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Abstract. When the temperature of a structure varies, there is a tendency to produce changes in the
shape of the structure. The resulting actions may be of considerable importance in the analysis of the
structures having non-prismatic members. Therefore, this study aimed to investigate the modeling, analysis
and behavior of the non-prismatic members subjected to temperature changes with the aid of finite
element modeling. The fixed-end moments and fixed-end forces of such members due to temperature
changes were computed through a comprehensive parametric study. It was demonstrated that the
conventional methods using frame elements can lead to significant errors, and the deviations can reach to
unacceptable levels for these types of structures. The design formulas and the dimensionless design
coefficients were proposed based on a comprehensive parametric study using two-dimensional plane-stress
finite element models. The fixed-end actions of the non-prismatic members having parabolic and straight
haunches due to temperature changes can be determined using the proposed approach without
necessitating a detailed finite element model solution. Additionally, the robust results of the finite element
analyses allowed examining the sources and magnitudes of the errors in the conventional analysis.
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1. Introduction

Bridges and buildings often contain non-prismatic members identified with a varying depth along

their span lengths. Commonly, linear or parabolic height variations are selected to lower the stresses

at the high bending moment points and to maintain the deflections within the acceptable limits.

Fig. 1 demonstrates a single span bridge having symmetrical parabolic haunches.

In 1958, Portland Cement Association issued the “Handbook of Frame Constants (PCA 1958)”

that contains a series of tables listing the carryover factors, stiffness factors, and fixed-end moment

coefficients for commonly used non-prismatic members, which were derived by using some crude

assumptions at the time to simplify the problem (El-Mezaini et al. 1991). It should be pointed out

that, the fixed-end actions due to temperature changes were not published in those PCA tables.

These factors have been used in the conventional methods since 1958 for the analyses of the non-

prismatic members by utilizing the moment distribution method and the slope deflection method

(Maugh 1964, Timoshenko and Young 1965, Tardaglione 1991, Hibbeler 2002). The results of the

finite element analyses performed by El-Mezaini et al. (1991) proved that the fixed-end moments,
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the bending stiffness and the carry-over factors for the non-prismatic members given in PCA (1958)

involve significant errors, especially for deep haunches.

The elastic modeling of the non-prismatic members evolved after the publication of the PCA

handbook of the frame constants (PCA 1958) and caught the attention of a few researchers in the

last four decades (Tena-Colunga 1996). Eisenberger (1985) derived the explicit stiffness matrices of

several common non-prismatic members from the flexibilities of the elements without considering

any shear deformations. Vanderbilt (1978) and Funk and Wang (1988) calculated the stiffness matrix

and the fixed-end forces by dividing the non-prismatic member into sub-elements. Medwadowski

(1984) solved the bending problem of the non-prismatic shear beams in terms of a displacement

function, which was based on the calculus of variations. Brown (1984) presented a method in which

the approximate interpolation functions consistent with the beam theory and the virtual work

principle were used to obtain the stiffness matrix for tapered beams. Eisenberger (1991) derived the

exact terms of the stiffness matrix for the non-prismatic members including shear deformations from

the flexibilities of the element. El Mezaini et al. (1991) investigated the linear elastic behavior of

the frames with non-prismatic members by using the isoparametric plane stress finite elements.

Friedman and Kosmatka (1992a) derived the exact axial, bending and torsion stiffness matrices for

an arbitrary non-uniform Bernoulli-Euler beam element, where the effects of the shear deformations

were neglected. Friedman and Kosmatka (1992b) developed the exact bending stiffness matrix for

an arbitrary non-uniform beam, which was based upon the Timoshenko’s beam theory in which the

shear deformation is accounted for. Al-Gahtani (1996) derived the stiffness matrix by using

differential equations and the boundary integral method, and determined the fixed-end forces for the

distributed and concentrated member loads. Tena-Calunga (1996) presented the stiffness matrices for

linearly tapered members while accounting shear deformations based on the traditional Bernoulli-

Euler beam theory. Ozay and Topcu (2000) proposed a general stiffness matrix for the non-prismatic

members, which is applicable to Bernoulli-Euler and Timoshenko beam theory. Balkaya (2001)

investigated the behavior of the non-prismatic members having T-sections and computed the fixed-

end moments, the bending stiffness coefficients and the carry-over factors from the three-

dimensional finite element models by considering the thrust effects. El Mezaini et al. (1991) and

Balkaya (2001) proved that the conventional method of analysis for the non-prismatic structures

leads to erroneous results and the deviations reach to unacceptable levels for these types of

structures with deep haunches. Other researchers have recently provided many test results about the

haunched beams (Shanmugam et al. 2002, Tanaka 2003, Lee et al. 2003, Hu et al. 2006, Pampanin

Fig. 1 A typical single span bridge having symmetrical parabolic haunches
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et al. 2006, Oh et al. 2007). Unfortunately, the behavior of the non-prismatic members subjected to

temperature changes was not considered in all these studies. To the writer’s knowledge, the effects

of the temperature changes on the non-prismatic members have not been investigated by using the

finite element analysis so far.

The purpose of this paper is to investigate the behavior of the non-prismatic beams having linear

and parabolic haunches due to uniform and non-uniform temperature changes. In this conjunction,

the present study carried out many finite element analyses for various non-prismatic beams having

different haunch lengths and haunch depths. To produce benchmark results for the finite element

analyses, four-node isoparametric plane-stress finite elements with two translational degrees of

freedom (d.o.f.) and one rotational d.o.f. per node were utilized for modeling various non-prismatic

beams. The fixed-end moments and the fixed end forces of the non-prismatic members having

symmetrical linear and parabolic height variations were computed under the action of temperature

changes. This paper advances to propose effective formulas and dimensionless design coefficients to

predict the bending moments and the axial forces with reasonable accuracy for the non-prismatic

members subjected to temperature changes.

