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Abstract. The paper deals with the problem related to the modelling of riveted assemblies for
crashworthiness analysis of full-scale complete aircraft structures. Comparisons between experiments and
standard FE computations on high-energy accidental situations onto aluminium riveted panels show that
macroscopic plastic strains are not sufficiently localised in the FE shells connected to rivet elements. The
main reason is related to the structural embrittlement caused by holes, which are currently not modelled.
Consequently, standard displacement FE models do not succeed in initialising and propagating the rupture
in sheet metal plates and along rivet rows as observed in the experiments. However, the literature survey
show that it is possible to formulate super-elements featuring defects that both give accurate singular
strain fields and are compatible with standard displacement finite elements. These super-elements can be
related to the displacement model of the hybrid-Trefftz principle of the finite element method, which is a
kind of domain decomposition method. A feature of hybrid-Trefftz finite elements is that they are mainly
used for elastic computations. It is thus proposed to investigate the possibility of formulating a hybrid
displacement finite element, including the effects of a hole, dedicated to crashworthiness analysis of full-
scale aeronautic structures.

Keywords: hybrid-displacement finite element; complex variable; structural mechanics; riveted
assemblies; crashworthiness.

1. Introduction

Finite element simulations of airframe High Velocity Impacts hardly succeed in representing the

failure of the structure when it occurs in riveted joints areas. Computational and experimental

results were compared for bird impacts onto aluminium riveted panels (Langrand et al. 2002). The

analysis shows that the macroscopic plastic strains are not sufficiently localised within the shell

finite elements (that do not model holes), to which beam type spring elements are connected, so as
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to initiate and propagate failure along rivet lines. The structural embrittlement, caused by holes, is

not taken into account in the standard shell finite element formulation that is used for structural

computations. Indeed, modelling the geometrical defects (holes) with a really fine mesh remains not

suitable for full-scale aircraft crashworthiness, as an aircraft can feature more than hundreds of

thousands of riveted assemblies.

However, the literature survey shows that there are some finite element procedures allowing to

build super-elements containing defects, so that the fine meshing of the considered defect is not

required anymore (Piltner 1985, Dhanasekar et al. 2006). All these finite elements pertain to the

category of hybrid-Trefftz finite elements. However, the major drawback of such elements was

shown to be their restriction to linear computations (Leconte et al. 2008a). Therefore, there is a

need for these formulations to be extended to crashworthiness analysis, i.e. high plastic strains and

strain rates. However, as reminded by Felippa, the extension of the so-called mixed and hybrid

principles is still under the scope of nowadays research (Felippa 2006). Nevertheless, several

authors have investigated the extension of such principles. In particular, Grimaldi et al. have given

some clues on how to take into account material non-linearity (Grimaldi et al. 2004), Liu et al.

focused on geometric non-linearity (Liu and To 1995) and Darilmaz et al. formulated a mass matrix

(Darilmaz and Kumbasar 2006).

The article proposes to focus on hybrid displacement variational principles that allow the building

of super-elements that are compatible with standard displacement FE, with emphasis on an existing

hybrid-Trefftz displacement element featuring a hole (Piltner 1985). Firstly, the building of the

element interpolation functions is reminded. Following the framework of Freitas (1999), it is then

demonstrated that Piltner’s hybrid-Trefftz element results from the constraining of a hybrid-mixed

principle to satisfy pointwise inner domain equations. Also, the extension of the perforated element

to non-linear problems is discussed. Finally, the mass matrix of the perforated element is formulated

as a first step to its extension.

2. Interpolation functions formulation

The first step to formulate a perforated element is to build interpolation functions that take into

account the hole’s presence. Complex variables, in particular Kolosov-Muskhelishvili formalism

(Muskhelishvili 1953), are generally used to this aim. Indeed, Kolosov-Muskhelischvili system of

equations allows solving plane elasticity problems in a systematic way. This formalism is particularly

suitable to solve the problem of an infinite elastic plate featuring a circular hole. To obtain the

expressions of displacement and stress fields, one has to start with the following statement 
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where d( ) means complex differentiation, the over bar represents complex conjugate, i is the

imaginary number, z is a complex variable, k is Muskhelishvili’s constant (  for plane

strain,  for plane stress), µ is Lamé’s coefficient,  and  are Kolosov-

Muskhelishvili potentials, u and v are the components of the displacement vector,  are

the components of the stress tensor,  are prescribed values of displacement and traction

vector, respectively.

