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Effects of stiffness on reflection and transmission of 
micropolar thermoelastic waves at the interface 

between an elastic and micropolar 
generalized thermoelastic solid
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Abstract. The reflection and transmission of micropolar thermoelastic plane waves at the interface
between an elastic solid and micropolar generalized thermoelastic solid is discussed. The interface
boundary conditions obtained contain interface stiffness (normal stiffness and transverse stiffness). The
expressions for the reflection and transmission coefficients which are the ratios of the amplitudes of
reflected and transmitted waves to the amplitude of incident waves are obtained for normal force stiffness,
transverse force stiffness and welded contact. Numerical calculations have been performed for amplitude
ratios of various reflected and transmitted waves. The variations of amplitude ratios with angle of incident
wave have been depicted graphically. It is found that the amplitude ratios of reflected and transmitted
waves are affected by the stiffness, micropolarity and thermal distribution of the media.

Keywords: micropolar generalized thermoelastic solid; normal force stiffness; transverse force stiffness;
welded contact; amplitude ratios.

1. Introduction

The exact natures of layers beneath the earth’s surface are unknown. One has, therefore, to

consider various appropriate models for the purpose of theoretical investigation. 

 The linear theory of elasticity is of paramount importance in the stress analysis of steel, which is

the commonest engineering structural material. To a lesser extent linear elasticity describes the

mechanical behavior of other common solid materials, e.g., concrete, wood and coal. However, the

theory does not apply to the behavior of many of the new synthetic material of the elastomer and

polymer type, e.g., polymethyl-methacrylate (Perspex), polyethylene, polyvinyl chloride. 

Theory of micropolar continua was proposed by Eringen and Suhubi (1964) and Eringen (1968)

to describe the continuum behavior of materials possessing microstructure. Basically, the difference
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between classical continuum theories and that of micropolar continuum theory is that the later

admits independent rotations of the materials substructure; that is, the local intrinsic rotations

(micro-rotations) which are taken to be kinematically independent of the linear displacements. It is

believed that such a theory is applicable in the treatment of granular and fibrous composite

materials.The granular nature of the material, microstructure becomes important in transmitting

waves of small wave length and/or high frequency because they may reveal new types of waves not

encountered in the classical theory of elasticity. Even when grain size is not visible to the eye if the

wave length is comparable with the average grain size, the motion of the grains must be taken into

account. In such cases, the local micromotion may in fact become dominant.

In recent years there has been much written on the subject of the theory of micropolar

thermoelasticity. A comprensive review of works on the subject was given by Eringen (1970, 1999)

and Nowacki (1966). Boschi and Iesan (1973) extended a generalized theory of micropolar

thermoelasticity that permits the transmission of heat as thermal waves at finite speed. 

Imperfect bonding considered in the present investigation is to mean that the stress components,

heat flux are continuous and the small displacement field, temperature are not. The small vector

difference in the displacement is assumed to depend linearly on the traction vector and in

temperature it is assumed to depend linearly on heat flux. Some applications of such a

generalization to electrodynamics problems are the study of composite media, crack detection and

seismic wave propagation.

Significant work has been done to describe the physical conditions on the interface by different

mechanical boundary conditions by different investigators. Notable among them are Jones and

whitter (1967), Murty (1975), Nayfeh and Nassar (1978), Schoenberg (1980), Rokhlin et al. (1980),

Rokhlin (1984), Pilarski and Rose (1988), Baik and Thompson (1984), Achenbach and coauthors

(1985, 1988) and Lavrentyev and Rokhlin (1998). 

Recently various authors have used the imperfect conditions at the interfaceto study various types

of problems (Fan and Sze 2001, Wang and Zhong 2003, Chen et al. 2004, Shodja et al. 2006,

Samanshariat and Eslami 2006).

Kumar and Singh (1996, 1998) discussed various problems on wave propagation in micropolar

generalized thermoelastic solid. Kumar (2000) discussed the wave propagation in a micropolar

viscoelastic generalized thermoelastic solid. Sharma et al. (2003) studied the reflection of

generalized thermoelastic waves from the boundary of a half-space. Kumar and Sharma (2005)

discussed the reflection of plane waves from the boundaries of a micropolar thermoelastic half-

space without energy dissipation. Othman et al. (2006) investigated the effect of rotation on the

reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation. Kumar

and Sarthi (2006) studied the reflection and refraction of thermoelastic plane waves using the

imperfect conditions at an interface between two thermoelastic media without energy dissipation.