2. The end-actions for the restrained prismatic members subjected to temperature

changes

A restrained member is the one whose ends are restrained against the translational and rotational

displacements, as in the case of a fixed-end beam. The end-actions for the restrained members

subjected to the temperature changes are the reactive actions (fixed-end forces and fixed-end

moments) developed at the ends. Many classical books on structural analysis (Weaver and Gere

1990, Tartaglione 1991, Hibbeler 2002) give the fixed-end actions of the prismatic members under

temperature changes. The fixed-end actions of a prismatic beam with a rectangular cross-section of

b × h and length L under uniform and non-uniform temperature changes are given in Fig. 2(a) and

Fig. 2(b), respectively. Eq. (1) is for a beam subjected to a uniform temperature increase of ΔT. The

resultant end-actions consist of only the axial compressive forces that are independent of the beam

length of the member. Eq. (2) is for a beam subjected to a linear temperature gradient (non-uniform

temperature changes) such that the top of the beam has a temperature change of ΔT2 while the

bottom has a change of ΔT1. If the temperature at the centroidal axis remains unchanged, the length

of the beam will not tend to change and the end-actions will consist of moments only. On the other

hand, Eq. (1) covers a nonzero change of temperature at the centroidal axis. The formulas given in

Eq. (1) and Eq. (2) can be derived by using the standard methods of mechanics of materials and

also by the flexibility method.

Fig. 2 Fixed-end actions of the prismatic beams subjected to (a) uniform temperature changes (b) linear
temperature gradient (non-uniform temperature changes)
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(1)

(2)

Where F is the fixed-end horizontal force at the ends of the prismatic member under uniform

temperature changes, M is the fixed-end moment at the ends of the prismatic member under non-

uniform temperature changes, E is the modulus of elasticity, A is the cross-sectional area, αT is the

coefficient of thermal expansion, L is the length of the member, ΔT is the uniform temperature

change (positive sign means increase in temperature), I is the moment of inertia, ΔT1 is the

temperature change at the bottom of the beam, ΔT2 is the temperature change at the top of the

beam, (ΔT1 − ΔT2) is the linear temperature gradient, and h is the mid-span depth of the beam. 

3. The end-actions for the restrained non-prismatic members subjected to tempera-

ture changes

The behavior of the non-prismatic members differs from that of prismatic ones in terms of the

variation of the cross-section along the member, the continuous change in the centroidal axis

associated with the non-prismatic section, the nonlinear stress distributions over the cross sections

and the arching action effect (El-Merzaini et al. 1991, Balkaya 2001). The geometric parameters of

the non-prismatic beams with symmetrical parabolic haunches are presented in Fig. 3; where, L is

the length of the beam, b is the width of the beam, h is the mid-span or minimum depth of the non-

prismatic element, α is the haunch length ratio (haunch length over the total length of the member),

R is the haunch depth ratio. 

Uniform temperature change produces axial force reactions only in the prismatic members as

shown in Fig. 2(a), whereas, in addition, bending moments also develops in the non-prismatic

members as shown in Fig. 4(a). It is obvious that the continuous change of the centroidal axis of the

non-prismatic members causes strong coupling between the bending moments and the axial forces.

FUT is the fixed-end horizontal force and MUT is the fixed-end moment for the non-prismatic

member under uniform temperature change. Furthermore, if a prismatic member is subjected to a

linear temperature gradient such that the top of the beam has a temperature change of ΔT2, while

the bottom has a change of ΔT1 and the temperature at the centroidal axis remains unchanged, only

the bending moments occur as shown in Fig. 2(b). However, the axial forces are developed in

addition to the bending moments (see Fig. 4(b)) at the ends of the non-prismatic members for the

FA FB– F E A× αT× TΔ×{ }= = =

MA MB– M
αT E× I× T1Δ T2Δ–( )×

h
---------------------------------------------------------= = =

Fig. 3 Geometric parameters of a typical non-prismatic beam with parabolic haunches
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same situation. FNUT is the fixed-end horizontal force and MNUT is the fixed-end moment at the ends

of the non-prismatic members under non-uniform temperature changes (ΔT1 – ΔT2). By using the

finite element models of the non-prismatic members, the FUT and MUT values were calculated under

the actions of ΔT = 1Cº temperature increase, and additionally the FNUT and MNUT values were

calculated under the actions of the linear temperature gradient of ΔT1 – ΔT2 = 1Cº. Fig. 5 shows the

application of the linear temperature gradient to non-prismatic members such that the top of the

beam has a temperature change of ΔT2 = −0.5, while the bottom has a temperature change of ΔT1 =

0.5 (ΔT1 – ΔT2 = 1Cº) and the temperature at the centroidal axis remains unchanged.

4. The assumptions for the development of the analytical model and the parametric

study

The non-prismatic beams with symmetric parabolic haunches and straight haunches of varying

haunch depths and haunch lengths were generated as the model structures of the analysis. The non-

prismatic beam members of rectangular cross section (b × h) and length L were assumed to be made

up of homogeneous, isotropic and linearly elastic material. The geometrical configuration given in

Fig. 3 was used for the analyses of the non-prismatic beams with varying haunch depths and

haunch lengths.

