.6203

Analytic Method 135.9574 333.4258 551.7728 150.4208 339.5804 555.5129 253.0746 395.8978 591.6203

Method
α = 1000 α = 10000

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 691.5720 755.2973 885.0422 2149.4893 2170.8309 2219.3087

66 691.5583 755.5622 875.4856 2149.4849 2170.9230 2215.5151

68 691.5570 755.5992 874.3726 2149.4847 2170.9359 2215.0757

70 691.5565 755.6041 874.2198 2149.4844 2170.9360 2215.0155

72 691.5563 755.6046 874.1983 2149.4843 2170.9378 2215.0072

74 691.5563 755.6047 874.1954 2149.4843 2170.9379 2215.0059

Analytic Method 691.5563 755.6047 874.1954 2149.4843 2170.9379 2215.0059

N

N
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Table 7 The first three natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil for β = 11
and N

r
 = 0.50

Method

 β = 11 and N
r
 = 0.50

α = 1 α = 10 α = 100

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 79.8521 253.7198 453.0899 102.5592 261.7552 457.6380 227.9007 331.5661 500.8521

66 79.8402 253.8541 447.7198 102.5500 261.8853 452.3218 227.8965 331.6689 495.9993

68 79.8388 253.8710 447.0389 102.5489 261.9017 451.6479 227.8961 331.6818 495.3848

70 79.8387 253.8729 446.9390 102.5487 261.9036 451.5498 227.8960 331.6834 495.3046

72 79.8387 253.8732 446.9377 102.5487 261.9039 451.5490 227.8960 331.6835 495.2939

74 79.8387 253.8732 446.9376 102.5487 261.9039 451.5476 227.8960 331.6835 495.2934

Analytic Method 79.8387 253.8732 446.9376 102.5487 261.9039 451.5476 227.8960 331.6835 495.2934

Method
α = 1000 α = 10000

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 682.7459 723.9747 815.5097 2146.6661 2160.1324 2192.5074

66 682.7449 724.0218 815.5384 2146.6657 2160.1482 2191.4039

68 682.7445 724.0277 812.1634 2146.6655 2160.1500 2191.2649

70 682.7444 724.0284 812.1144 2146.6654 2160.1503 2191.2468

72 682.7444 724.0285 812.1084 2146.6654 2160.1504 2191.2446

74 682.7444 724.0285 812.1076 2146.6654 2160.1504 2191.2443

Analytic Method 682.7444 724.0285 812.1076 2146.6654 2160.1504 2191.2443

N

N



F
re
e
 v
ib
ra
tio
n
 o
f a
x
ia
lly
 lo
a
d
ed
 R
e
d
d
y
-B
ic
k
fo
rd
 b
e
a
m
 o
n
 e
la
stic
 so
il  

4
6
9

Table 8 The first three natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil for β = 12
and N

r
 = 0.25

Method

β = 12 and N
r
 = 0.25

α = 1 α = 10 α = 100

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 145.3485 331.1567 --- 158.9595 337.3542 --- 258.2411 393.9884 ---

66 142.7904 346.0904 --- 156.6240 352.0244 --- 256.8098 406.6221 ---

68 142.4192 348.8300 586.3335 156.2855 354.7178 589.8537 256.6037 408.9566 623.9780

70 142.3673 349.2433 578.4373 156.2385 355.1238 582.0098 256.5752 409.3071 616.5659

72 142.3608 349.3006 577.4016 156.2325 355.1807 580.9763 256.5713 409.3561 615.5944

74 142.3597 349.3064 577.2500 153.2318 355.1865 580.8255 256.5711 409.3625 615.4516

76 142.3597 349.3064 577.2495 156.2318 355.1865 580.8253 256.5711 409.3625 615.4513

Analytic Method 142.3597 349.3064 577.2495 156.2318 355.1865 580.8253 256.5711 409.3625 615.4513

Method
α = 1000 α = 10000

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 693.4636 754.6064 --- 2150.0987 2170.5905 ---

66 692.9319 761.2780 --- 2149.9273 2172.9190 ---

68 692.8556 762.5272 896.4090 2149.9027 2173.3570 2223.8651

70 692.8449 762.7167 891.2674 2149.8993 2173.4233 2221.7974

72 692.8436 762.7421 890.5940 2149.8988 2173.4327 2221.5270

74 692.8434 762.7461 890.4950 2149.8987 2173.4335 2221.4903

76 692.8434 762.7461 890.4947 2149.8987 2173.4335 2221.4902

Analytic Method 692.8434 762.7461 890.4947 2149.8987 2173.4335 2221.4902

N

N
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Table 9 The first three natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil for β = 12
and N

r
 = 0.50

Method

 β = 12 and N
r
 = 0.50

α = 1 α = 10 α = 100

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 91.7482 264.8089 --- 112.0703 272.5175 --- 232.3362 340.1266 ---

66 90.6419 272.9897 --- 111.1665 280.4736 --- 231.9015 346.5339 ---

68 90.4885 274.3650 485.0932 111.0415 281.8124 489.3439 231.8416 347.6184 529.9791

70 90.4686 274.5593 479.0814 111.0252 282.0015 483.3850 231.8338 347.7717 524.4820

72 90.4661 274.5844 478.2003 111.0232 282.0260 482.5117 231.8329 347.7916 523.6773

