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Abstract. The reduction of the dynamic response of an offshore structure subjected to wind-generated
random ocean waves is of extreme significance in the aspects of serviceability, fatigue life and safety of
the structure. In this study, a new neuro-control scheme is applied to the vibration control of a fixed
offshore platform under random wave loads to examine the applicability of the proposed method. It is
called the Lattice Probabilistic Neural Network (LPNN), as it utilizes lattice pattern of state vectors as the
training data of PNN. When control results of the LPNN are compared with those of the NN and PNN,
LPNN showed better performance in effectively suppressing the structural responses in a shorter
computational time. 
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1. Introduction

During the last three decades, various response control methods have been developed and applied

to suppress the vibration of various structures. One of them, the control of offshore structures using

tuned mass dampers (TMD), has been studied by Petersen (1980), Bang (1994), and Li et al.

(1999). Then, Wang et al. (2002) has proposed the improved optimal design method of TMD

maximizing vibration energy to control offshore structural response generated by the impulse load.

However, the ability of the TMD to control the response of a structure is limited, and the TMD can

generally be tuned to only one of the structure’s natural frequencies. 

Recently, Kim et al. (2001) proposed a neural network (NN) learning method using the cost

function and performed the structural vibration control for a three-DOF structure. Kim et al. (2004)
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applied NN to the nonlinear benchmark structural control problem using a sensitivity evaluation

scheme. NN control can be effectively realized without complicated equations being derived.

However, the NN takes a long time to be trained (Madan 2005). To avoid the time-consuming

problem in training the NN, Probabilistic Neural Network (PNN) was proposed for offshore

structure control by Kim et al. (2007). Even if PNN control has greatly decreased the learning time,

it still requires considerable computational efforts in calculating the control force at any instant of

time. It basically calculates all the Euclidean distances of invoked input from all the patterns saved

in the memory, and the most adjacent output pattern is selected as the control force output. If the

training pattern of PNN is increased for better resolution, calculation time also increases in

proportion to the number of patterns. 

In order to make up for the weak point of PNN, Kim et al. (2008) proposed the lattice probabilistic

neural network (LPNN) and applied it to a single degree of freedom system. Unlike the training

pattern of PNN, those of the proposed LPNN were uniformly distributed at the lattice point in state

space. Because of this, the position of the invoked input could be known and the output of the LPNN

could be simply calculated by using only the adjacent pattern. However, since LPNN was only

applied to a single degree of freedom system, its applicability still needs to be further verified.

In this study, the LPNN is applied for the vibration control of a real nonlinear fixed offshore

tower under random wave loads to examine its applicability. Then, control results of the LPNN are

compared with those of NN and PNN (Kim et al., 2007a) to verify the validity of the LPNN

control. Results proved that the vibrations of the fixed offshore tower under the random wave loads

are more effectively controlled by LPNN than NN and PNN within a shorter computational time.

2. Active control method using LPNN

2.1 Equation of motion

The equation of motion of a structural system with n degrees of freedom subjected to external

wave loads and the control forces can be expressed as (Kim 2005) 

(1)

where  are the displacement, the velocity and the acceleration of the structure,

respectively;  and  are the control forces and external wave loads; and  are

the mass, damping and stiffness matrices of the structure, respectively.  and  are location

matrices respectively, corresponding to the locations of the controllers and wave loads.

The wave force vector  can be expressed using Morison’s equation as follows (Morison et al.

1950) 

(2)

where  and  are the velocity and the acceleration vector of water particles in the horizontal

direction, respectively; A is the diagonal matrix indicating the area projected in the direction of the

flow;  is the diagonal matrix indicating the volume displaced by the structure;  and

; ρ is the mass density of water; KM is the empirical coefficient of inertia; and KD is

the empirical coefficient of drag. In this study, KM and KD are set to be 2.0 and 1.4, respectively. 
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As what can be observed from Eq. (2), the nonlinear fluid damping is introduced through the drag

term. Therefore, the equation of motion is nonlinear but it is linearized as follows 

 (3)

where  is the linearized coefficient;  is the standard deviation of the relative velocity

between the water particles and the structure at each node. In this paper, the values in each step are

obtained from the relative velocity up to the time of the previous step (Yun et al. 1985). 

The state-space variable, , is introduced as follows  

(4)

Eqs. (1) and (2) can be transformed into the state-space equation form as (Soong 1990) 

(5)

where  is a state vector; [A] is a system matrix and [M] is the sum of the mass and the added

mass matrices; [Lc] and [Le] are location matrices, respectively, corresponding to the locations of the

controllers and the wave loads in the state space; and  is the linearized wave force vector as

.

2.2 Simulation of irregular waves

For a linear wave theory, the horizontal component of wave particle velocity , for deep water

waves can be represented by 

(6)

Where ; φ is a random phase angle uniformly distributed between 0 and 2π; y is the

depth from sea level; g is the gravitational acceleration; N is the number of data; and  is the

one-sided wave spectrum

(7)

For the purpose of this study, we assume the offshore tower to be subjected to waves under fully

developed sea conditions, for which the one-sided wave spectrum suggested by Pierson-Moscowitz

is expressed by 
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(8)

where α = 0.0081, β = 1.25, , and  is the significant wave height. In

this paper, irregular waves are generated using this method.

2.3 Training pattern and control force

Unlike the training pattern of PNN introduced by Specht (1990), the training pattern of the LPNN

controller is composed of the lattice form of the control force  and the state vector  as

shown in Fig. 1, in which the state vector is the uniform interval between the maximum and the

minimum of the optional structural response. The control force is calculated by the product of the

control gain (G) and state vector (z) of the system, as follows

(9)

where G is the control gain; and the solution of Riccati equation (S) is obtained through the

following equation

(10)

where Q and R are referred to as the weighting matrices.