In all of the analyses, the beam lengths (L = 10 m), the beam widths (b = 0.5 m) and the mid-span

Fig. 4 Fixed-end forces and the fixed-end moments of the non-prismatic members under the conditions of; (a)
uniform temperature increase (ΔT), (b) linear temperature gradient (ΔT1 – ΔT2) 

Fig. 5 Application of the linear temperature gradient to the non-prismatic members such that ΔT2 = –0.5 and
ΔT1 = 0.5 (ΔT1 – ΔT2 = 1Cº) and the temperature at the centroidal axis remains unchanged
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depths (h = 1 m) of the non-prismatic elements were taken as constant while the other values were

changed to achieve the parameter values. Modulus of Elasticity (E) and the Poisson’s ratio (ν) were

taken as 3 × 107 kN/m2 and 0.2, respectively. The parametric studies were performed on the non-

prismatic beams having straight and parabolic haunches with varying haunch depths and haunch

lengths. The haunch length coefficients (α = 0.1, 0.2, 0.3, 0.4 and 0.5) and the haunch depth

coefficients (R = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,

1.9 and 2.0) were varied for both the parabolic and the straight haunched non-prismatic beams. The

combination of all these values resulted in 210 non-prismatic beams having parabolic and straight

haunches different from each other in geometry. The uniform and non-uniform temperature changes

were applied to each non-prismatic beam having parabolic and straight haunches. Therefore, in total,

420 finite element analyses were carried out to calculate the fixed-end actions of the non-prismatic

beams. The developed fixed-end moments and the fixed-end horizontal forces due to uniform and

non-uniform temperature changes were calculated by using the finite elements models. The results

were next used in developing the design equations and the estimator coefficients.

5. The finite element modeling of the non-prismatic members

The behavior of the non-prismatic members having symmetrical haunches was investigated by

developing two dimensional finite element models using SAP2000 (CSI 2007a). To produce

benchmark results for the finite element analyses, four-node shell elements with two translational

degrees of freedom (d.o.f.) and one rotational d.o.f. per node were utilized for the modeling of

various non-prismatic beams having different haunch depths and haunch lengths. Especially, the

modeling of the non-prismatic members with parabolic haunches is complicated by the fact that the

bottom face of these members has parabolic shape variations. There is no parabolic node generation

option for the most commonly used commercial software such as SAP2000 (CSI 2007a). For that

reason, a preprocessor was prepared to be able to generate the finite element models of the non-

prismatic members. The typical finite element models for the non-prismatic beams can be seen in

Figs. 5, 6 and 7. In order to satisfy the adequate accuracy for the results of the finite element

analyses, each non-prismatic beam was divided into 8000 elements.

Fig. 6 A typical exaggerated deflected shape of a 10 m long non-prismatic beam having parabolic haunches
with α = 0.2 and R = 2 due to ΔT = 1Cº uniform temperature increase
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The results obtained by the finite element analyses can be accepted as the real elastic values. The

actual behavior of the non-prismatic members can be accurately simulated with the finite element

model used in this study and El-Mezaini et al. (1991). The discontinuity of the centroidal axis, the

local stress concentrations, the nonlinear stress distributions and the existence of null areas that

reduces the member stiffness are taken into consideration in both of the models. Since the stress

concentrations, non-uniform stress distributions, the coupling between the axial forces and the

moments were not considered in the classical beam theory, the approximate results obtained from

the beam theory deviated from the real elastic values.

The fixed-end forces and the fixed-end moments of the non-prismatic members due to

temperature changes were obtained by using the finite element analyses. The computation of the

stress values or nodal forces is not sufficient for the calculation of the fixed-end actions. Despite the

robustness of the finite element modeling, the generation of the fixed-end moments and the fixed-

end forces from the nodal outputs of the detailed mesh still remains as an intricate task. The fixed-

end forces and the fixed-end moments due to temperature changes were calculated using the nodal

force outputs of the finite element analyses proposed by Bathe (1996) and applied as in Horrowitz

(1997), Balkaya et al. (2006), Yuksel (2008), and Yuksel and Arikan (2009). The postprocessor was

developed to sum the nodal point element forces at the predetermined sections in order to be able to

calculate the fixed-end actions.

6. General behavior of the non-prismatic members subjected to temperature changes

Variation of the cross-section parameters affects the location of the neutral axis, and the rigidity of

the section. Thus, being important in the arch formation, they respectively affect the location of the

arch length, arch height and the general behavior of the non-prismatic members subjected to

temperature changes. A typical exaggerated deflected shape of a 10 m long non-prismatic beam

having parabolic haunches with α = 0.2 and R = 2 under ΔT = 1Cº uniform temperature increase is

illustrated in Fig. 6. The non-prismatic beam deflected in the upward direction under the uniform

temperature increase of ΔT = 1Cº. The continuous change in the centroidal axis associated with the

non-prismatic sections causes a strong coupling between the bending moments and the axial forces.

In Fig. 7(a), the axial stress contours due to ΔT = 1Cº uniform temperature increase via the finite

element method are shown for the parabolic haunched beams (given b = 0.5 m, h = 1 m, L = 10 m,

α = 0.5 and R = 2). In Fig. 7(b), the same plot is shown for a straight haunched beam (given b =

Fig. 7 Axial stress contours for the non-prismatic beams (b = 0.5 m, h = 1 m, L = 10 m, α = 0.5 and R = 2)
having (a) parabolic haunches (b) straight haunches due to ΔT = 1Cº uniform temperature increase
(units are in kN/m2)
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0.5 m, h = 1 m, L = 10 m, α = 0.5 and R = 2). The comparison of Figs. 7(a) and 7(b) stated that

the distribution of the stresses differed in each non-prismatic member depending on the manner of

the variation of the cross-section. The stress distributions occurred so complex and nonlinear in the

non-prismatic members subjected to temperature changes, which require special attention.