In order to describe easily the free boundary condition along the hole, it is convenient to map the

circular hole onto a unit circle using conformal mapping

(2)

where f is a mapping function, ζ a complex variable and r0 the hole radius.

Then, Eq. (1) becomes 
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Then, the Kolosov-Muskhelishvili potential Φ is assumed as a Laurent series 
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The second term of Eq. (4) is determined within the whole domain, thanks to Eq. (5)
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Finally, the Kolosov-Muskhelishvili potential Ψ featuring the stress-free boundary condition along

the hole, which is the third term of Eq. (4), is determined. This is done by describing the boundary

of the unit circular hole with the following equation 
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(8)

Now that the expressions of  and  are known, expressions of u, v, σxx, σyy and τxy can

be identified by introducing  and  (with R =  and

θ = ). Indeed, the expressions of displacement and stress components can be obtained

by identifying the real and imaginary parts of Eq. (3).

Finally, the obtained expressions of displacement and stress components are

+

(9)

(10)

(11)

(12)

(13)

It can be deduced from these expressions that 

(14)

(15)

where T is the traction vector, c is the vector of parameters , N and P are matrices of special

shape functions.

3. A set of hybrid displacement variational principles

The second step of the formulation consists in building a variationnal principle to be coupled with
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the previously obtained interpolation functions. Specific variational principles are required when one

needs to build a super-element that is both able to feature the chosen interpolation functions and to

ensure displacement continuity with standard displacement based finite elements. It appears that

hybrid displacement variational principles are recognized as a domain decomposition method, and

allow the compatibility of the built hybrid displacement super-element with standard displacement

elements. Our interest is thus focused on these principles. Three kinds of hybrid displacement

principles can be enumerated: the hybrid-mixed displacement, the hybrid displacement and the

hybrid-Trefftz displacement principles. It is reminded that following the most common

nomenclature, a hybrid element is an element where one field is interpolated in the interior domain

and at least one field is interpolated on the interface (Felippa 2006), a hybrid-mixed element is an

element where at least two fields are interpolated in the interior domain and at least one field is

interpolated on the interface (Zienkiewicz et al. 2005, Freitas 1999), and a hybrid-Trefftz

formulation is a hybrid principle constrained (Freitas 1999) so that interior domain equations are a

priori satisfied (for further information on Trefftz method, see: Trefftz 1926, Kita and Kamiya 1995,

Zienkiewicz et al. 1977). The link between these three principles is demonstrated hereafter

following Freitas (1999), to help discuss on the extension of the formulation of an existing

perforated hybrid-Trefftz displacement element (Piltner 1985) to non-linear problems.

In order to build the three different kinds of hybrid displacement variational principles, the strong

form equations of elasto-statics are considered: 

Kinematic equation (in V): (16)

Constitutive equation (in V): (17)

Equilibrium equation (in V): (18)

Flux boundary condition (on St): (19)

Primary boundary condition (on Su): (20)

Where Su and St are the complementary boundaries on which the displacement and traction

boundary conditions apply, respectively, and V is an interior domain.

Eqs. (16), (17) can be recast so that:

(21)

(22)

where the superscript u or σ indicates the field to which the considered strain field is connected

through strong form equations.