Recently Kumar et al. (2006) investigated the reflection and transmission of micropolar elastic

waves at an imperfect boundary.

In the present investigation, the reflection and transmission at an imperfect interface between two

dissimilar homogeneous, isotropic micropolar elastic half-spaces when micropolar thermoelastic

waves (longitudinal displacement wave (LD-wave) or thermal wave (T-wave)or a set of coupled

transverse displacement and transverse microrotational waves (CD I and CD II- waves) are incident

at the interface. The amplitude ratios for various reflected and transmitted waves have been

calculated for an imperfect boundary and deduced for normal force stiffness (NS), transverse force

stiffness (TS) and welded contact (WC). The variations of amplitude ratios with angle of incidence
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are presented graphically to show the effect of stiffness, micropolarity and thermal distribution of

the media.

2. Basic equations 

Following Eringen (1968) and Lord and Shulman (1970), the constitutive relations and equations

of the motion in micropolar generalized thermoelastic solid in absence of body forces, body couples

and heat sources are given by

 (1)

 (2)

 (3)

 (4)

 (5)

where

- material constants, ρ - density, j - microinertia, T - temperature distribution, -

displacement vector, - microrotation vector, εklr - alternate tensor, K* - thermal conductivity, t -

time, C*- specific heat at constant strain, , αt - coefficient of linear thermal

expansion, εij - alternate tensor, tij - components of force stress tensor, mij - components of couple

stress tensor, T0 - reference temperature, τ0 - relaxation time, δij - Kronecker delta.

,

and

 (6)

3. Formulation and solution of the problem 

We consider homogeneous, isotropic elastic solid and micropolar generalized thermoelastic solid

half-spaces being in contact with each other at a plane surface which we designate as the plane

z = 0 of a rectangular cartesian co-ordinate system OXYZ. We consider micropolar thermoelastic

plane waves in xz-plane with wave front parallel to y-axis and all the field variables depend only on

x, z and t.
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For the two dimensional problem, the components of displacement and microrotation are given by

(7)

(8)

The components of displacement u1, u3 are related by the potential functions  and

 as

(9)

 (10)

Making use of Eqs. (7)-(10) in Eqs. (3)-(5) and assuming the time harmonic behavior as

exp , we obtain

 (11)

(12)

 (13)

 (14)

where

  (15)

and ω is the circular frequency.

Substituting the value of T from Eq. (11) in Eq. (14), we obtain 

(16)
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and

Eliminating φ2 from Eq. (12) and (13) we obtain following equations 

(19)

where  

, (20)

We assume solution of Eq. (16) as 

 (21)

where  satisfy

 (22)

 (23)

where

,  (24)

 (25)

The roots of the Eqs. (22)-(23) correspond to longitudinal displacement wave and thermal wave

propagating with velocities  (LD-wave) and  (T-wave). 

We assume solution of Eq. (19) as 
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The solution of Eqs. (27) and (28) correspond to two coupled transverse displacement and

microrotationl waves propagating with velocities  (CD I-wave) and  (CD II-wave). 

From Eq. (11), we obtain 

 

(31)

where

,  (32)

Eq. (12) can be written as 
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(35)

The stress-displacement relation in elastic medium is given by 

(36)

where symbols have their usual meaning.
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the potentials are found to satisfy the wave equation
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4. Reflection and transmission

We consider micropolar thermoelastic wave (longitudinal displacement wave (LD-wave) or

thermal wave (T-wave) or coupled transverse displacement and transverse microrotationl wave (CD

I-wave) or coupled transverse displacement and transverse microrotationl wave (CD II-wave)

propagating through the medium M which we designate as the region z > 0 and incident at the plane

z = 0 with its direction of propagating with angle θ0 normal to the surface. Corresponding to each

incident wave, we get waves in medium M as reflected LD-, T-and CD I- and CD II-waves and

transmitted P-wave and SV-wave in medium M'. We write all the variables without a prime in the

region z > 0 (medium M as micropolar genarlized thermoelastic half-space) and attach a prime to

denote the variables in the region z < 0 (medium M' as elastic half-space) as shown in Fig. (a).