7. Evaluation of the design forces obtained by the finite element model

Fixed-end actions (FUT, FNUT, MUT and MNUT) were obtained using the finite element models under

uniform and non-uniform temperature changes for different haunch depth ratios (R) and haunch

length ratios (α). The plots were presented for the variations in the fixed-end horizontal forces and

fixed-end moments as the functions of the haunch depth ratios (R = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.0) for different values of haunch

length ratios (α = 0.1, 0.2, 0.3, 0.4 and 0.5).

The results of the finite element analyses performed to investigate the fixed-end forces (FUT)

under the action of the uniform temperature increase of ΔT = 1Cº for the non-prismatic members

having parabolic haunches and straight haunches were presented in Fig. 8(a) and Fig. 8(b),

respectively. The results showed that for a given specific haunch depth ratio, as the haunch length

ratios increase, the increase in FUT occurs at an increasing rate. The relationship between the FUT

and the haunch depth ratio is nonlinear. For the haunch length ratios of α = 0.1 and 0.2, the FUT

increase for the non-prismatic members having parabolic and straight haunches up to R = 0.6 was

reached, then the curves became flat. For the non-prismatic members having haunch length ratios of

α = 0.3, 0.4 and 0.5, as R increases, the increase in the values of the FUT decreases with an

increasing rate. The uniform temperature changes influence the values of the FUT for the non-

prismatic members with straight haunches more than the values of those for the non-prismatic

members with parabolic haunches.

The typical variations of the fixed-end moments (MUT) of the non-prismatic members having

parabolic haunches and straight haunches are presented in Fig. 9(a) and Fig. 9(b), respectively.

From the finite element modeling, it is seen that the fixed-end moments occur at the ends of the

non-prismatic beams under the uniform temperature changes. Because of the arching action in the

non-prismatic members, the change of the centroidal axis produces fixed-end moments (MUT) in

Fig. 8 Variation of the horizontal reaction forces (FUT) of the non-prismatic members having (a) parabolic
haunches, (b) straight haunches; under the action of uniform temperature increase of ΔT = 1Cº 
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addition to fixed-end forces (FUT) under the actions of the uniform temperature increase when the

ends of the non-prismatic members are restrained. For a given specific haunch length ratio, as the

haunch depth ratio increases, the fixed-end moments increase linearly. The relationships between the

values of MUT and the haunch depth ratios are linear for parabolic and straight haunches. Also for a

given specific haunch depth ratio, the fixed-end moments (MUT) are almost same for different

haunch length ratios. These fixed-end moments cannot be obtained by applying the conventional

methods of analyses using frame elements. 

The variation of FNUT for the non-prismatic member having parabolic haunches and straight

haunches is presented in Fig. 10(a) and Fig. 10(b), respectively. From the finite element modeling, it

is seen that the fixed-end forces due to linear temperature gradient occur at the ends of the non-

prismatic beams. Because of the arching action, a significant amount of fixed-end forces came into

existence because of the linear temperature gradient. However, it should be pointed out that the

fixed-end forces (FNUT) due to linear temperature gradient were obtained as zero using the available

non-prismatic member formulations or available commercial structural analysis programs. The

parametric study showed that for a given specific haunch length ratio, the FNUT values increase

almost linearly with the increasing haunch depth ratio. However, as the haunch length ratios

increase, the increase in the FNUT values decreases with an increasing rate for a given specific

haunch depth ratio.

Fig. 9 Variation of the fixed-end moments (MUT) of the non-prismatic members having (a) parabolic
haunches, (b) straight haunches; under the action of uniform temperature increase of ΔT = 1Cº

Fig. 10 Variation of the fixed-end horizontal forces (FNUT) of the non-prismatic members having (a) parabolic
haunches, (b) straight haunches; under the action of linear temperature gradient of (ΔT1 – ΔT2 = 1Cº)
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Likewise, Fig. 11(a) and Fig. 11(b) illustrate the typical variation of the MNUT of the non-prismatic

member having parabolic haunches and straight haunches, respectively. In both cases, the greater the

haunch depth ratio the larger the increase in the fixed-end moments due to linear temperature

gradient occurred. The relationships between the MNUT values and the haunch depth ratios are non-

linear. MNUT values increase as the haunch depth ratios (R) and haunch length ratios (α) are

increased. The linear temperature gradient influences the values of FNUT and MNUT for the non-

prismatic members with straight haunches more than the values of those for the non-prismatic

members with parabolic haunches. 