Thanks to the recast Eqs. (21), (22), the weak statement of strain compatibility can be built

(23)

Moreover, the weak statements of Eqs. (18), (19) can be built respectively as

(24)

εij
1

2
--- ui j, uj i,+( )=

σij Eijklεkl=

σij j, bi+ 0=

σijnj T̂i=

ui ûi=

εij
u 1

2
--- ui j, uj i,+( )=

εij
σ

Eijkl

1–
σkl=

εij
u

εij
σ

–( )δσij Vd
V
∫ 0=

σij j, bi+( )δui Vd
V
∫ 0=



444 Nicolas Leconte, Bertrand Langrand and Eric Markiewicz 

(25)

Following Felippa (2006), it is possible to modify Eq. (24) by applying the divergence theorem to

its first term

(26)

For a symmetric tensor σij, Eq. (26) can be transformed to

(27)

With the help of Eq. (16), it can be deduced that

(28)

Replacing Eq. (28) into the opposite of Eq. (24) and using Eq. (20) leads to
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When summing Eqs. (25), (29) and Eq. (23), the first variation δΠ is obtained
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Eq. (30) can be recognized as the exact variation with respect to ui and σij of
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a boundary co-ordinate, which is measured from node p.

Assuming that the interpolation functions satisfy pointwise the strong forms Eqs. (16), (17),

Eq. (33) become

(34)

which is recognized as a hybrid displacement principle.

When using the divergence theorem (Leconte et al. 2008a) in Eq. (34), the following expression is

obtained

(35)

Assuming that the strong form Eq. (18) is satisfied pointwise and that bi = 0 (body forces are

neglected) in Eq. (35) leads to

(36)

which is recognized as a hybrid-Trefftz displacement principle.

The hybrid-Trefftz principle of Eq. (36), coupled with the interpolation functions of fields ui and

Ti obtained from Kolosov-Muskhelishvili analytical solution (Eqs. (14), (15)), leads to the

formulation of the stiffness matrix and load vector of Piltner’s perforated elastic element by taking

stationary conditions with respect to c and q (defined in Eqs. (14), (15), (33)). Indeed, the first

stationary condition provides a linear relationship between c and q. Then, parameter c is eliminated

thanks to this relationship, allowing the building of a system . For further details on the

formulation steps of hybrid-Trefftz displacement elements featuring a hole, see Leconte 2006,

Piltner 1985, Chen 1994, Wang et al. 2004 or Dhansekhar et al. 2006.

It is demonstrated here, in accordance with Freitas (1999) that hybrid-mixed displacement, hybrid

displacement and hybrid-Trefftz displacement principles are linked. It is shown that the hybrid-

Trefftz displacement principle results in the constraining of a hybrid-mixed displacement principle

to satisfy all inner domain strong form equations. This demonstration is valid in the particular case

of a hybrid-Trefftz element featuring a hole, which can be defined as the constraining of a hybrid or

hybrid-mixed formulation featuring a hole to satisfy all inner domain equations (by interpolation

functions properties enforcement). It is thus concluded that Piltner’s formulation is somehow the

restriction of a more general hybrid-mixed formulation featuring a hole. Moreover, it can be seen

from Eq. (36) that the hybrid-Trefftz perforated formulation of Piltner can be interpreted as the

direct coupling, along the boundary Si, of the perforated plate analytical solution (obtained thanks to

Kolosov-Muskhelishvili solution) with a finite element mesh. Indeed, each term in the hybrid-

Trefftz displacement functional appears to result from the integration of products of the analytical

fields only (Eq. (36)), and no possibility is left to modify the material law, contrary to hybrid and

hybrid-mixed principles (Eqs. (33), (34)). The solution obtained is thus restrained to the

characteristics of the analytical solution, and it is thus only suitable for elastic computations.

However, the choice of using a hybrid-Trefftz formulation is fully justified for elastic problems, as it

leads to higher computational efficiency due to one dimension reduction of the integration

(Eq. (36)).
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4. Discussion

The building of perforated interpolation functions and the properties of hybrid displacement

principles were highlighted. We can now discuss the possibility of building a perforated super-

element dedicated to non-linear (crashworthiness) computations. It concerns:

• the choice or the building of a variational principle,

• the building of interpolation functions taking into account the hole,

• the extension of material law (Eq. (17)) and strain-displacement (Eq. (16)) descriptions, and the

formulation of a mass matrix.

4.1 Choice or building of a variational principle

Concerning the choice or building of an adequate variational principle, the inter-element

displacement continuity still needs to be ensured. Thus the variational principle has to be chosen

among the “hybrid-displacement” kind. However, it should be noticed that depending on the hybrid-

displacement principle chosen, the integration may change. Indeed, there are new terms to integrate

when dealing with hybrid and hybrid-mixed principles in comparison with hybrid-Trefftz principles.