74 90.4658 274.5875 478.1989 111.0230 282.0289 482.5103 231.8328 347.7940 523.6760

76 90.4658 274.5879 478.1987 111.0230 282.0293 482.5101 231.8328 347.7943 523.6757

Analytic Method 90.4658 274.5879 478.1987 111.0230 282.0293 482.5101 231.8328 347.7943 523.6757

Method
α = 1000 α = 10000

ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec) ω1 (rad/sec) ω2 (rad/sec) ω3 (rad/sec)

DTM

64 684.2393 727.9350 --- 2147.1414 2161.4629 ---

66 684.0913 730.9508 --- 2147.0944 2162.4804 ---

68 684.0715 731.4655 833.7152 2147.0879 2162.6545 2199.3439

70 684.0689 731.5384 829.7893 2147.0871 2162.6792 2198.0258

72 684.0686 731.5486 829.7308 2147.0870 2162.6823 2197.8339

74 684.0685 731.5490 829.7236 2147.0869 2162.6827 2197.8336

76 684.0685 731.5491 829.7226 2147.0869 2162.6828 2197.8335

Analytic Method 684.0685 731.5491 829.7226 2147.0869 2162.6828 2197.8335

N

N
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The frequency values of one end fixed and the other end simply supported Reddy-Bickford beam

on elastic soil obtained for the first three modes by using DTM are presented in (Tables 4-9) being

compared with the frequency values obtained by using analytical method for the different values of

stiffness ration (β), relative stiffness (α) and nondimensionalized multiplication factor for the axial

compressive force (N
r
).

For the different values of β and N
r
, the variations of frequency factors (λ) due to relative

stiffness for the first three modes are presented in (Figs. 4-6) and for β = 12, N
r
 = 0.50 and α =

100, the mode shapes of one end fixed and the other end simply supported Reddy-Bickford beam

on elastic soil are presented in (Fig. 7).

Fig. 4 Variation of frequency factors due to relative stiffness for the first three modes. (a) For β = 10 and N
r
 =

0.25, (b) For β = 10 and N
r
 = 0.50 

Fig. 5 Variation of frequency factors due to relative stiffness for the first three modes. (a) For β = 11 and N
r
 =

0.25, (b) For β = 11 and N
r
 = 0.50
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As the axial compressive force acting to the beam is increased for the other variables (β and α)

are constant, the natural frequency values of one end fixed and the other simply supported Reddy-

Bickford beam resting on elastic soil are decreased. This result indicates that, the increasing for the

axial compressive force leads to reduction for Reddy-Bickford beam theory. This result is very

important for the effect of axial force.

 An increase is observed in natural frequency values of the first three modes of Reddy-Bickford

beam for the conditions of β and N
r
 ratio being constant and the values of the relative stiffness are

increased. This result indicates that, the increasing for the relative stiffness leads to augmentation in

natural frequency values for Reddy-Bickford beam theory.

Fig. 6 Variation of frequency factors due to relative stiffness for the first three modes. (a) For β = 12 and N
r
 =

0.25, (b) For β = 12 and N
r
 = 0.50

Fig. 7 The first three mode shapes of one end fixed and the other and simply supported Reddy-Bickford beam
on elastic soil, for β = 12, N

r
 = 0.50 and α = 100
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For the other variables (N
r
 and α) are constant, as the stiffness ratio is increased, an increase is

observed in natural frequency values of the first three modes of Reddy-Bickford beam. The

increasing for the stiffness ratio leads to augmentation in natural frequency values for Reddy-

Bickford beam theory.

In application of DTM, the natural frequency values of one end fixed and the other end simply

supported Reddy-Bickford beam are calculated by increasing series size . In (Tables 4-9),

convergences of the first three natural frequencies are introduced. Here, it is seen that, when the

series size is taken 76, the natural frequency values of the third mode can be appeared. Additionally,

here it is seen that higher modes appear when more terms are taken into account in DTM

applications. Thus, depending on the order of the required mode, one must try a few values for the

term number at the beginning of the calculations in order to find the adequate number of terms. 

5. Conclusions

 In this study, starting from the governing differential equations of motion in free vibration,

analytical solution and DTM algorithm are developed by using Reddy-Bickford beam theory and

the iterative-based computer programs are developed for solution of linear-homogeneous frequency

equation set relating to free vibration of one end fixed and the other end simply supported beam

resting on elastic soil. Variation in free vibration natural frequencies for the first three modes of the

beam is investigated for the different values of the relative stiffness, stiffness ratio and

nondimensionalized multiplication factor for the axial compressive force. The calculated natural

frequencies of Reddy-Bickford beam on elastic soil by using DTM are compared with the results of

the analytical solution. The essential steps of the DTM application includes transforming the

governing equations of motion into algebraic equations, solving the transformed equations and then

applying a process of inverse transformation to obtain any desired natural frequency. All the steps

of the DTM are very straightforward and the application of the DTM to both the equations of

motion and the boundary conditions seem to be very involved computationally. However, all the

algebraic calculations are finished quickly using symbolic computational software. Besides all these,

the analysis of the convergence of the results show that DTM solutions converge fast. When the

results of the DTM are compared with the results of analytical method, very good agreement is

observed. 
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