8. Comparison of the finite element analyses’ results with the frame element analy-

ses’ results

The fixed-end actions of the non-prismatic beams under the actions of the temperature changes

were also computed from the structural analysis programs of SAP2000 (CSI 2007a) and ETABS

(CSI 2007b) using the non-prismatic frame element modules. The parametric study was performed

on the non-prismatic beams having straight and parabolic haunches for different haunch depth ratios

(R = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and

2.0) and haunch length ratios (α = 0.1, 0.2, 0.3, 0.4 and 0.5). In the frame element models, the

uniform and non-uniform temperature changes were applied to each non-prismatic beam having

parabolic and straight haunches. The uniform temperature changes were applied as a temperature

increase of ΔT = 1Cº. Non-uniform temperature changes were applied as a linear temperature

gradient of ΔT1 – ΔT2 = 1Cº such that the top of the beam had a temperature change of ΔT2 = −0.5

while the bottom was having a change of ΔT1 = 0.5 and the temperature at the centroidal axis

remained unchanged. The developed fixed-end moments and the fixed-end horizontal forces due to

uniform and non-uniform temperature changes were calculated using the frame element models. A

uniform temperature change produced only axial forces in the non-prismatic members during the

utilization of the frame element model as in the case of the prismatic members as shown in

Fig. 2(a). However, from the finite element models in the non-prismatic members, the development

of the bending moments was observed in addition to the axial forces. Furthermore, in the frame

element models, if a non-prismatic member was subjected to a linear temperature gradient, only the

Fig. 11 Variation of the fixed-end moments (MNUT) of the non-prismatic members having (a) parabolic
haunches, (b) straight haunches; under the action of linear temperature gradient of (ΔT1 – ΔT2 = 1Cº)
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bending moments would be developed similar to the case of the prismatic members as shown in

Fig. 2(b). However, the axial force was developed in addition to the bending moments (see

Fig. 4(b)) for the same situation of the non-prismatic members in the finite element models. 

It should be noted that, the results obtained for the non-prismatic frame elements having parabolic

and straight haunches by using SAP2000 (CSI 2007a) and ETABS (CSI 2007b) are the same.

Additionally, the fixed-end actions obtained for the non-prismatic members having parabolic

haunches and straight haunches by using the frame element models for given haunch depth ratios

(R) and haunch length ratios (α) are identical under the conditions of uniform and non-uniform

temperature changes. The results of the finite element analyses for non-prismatic members having

parabolic haunches are compared with the results of the non-prismatic frame element modulus of

SAP2000 (CSI 2007a) in Fig. 12 and Table 1. The results of the finite element analysis and the

frame element analysis were denoted as FEA and FRM, respectively. The deviation relative to the

finite element analysis results was calculated as in Eq. (3) and the results are presented in Table 1.

The FUT and MUT values given in Table 1 for the case of R = 0.0 and α = 0.0 corresponds to the

prismatic members. The results based on the finite element analyses for the FUT and MUT values

deviate from those obtained from the theoretical values by a maximum of 0.68% and 0.3%,

respectively thereby demonstrating the validity of the results of the finite element analyses.

Deviation relative to FEA = D% = (3)

From Table 1, it can be seen that there are large discrepancies between the results of the two

methods of analyses (FEA and FRM). The deviation in the fixed-end horizontal force values and

fixed-end moment values increase as the R and α values increase. As the relative length ratio (α)

and the depth ratio (R) increased in both of the frame element modeling and the finite element

modeling, the fixed-end horizontal forces increased depending to the uniform temperature increase,

thus, in this regard both models became in agreement with each other. However, the fixed-end

horizontal forces of the frame element modeling were determined much higher than the fixed-end

horizontal forces calculated by the finite element modeling for a given haunch length ratio of α and

FEA EFM–

FEA
---------------------------- 100×

Fig. 12 Comparison of the values of the horizontal reaction forces (FUT) of the non-prismatic members having
parabolic haunches which were obtained by the frame element models (FRM) and the finite element
analyses (FEA) under the action of uniform temperature increase ΔT = 1ºC
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a haunch depth ratio of R. In the frame element modeling, the fixed-end horizontal forces linearly

increased with the increasing haunch depth ratios; however, the fixed-end horizontal forces

increased non-linearly in the finite element modeling. Deviations for the FUT and MUT values

reached to unacceptable levels for the non-prismatic beams with long and deep haunches. The

arching action become more important as the haunch length and haunch depth is increased. 

9. Design formulas and the empirical design coefficients

Design equations and the design coefficients were developed based on the results of the extensive

parametric study with respect to the geometry of the non-prismatic members using two-dimensional

plane stress finite element models, which were presented in Section 7. The dimensionless fixed-end

action coefficients of C(FUT), C(FNUT), C(MUT) and C(MNUT) were derived by using the values of FUT,

FNUT, MUT and MNUT, respectively. The separate design equations were proposed to be able to

calculate the horizontal axial forces (Eq. (4)) and the bending moments (Eq. (5)) at the ends of the

non-prismatic beams having parabolic and straight haunches subjected to uniform temperature

changes. In addition, Eq. (6) and Eq. (7) were also proposed to calculate the horizontal axial forces

and the bending moments at the ends of the non-prismatic beams having parabolic and straight

Table 1 Deviation relative to FEA = D% = [(FEA − EFM) × FEA] × 100 for non-prismatic members having
parabolic haunches

 FUT MUT

R α α

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.0 0.68 0.68 0.68 0.68 0.68 0.3 0.3 0.3 0.3 0.3