Hybrid-Trefftz principles only require integration on the perforated element boundary Si (1D and

continuous, Eq. (36)), while hybrid and hybrid-mixed principles also require inner domain

integration (2D domain featuring a hole, Eqs. (33), (34)). To integrate these new terms, it is thus

necessary to develop an integration that is able to evaluate the chosen interpolation functions on

perforated domains. The proposed strategy for the integration is the same as in XFEM, where the

quantities need to be evaluated in an element domain featuring a crack: the domain is divided into

squares and triangles, and the summation of integrals computed into each sub-domain is equal to

the evaluation of the integral in the domain. It is highlighted here that this is only a matter of

integral decomposition (to simplify its evaluation) and that no new degrees of freedom are added

with the sub-domain decomposition.

4.2 Building of interpolation functions taking into account the hole

The building of suitable shape functions depends on the hybrid-displacement principle chosen. (1)

If a hybrid-Trefftz principle is chosen, then the interpolation functions need to satisfy a priori the

inner domain non-linear equations. Thus a new analytical solution satisfying the non-linear inner

domain equations needs to be built. However, recent developments (Leconte and Di Paola 2007)

have shown that it is even troublesome to formulate this kind of solution for plane strain perfectly

plastic bodies in the same fashion as Kolosov-Muskhelishvili framework. Needless to say that

building this kind of solution for a perforated plate under impact is nearly impossible. Thus the

possibility of building a hybrid-Trefftz perforated element for non-linear computations is put aside.

This is in accordance with the comments of Freitas who indicates that the hybrid and hybrid-mixed

principles are easier to extend to non-linear problems than hybrid-Trefftz principles (Freitas 1999).

(2) If a hybrid or hybrid-mixed principle is used, then the chosen interpolation functions are not

required to satisfy pointwise all inner domain equations. There is thus more flexibility in the choice

of interpolation functions (Freitas 1999). However, in our case, the interpolation functions have to

take into account the hole’s presence and to be suitable whatever the kind of loading applied, so

that a perforated element can be built. Nevertheless, the only interpolation functions featuring these
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characteristics are the interpolation functions built from Kolosov-Muskhelishvili formalism, which is

dedicated to elasticity only. The only remaining possibility is thus the use of the existing

interpolation functions built on Kolosov-Muskhelishvili formalism. However, these interpolation

functions need to be modified, so that their “exact perforated plate elastic solution” characteristics

can be discarded. It is proposed to modify these functions thanks to the following comments.

It can be highlighted from Eqs. (14), (15) that the displacement and stress fields ui and σij are

function of the same vector of parameters cj, which features the unknowns αj, βj. The fact that the

displacement and stress fields are functions of the same parameter is due to Eq. (1), where it can be

noticed that the displacement and stress fields are function of the same holomorphic potentials Φ
and Ψ (that are functions of αj, βj). The fact that the displacement and stress fields are function of

the same parameter is thus a consequence of the use of Eq. (1), which is valid for elasticity only. It

is then concluded that if these interpolation functions are used for non-linear computations, there is

no specific reason why, in general, the linkage should be the same than in elasticity.

The following definition is thus proposed for the interpolation functions to be used in non-linear

computations 

(37)

(38)

with  a priori.

Moreover, one should notice that Eqs. (37), (38) can be recast this way 
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Indeed, as R, k, j are dimensionless, it can be concluded from Eqs. (9)-(13) that a parameter of

unknowns c is homogenous to N/m (SI units). Then ci/2µ is homogenous to a displacement, and ci/

r0 is homogenous to a stress. Then, it can be concluded that Eq. (37) is equivalent to a matrix of

dimensionless shape functions multiplied by a vector of displacement values (Eq. (39)). Similarly,

Eq. (38) is equivalent to a matrix of dimensionless interpolation functions multiplied by a vector of

stress values (Eq. (40)). Moreover, there is no particular linkage between Eqs. (39), (40), contrary to

Eqs. (14), (15). Eqs. (39)-(40) are thus falling into the standard finite element definition of shape
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the mesh cannot be performed with super-element featuring defects. As a consequence, one tries to

capture the behaviour of the structure by increasing the number of terms in the truncated series of

the interpolation functions of the perforated super-element (Zienkiewicz et al. 1977). Indeed, if a

series (Eqs. (9)-(13) truncated to  show satisfactory results in elasticity (Leconte et al.