The process of calculating the LPNN controller will be described in Section 2.4.
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2.4 Lattice probabilistic neural network

Fig. 1 shows the structure of the LPNN with two inputs and a single output at the kth time step.

To reduce the output calculation time, the training patterns of the LPNN are uniformly distributed in

state space (see Fig. 1). By doing so, one can easily know the position of any given input in state

space, as follows

(11)

where uk and  are the displacement and velocity at the kth time step, respectively; j and k are the

uniform widths of the training pattern in state space; s and v are the sizes of the uk and  axes,

respectively; and position is the position of a given input in state space. Then, those adjacent

patterns can be directly identified by Eqs. (12)-(15). 

(12)

(13)

(14)

(15)

where the  operator means the smallest integer greater than the input value. Since the

adjacent pattern can be identified, there is no need to calculate the hamming distances of all

patterns. However, PNN calculates the distance of the input patterns (displacement and velocity of

the structure) from all training patterns since it cannot identify which ones are around the given

input pattern. The total number of operations for the hamming distance calculation in PNN is n × m,

where n is the number of patterns in each dimension and m is the degrees of freedom of state space;

whereas in LPNN, only 4 × m operations are needed. LPNN is very simple and fast in calculating

the control output.

The distance between the input pattern (response of structure) and the training pattern (lattice

type) for LPNN can be expressed as 

(16)

where X is the input pattern at the kth time step; and Y represents the four training patterns

( ) around the input pattern (see Fig. 1). The calculated distance in the pattern layer is

converted to a weight value, as follows

, (17)
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control forces ( ) corresponding to the training pattern, as follows

(18)

3. Numerical application 

A numerical analysis is carried out for a fixed offshore tower with a height of 184 m. This tower

is idealized as a seven discrete mass system as shown in Fig. 2. The structural properties of the

fl m,

fc k, wi fl m,⋅
i 1=

4
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Fig. 2 Fixed offshore tower and its model 

Table 1 Structural properties 

Level
Y

(m)
M

(ton) (ton) (ton)
A

1 -23 4,818 0 0 0 0

2 3 1,477 1,153 182 20,374 9,210

3 23 1,302 1,080 156 19,084 7,884

4 43 2,409 2,102 248 37,137 12,526

5 82 4,117 3,519 350 62,152 17,758

6 122 5,388 4,424 372 78,142 18,789

7 162 6,089 5,256 430 92,841 21,737

Stiffness (N/m)

4.E+08 -5.E+08 1.E+07 1.E+07 6.E+07 1.E+07 1.E+07 

-5.E+08 1.E+09 -8.E+08 -1.E+07 -2.E+07 2.E+07 -3.E+06 

1.E+07 -8.E+08 2.E+09 -8.E+08 -3.E+07 3.E+06 9.E+06 

1.E+07 -1.E+07 -8.E+08 1.E+09 -4.E+08 -2.E+07 8.E+06 

6.E+07 -2.E+07 -3.E+07 -4.E+08 1.E+09 -5.E+08 -4.E+06 

1.E+07 2.E+07 3.E+06 -2.E+07 -5.E+08 1.E+09 -6.E+08 

1.E+07 -3.E+06 9.E+06 8.E+06 -4.E+06 -6.E+08 3.E+09 
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tower are given in Table 1. Fig. 3 shows the block diagram of the LPNN controller for the fixed

offshore tower.

4. Control results

To use random ocean waves, time histories of simulated wave particle velocities and accelerations

are generated by Eqs. (6)-(7), as shown in Figs. 4-5. Controlled and uncontrolled responses of the

proposed algorithm under random ocean waves are shown in Fig. 6, wherein the decreasing rate of

the maximum displacement at the deck is 79.05%. The figure shows that the displacement and

velocity responses of the deck can be reduced considerably when the proposed method is used.

Fig. 7 shows the control forces corresponding to random ocean waves. 

Fig. 3 Tim Block diagram of LPNN controllers

Fig. 4 Time histories of simulated wave particle
velocity

Fig. 5 Time histories of simulated wave particle
acceleration
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From Fig. 6, it can be found that the LPNN algorithm can effectively control the offshore

structure under unknown random ocean waves. The results of the LPNN are compared with those of

the NN and PNN (Kim et al. 2007a) to verify the control performance. Controlled responses of the

offshore structure under random ocean waves using the NN and LPNN are shown in Fig. 8, while

Fig. 9 shows the responses derived from using the PNN and LPNN. Comparing the NN and LPNN,

the differences of the maximum displacement and velocity of both methods are 47.75% and

25.39%, respectively; while that between PNN and LPNN are 57.88% and 44.36%, respectively. 

The computational times for one step control force calculation are 3.468 × 10-3 sec in NN,

0.021 sec in PNN, and 0.375 × 10-3 sec in LPNN.

Fig. 6 Comparison between uncontrolled and controlled responses of the offshore structure

Fig. 7 Control force corresponding to wave load



Application of lattice probabilistic neural network for active response control 161

5. Conclusions

In this study, a simple and robust method using the LPNN is applied for the vibration control of a

fixed offshore platform under random wave loads to examine the applicability of LPNN. The

training pattern of the LPNN is prepared in lattice forms to save output calculation efforts. Due to

this type of training pattern, adjacent patterns for any given input can be directly identified, and the

output can be calculated from the weighted sum of the adjacent patterns only. In the numerical

simulation of the fixed offshore tower control, LPNN takes almost no time in output calculation.

And when the control results of the LPNN are compared with those of the NN and PNN to verify

Fig. 8 Controlled responses by the NN and the LPNN

Fig. 9 Controlled responses by the PNN and the LPNN
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the control performance, the LPNN controller was more effective than the other two methods in

decreasing the structural responses within a short computational time.
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