0.1 0.47 0.03 −0.36 −0.73 −1.07 −1.2 −2.9 −4.7 −6.5 −8.4

0.2 0.09 −0.83 −1.67 −2.43 −3.15 −2.7 −5.9 −9.5 −13.5 −18.1

0.3 −0.37 −1.80 −3.13 −4.35 −5.45 −3.9 −8.5 −13.9 −20.4 −28.3

0.4 −0.85 −2.82 −4.67 −6.38 −7.91 −4.8 −10.5 −17.8 −27.0 −38.9

0.5 −1.34 −3.84 −6.24 −8.48 −10.46 −5.4 −12.0 −20.9 −33.0 −49.8

0.6 −1.81 −4.85 −7.81 −10.60 −13.08 −5.7 −12.9 −23.3 −38.3 −60.7

0.7 −2.28 −5.85 −9.36 −12.73 −15.74 −5.7 −13.3 −25.0 −42.8 −71.7

0.8 −2.72 −6.82 −10.89 −14.85 −18.42 −5.4 −13.2 −25.9 −46.5 −82.4

0.9 −3.15 −7.75 −12.38 −16.94 −21.10 −4.9 −12.6 −26.1 −49.3 −93.0

1.0 −3.55 −8.65 −13.83 −19.00 −23.78 −4.3 −11.8 −25.8 −51.3 −103.3

1.1 −3.94 −9.51 −15.24 −21.02 −26.45 −3.4 −10.5 −24.8 −52.5 −113.4

1.2 −4.30 −10.34 −16.61 −23.02 −29.10 −2.4 −9.0 −23.5 −53.0 −123.0

1.3 −4.65 −11.14 −17.94 −24.97 −31.74 −1.3 −7.2 −21.7 −52.8 −132.4

1.4 −4.98 −11.91 −19.23 −26.88 −34.35 −0.1 −5.3 −19.6 −52.1 −141.4

1.5 −5.30 −12.65 −20.48 −28.76 −36.95 1.2 −3.2 −17.3 −50.8 −150.1

1.6 −5.60 −13.37 −21.70 −30.60 −39.52 2.6 −1.0 −14.7 −49.2 −158.5

1.7 −5.90 −14.06 −22.87 −32.40 −42.07 4.0 1.2 −12.1 −47.1 −166.6

1.8 −6.17 −14.72 −24.02 −34.16 −44.59 5.4 3.5 −9.3 −44.8 −174.4

1.9 −6.44 −15.37 −25.13 −35.89 −47.10 6.9 5.8 −6.5 −42.3 −182.0

2.0 −6.70 −15.98 −26.22 −37.59 −49.58 8.4 8.1 −3.6 −39.5 −189.4
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haunches subjected to linear temperature gradients. The proposed method directly gives the design

values without performing any additional calculation.

The fixed-end actions at the ends of the non-prismatic beams subjected to uniform temperature

changes

(4)

(5)

where,

FUT : the fixed-end horizontal forces at the ends of the non-prismatic members under uniform

temperature changes (ΔT),

MUT : the fixed-end moments at the ends of the non-prismatic members under uniform

temperature changes (ΔT),

CFUT : the dimensionless coefficient for calculating the fixed-end forces of the non-prismatic

members under uniform temperature changes. The CFUT values are given in Table 2 for

the non-prismatic members having parabolic and straight haunches.

CMUT : the dimensionless coefficient for calculating the fixed-end moments of the non-prismatic

members under uniform temperature changes. The value of CMUT is determined as

FUT CFUT E× A× αT× TΔ×=

MUT CMUT h×( ) E× A× αT× TΔ×=

Table 2 Dimensionless coefficients (CFUT) necessary for calculating the fixed-end forces of the non-prismatic
members having parabolic and straight haunches due to uniform temperature changes 

 Parabolic haunch Straight haunch

R α α

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.0 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007 1.007

0.1 1.014 1.019 1.025 1.031 1.038 1.016 1.025 1.034 1.044 1.055

0.2 1.019 1.028 1.039 1.050 1.063 1.022 1.037 1.054 1.074 1.097

0.3 1.022 1.034 1.049 1.065 1.084 1.026 1.045 1.068 1.097 1.134

0.4 1.024 1.039 1.056 1.077 1.102 1.028 1.05 1.079 1.116 1.166

0.5 1.026 1.042 1.062 1.086 1.116 1.03 1.054 1.087 1.131 1.195

0.6 1.027 1.044 1.066 1.094 1.129 1.031 1.056 1.092 1.143 1.221

0.7 1.027 1.046 1.070 1.100 1.140 1.031 1.058 1.097 1.153 1.243

0.8 1.028 1.047 1.073 1.105 1.149 1.032 1.059 1.1 1.161 1.264

0.9 1.029 1.048 1.075 1.110 1.158 1.032 1.06 1.102 1.167 1.282

1.0 1.029 1.049 1.077 1.114 1.166 1.032 1.061 1.104 1.173 1.299

1.1 1.029 1.050 1.078 1.117 1.172 1.032 1.061 1.106 1.177 1.314

1.2 1.029 1.050 1.080 1.120 1.179 1.032 1.061 1.107 1.181 1.328

1.3 1.030 1.051 1.081 1.123 1.185 1.032 1.061 1.108 1.184 1.34

1.4 1.030 1.051 1.082 1.125 1.190 1.031 1.061 1.109 1.187 1.352

1.5 1.030 1.051 1.083 1.128 1.195 1.031 1.061 1.11 1.19 1.363

1.6 1.030 1.051 1.084 1.130 1.200 1.031 1.061 1.111 1.192 1.373

1.7 1.030 1.052 1.084 1.132 1.205 1.031 1.061 1.111 1.194 1.382

1.8 1.030 1.052 1.085 1.133 1.209 1.031 1.061 1.112 1.196 1.39

1.9 1.030 1.052 1.085 1.135 1.213 1.031 1.061 1.112 1.198 1.398

2.0 1.030 1.052 1.086 1.137 1.217 1.031 1.06 1.113 1.2 1.405



310 Behavior of symmetrically haunched non-prismatic members subjected to temperature changes

(0.534 × R) for non-prismatic beams having parabolic and straight haunches.