2008b), increasing the number of terms could be necessary to “capture” the localisation of non-

linear fields around the hole of the super-element.

4.3 Extension of material law and strain-displacement descriptions and formulation of a
mass matrix

Several authors have given clues for the extension of material law and strain-displacement

descriptions and the formulation of a mass matrix. For the extension of mixed principles to

materially non-linear problems, Grimaldi et al. proposed a non-linear elastic law (Grimaldi et al.

2004), which can be expressed for plane strain

(41)

where E0 is Young’s modulus,  is the non-linear elastic modulus, whose variation is governed

by an equivalent measure of the principal strains ε1 and ε2.

If more complicated material laws need to be described then, the work of Horrigmoe et al.

(Horrigmoe and Bergan 1976) can be followed for the formulation of suitable incremental hybrid-

displacement principles.

For the extension of mixed principles to geometrically non-linear problems, Liu et al. (Liu and To

1995) proposed an extension of the kinematic description Eq. (16) (and gave hints to linearize

variational principle if required)

(42)

Finally, Darilmaz et al. (Darilmaz and Kumbasar 2006) proposed a way to formulate the mass

matrix of a hybrid stress element from the statement of the kinetic energy. All this clues can be

followed so that the long-term goal of formulating a hybrid-displacement element featuring a hole

for crashworthiness can be achieved.

4.4 Synthesis

To sum up, hybrid and hybrid-mixed displacement principles are shown to be the only variational

principles suitable to formulate a perforated finite element dedicated to non-linear (impact)
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computations. As these principles allow flexibility in the choice of the interpolation functions and

that the only known way to formulate interpolation functions taking into account the hole whatever

the kind of loading is to use Kolosov-Muskhelishvili formalism, the interpolation functions are

chosen according to Eqs. (37), (38). The chosen formulations for displacement and traction fields

take into account the hole and fall under the common definition of interpolation functions, and do

not feature any specific linkage between displacement and traction field. There is thus no specific

reason why the chosen interpolation shouldn’t be used for non-linear computations, as mixed or

hybrid principles have been proven to be successfully applicable in these cases. However, the

descriptions of material law, strain-displacement and equilibrium need to be adequately extended.

Finally, the choice of hybrid or hybrid-mixed principles instead of a hybrid-Trefftz leads to the need

to integrate quantities in the inner perforated domain. The integration method of X-FEM could be

used to perform such computations.

5. Mass matrix formulation

As the elastic energy stored in the element is known, it remains to determine the kinetic energy

stored in the system so that a system  can be constituted (Darilmaz and Kumbasar

2006).

The kinetic energy expression is the following one

(43)

where  denotes the velocity components and Iij is the inertia matrix.

From Eq. (32),  is defined as:

(44)

By substituting Eq. (44) into Eq. (43), we obtain

(45)

(46)

It is thus concluded that the element mass matrix is provided by the following expression

(47)

6. Conclusions

The paper focuses on the building of super-elements featuring holes, and in particular on a hybrid-

Trefftz displacement element featuring a hole that is restricted to elasticity. In order to formulate a

super-element featuring a hole for non-linear problems, it is proposed to switch from a hybrid-
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Trefftz displacement principle to a hybrid or hybrid-mixed displacement principle that does not

require the interpolation functions to satisfy a priori the governing equations and that allow the

extension of the constitutive and kinematic descriptions. A modification of the interpolation

functions built through Kolosov-Muskhelishvili formalism is then proposed, so that they fit into the

standard definition of interpolation functions to be used with mixed principles, while keeping the

ability to localise fields caused by the hole’s presence. Finally, the formulation of the mass matrix is

proposed as a first step to the formulation of an element featuring a hole for non-linear

crashworthiness problems.
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