E : the modulus of elasticity;

A : the cross-sectional area at the mid-span of the non-prismatic members;

h : the mid-span or minimum depth of the non-prismatic members, h is 1.0 m for this

parametric study;

αT : the coefficient of thermal expansion;

ΔT : uniform temperature change;

The fixed-end actions at the ends of the non-prismatic members subjected to linear temperature

gradient (ΔT1 – ΔT2) 

(6)

(7)

where,

FNUT : the fixed-end horizontal forces at the ends of the non-prismatic members under

linear temperature gradient (ΔT1 – ΔT2),

FNUT

CFNUT

h
-------------

αT E× I× T1Δ T2Δ–( )×

h
---------------------------------------------------------×=

MNUT CMNUT

αT E× I× T
1

Δ T
2

Δ–( )×

h
---------------------------------------------------------×=

Table 3 Dimensionless coefficients (CFNUT) necessary for calculating the fixed-end forces of the non-prismatic
members having parabolic and straight haunches due to linear temperature gradient (ΔT1 – ΔT2 = 1Cº)

 Parabolic haunch Straight haunch

R α α

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.1 0.003 0.007 0.009 0.010 0.011 0.006 0.011 0.013 0.013 0.010

0.2 0.014 0.025 0.033 0.038 0.039 0.024 0.039 0.048 0.048 0.039

0.3 0.029 0.051 0.067 0.077 0.080 0.048 0.079 0.098 0.101 0.083

0.4 0.047 0.081 0.107 0.125 0.131 0.075 0.125 0.158 0.168 0.139

0.5 0.065 0.113 0.152 0.179 0.189 0.104 0.175 0.226 0.244 0.206

0.6 0.084 0.147 0.199 0.237 0.253 0.133 0.228 0.299 0.328 0.282

0.7 0.102 0.181 0.247 0.297 0.319 0.162 0.281 0.374 0.418 0.365

0.8 0.120 0.214 0.296 0.358 0.389 0.190 0.334 0.450 0.510 0.454

0.9 0.138 0.248 0.345 0.420 0.460 0.218 0.387 0.526 0.605 0.547

1.0 0.155 0.281 0.393 0.482 0.531 0.244 0.438 0.601 0.701 0.644

1.1 0.171 0.313 0.441 0.544 0.603 0.269 0.488 0.676 0.797 0.744

1.2 0.187 0.344 0.488 0.605 0.675 0.293 0.537 0.749 0.892 0.846

1.3 0.202 0.374 0.533 0.665 0.747 0.315 0.584 0.820 0.987 0.950

1.4 0.216 0.404 0.578 0.724 0.818 0.337 0.630 0.890 1.080 1.055

1.5 0.230 0.432 0.622 0.783 0.889 0.358 0.673 0.958 1.172 1.161

1.6 0.243 0.460 0.665 0.840 0.959 0.377 0.716 1.024 1.263 1.267

1.7 0.256 0.487 0.706 0.896 1.028 0.396 0.757 1.089 1.352 1.373

1.8 0.268 0.513 0.747 0.951 1.096 0.414 0.796 1.151 1.439 1.480

1.9 0.280 0.538 0.786 1.005 1.163 0.430 0.834 1.212 1.525 1.586

2.0 0.291 0.562 0.824 1.058 1.229 0.447 0.871 1.272 1.608 1.692
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MNUT : the fixed-end moments at the ends of the non-prismatic members subjected to linear

temperature gradient (ΔT1 – ΔT2),

CFNUT : the dimensionless coefficient for calculating the fixed-end forces of the non-

prismatic members subjected to linear temperature gradient. The values of CFNUT are

given in Table 3 for the non-prismatic members having parabolic and straight

haunches.

CMNUT : the dimensionless coefficient for calculating the fixed-end moments of the non-

prismatic members subjected to linear temperature gradient. The values of CMNUT

are given in Table 4 for the non-prismatic members having parabolic and straight

haunches. 

ΔT1 : the temperature change at the bottom of the beam,

ΔT2 : the temperature change at the top of the beam,

(ΔT1 – ΔT2) : the linear temperature gradient such that the top of the beam has a temperature

change of ΔT2 while the bottom has a change of ΔT1 and the temperature at the

centroidal axis remains unchanged.

I : the moment of inertia at the mid-span of the non-prismatic members;

Table 4 Dimensionless coefficients (CMNUT) necessary for calculating the fixed-end forces of the non-prismatic
members having parabolic and straight haunches due to linear temperature gradient (ΔT1 – ΔT2 = 1Cº)

 Parabolic haunch Straight haunch

R α α

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.0 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003

0.1 1.016 1.028 1.041 1.054 1.067 1.021 1.040 1.060 1.080 1.102

0.2 1.025 1.049 1.073 1.100 1.127 1.035 1.071 1.110 1.152 1.199

0.3 1.034 1.068 1.105 1.144 1.186 1.048 1.101 1.158 1.221 1.295

0.4 1.042 1.088 1.136 1.188 1.244 1.061 1.130 1.205 1.290 1.392

0.5 1.052 1.109 1.169 1.233 1.304 1.075 1.161 1.254 1.361 1.490

0.6 1.062 1.132 1.204 1.281 1.366 1.091 1.195 1.307 1.434 1.592

0.7 1.074 1.157 1.242 1.333 1.432 1.108 1.232 1.363 1.512 1.697

0.8 1.087 1.184 1.283 1.388 1.502 1.128 1.272 1.424 1.595 1.807

0.9 1.101 1.213 1.327 1.447 1.576 1.149 1.316 1.489 1.683 1.922

1.0 1.116 1.245 1.375 1.510 1.655 1.172 1.363 1.560 1.777 2.042

1.1 1.132 1.279 1.426 1.578 1.740 1.196 1.414 1.636 1.877 2.169

1.2 1.150 1.315 1.481 1.650 1.829 1.222 1.468 1.716 1.984 2.303

1.3 1.168 1.353 1.538 1.727 1.923 1.250 1.525 1.802 2.098 2.443

1.4 1.188 1.393 1.599 1.807 2.022 1.279 1.585 1.893 2.218 2.590

1.5 1.208 1.435 1.663 1.892 2.127 1.309 1.649 1.989 2.344 2.745

1.6 1.230 1.479 1.730 1.982 2.237 1.340 1.715 2.089 2.477 2.907

1.7 1.252 1.525 1.800 2.075 2.352 1.373 1.784 2.194 2.616 3.077

1.8 1.275 1.573 1.873 2.172 2.472 1.407 1.856 2.303 2.762 3.254

1.9 1.299 1.622 1.948 2.273 2.596 1.441 1.930 2.416 2.914 3.439

2.0 1.323 1.673 2.027 2.378 2.726 1.477 2.006 2.534 3.072 3.632
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The CFUT, CFNUT and CMNUT coefficients are the functions of the haunch depth ratios (R) and the

haunch length ratios (α). The design coefficients of CFUT, CFNUT and CMNUT were proposed for

different haunch depth ratios (R = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4,

1.5, 1.6, 1.7, 1.8, 1.9 and 2.0) and haunch length ratios (α = 0.1, 0.2, 0.3, 0.4 and 0.5). However, it

should be pointed out that the most important factor in determining the CMUT coefficient is the

haunch depth ratio (R). In this paper, all the design coefficients were obtained from the finite

element models and the linear interpolation can be done between the CFUT, CFNUT, CMNUT values.

The proposed Eqs. (4), (5), (6) and (7) can be used to obtain more rigorous estimates of the fixed-

end forces and the fixed-end moments at the ends of the non-prismatic members under temperature

changes without necessitating any finite element analysis. It is also worth mentioning that the

empirical coefficients are dimensionless, and the consistent units given in this paper should be used

for their applications.

10. Conclusions

In this paper, the linear elastic behavior of the non-prismatic members subjected to uniform and

non-uniform temperature changes was studied by using the plane stress finite elements. Since

concrete’s modulus of elasticity and poisson ratio are considered in the analyses, all of the results

obtained in this study are valid for the structures made of concrete. An extensive parametric study

was conducted and the fixed-end actions acting at the ends of the restrained non-prismatic members

having parabolic and linear height variations under temperature changes were computed employing

the finite element method. The uniform temperature changes were applied along the beam length.

The non-uniform temperature changes were applied as a linear temperature gradient such that the

top surface of the beam would have a temperature change of ΔT2, while the bottom surface would

have a change of ΔT1 and the temperature at the centroidal axis remains unchanged. The parametric

studies were performed for the for the non-prismatic members (b = 0.5 m, h = 1 m, L = 10 m)

having haunch depth ratios (R) varying in the range of 0.0 to 2.0 with an interval of 0.1 and for the

haunch length ratios of α = 0.1, 0.2, 0.3, 0.4 and 0.5 by using the realistic theoretical models. FUT,

FNUT, MUT and MNUT values were calculated for the non-prismatic members having various haunch

depth ratios (R) and haunch length ratios (α).

Based on the present finite element analyses’ results, the design formulas (Eqs. (4), (5), (6) and

(7)) and the design coefficients (Tables 2, 3 and 4) were proposed to be able to compute the design

forces at the ends of the non-prismatic members subjected to temperature changes without

necessitating any finite element analyses. The design coefficients were separately proposed as the

functions of the haunch depth ratios (R) and the haunch length ratios (α) for the uniform and the

non-uniform temperature changes. The formulation includes the shape of the cross-section of the

non-prismatic members, the discontinuity of the centroidal axis, the local stress concentrations, the

nonlinear stress distributions and the existence of the null areas that reduces the member stiffness.

The presented results are valid only for the non-prismatic members having symmetrical parabolic

and straight haunches (b = 0.5 m, h = 1 m, L = 10 m); however, the approach can be easily

expanded to cover the non-prismatic members having non-symmetrical haunches.

It is demonstrated that the fixed-end actions for the non-prismatic members under uniform and

non-uniform temperature changes are greatly influenced by the geometric parameters of the R and

α. Thus, they are important in the arch formation and affect in turn the location of the arch height,
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the axial thrust values and the bending moments. Under uniform temperature changes, considerable

amount of bending moments occurred in addition to the horizontal forces. The analytical approaches

and the traditional beam theories often need to introduce assumptions to simplify the problem and

yield an erroneous solution. Unless the detailed finite element modeling is utilized, the current

conventional methods using frame elements will become deficient to compute these forces due to

the progressive change of the centroidal axis associated with the non-prismatic sections. The writer

recommends using the finite element analysis results by considering the coupling effect completely

as well as the stress distributions rather than using the conventional method of analysis with large

deviations, as shown in this study.
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