5. Boundary conditions

We consider two bonded elastic and micropolar generalized thermoelastic half spaces as shown in

Fig. (a). If the bonding is imperfect and the size and spacing between the imperfections is much

smaller than the wave-length then at the interface, these can be described by using boundary

conditions at z = 0 (Lavrentyev and Rokhlin 1998) as

(42)

where Kn and Kt are normal force stiffness, transverse force stiffness coefficients of a unit layer

thickness and having dimension N/m3 each.

Appropriate potentials satisfying the boundary conditions (42) in medium M (micropolar
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Medium M:

(43)

(44)

(45)

(46)

Medium M': 

 (47)

 (48)

where 

 for incident longitudinal displacement wave (LD-wave)

for incident thermal wave (T-wave)

for incident coupled transverse displacement and transverse microrotationl wave

(CD I-wave)

for incident coupled transverse displacement and transverse microrotationl wave

(CD II-wave)

Snell’s law is given as 
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Making use of potentials given by Eqs. (43)-(48) in boundary conditions (42) and with the help of

Eqs. (1), (2), (7)-(10), (36), (37) and (41), we get a system of six non-homogeneous equations,

which can be written as 

(50)

where

, ,
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, ,
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For incident coupled transverse displacement and transverse micrororational wave (CD I-wave)

(54)

For incident coupled transverse displacement and transverse micrororational wave (CD II-wave):

(55)

where , are amplitude ratio’s of reflected longitudinal displacement wave (LD-wave)

making an angle θ1, thermal wave (T-wave) making angle θ2 and a set of coupled transverse

displacement and transverse microrotational waves (CD I- and CD II-waves) making an angle θ3, θ4
and  are amplitude ratio’s of transmitted P-wave making an angle  and SV-wave making

an angle .

6. Particular cases

CASE I: Normal Force Stiffness

correspond to the case of normal force stiffness and we obtain a system of six non-

homogeneous equations as given by Eq. (50) with the changed values of amn as

 

CASE II: Transverse Force Stiffness

  the boundary conditions reduces to the transverse force stiffness, obtaining a

system of six non-homogeneous equations as given by Eq. (50) with the modified values of amn as 
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7. Numerical results and discussion 

Following Bullen (1963), we have the following values of density and elastic parameter for crust

as elastic solid

Following Eringen (1984), Dhaiwal and Singh (1980), we have the following values of density

and micropolar thermoelastic parameters for Magnesium crystal as micropolar generalized

thermoelastic solid 

with non-dimensional interface parameters as  and .

A computer programme has been developed and amplitude ratios of various reflected and

transmitted waves has been computed. The variations of amplitude ratios for elastic solid/micropolar

generalized thermoelastic solid with normal force stiffness (NS), elastic solid/micropolar generalized

thermoelastic solid with transverse force stiffness (TS), elastic solid/generalized thermoelastic solid

with normal force stiffness(NS) and elastic solid/generalized thermoelastic solid with transverse

force stiffness (TS) have been shown by solid line, solid line with center symbol ‘square’, small

dashed line and small dashed line with center symbol ‘Triangle’ respectively. The variations of the

amplitude ratios  for elastic solid/micropolar generalized thermoelastic solid with

normal force stiffness [ET/MGT(NS)], elastic solid/micropolar generalized thermoelastic solid with

transverse force stiffness [ET/MGT(TS)], elastic solid/generalized thermoelastic solid with normal

force stiffness [ET/GT(NS)]and elastic solid/generalized thermoelastic solid with transverse force

stiffness [ET/GT(TS)] with angle of incidence θ0 of the incident longitudinal displacement wave

(LD-wave), incident thermal wave (T-wave), Incident coupled transverse displacement and

microrotationl wave (CD I-wave) and incident coupled transverse displacement and microrotationl

wave (CD II-wave) are shown graphically in Figs. 1-24.

(a) Incident longitudinal displacement wave (LD-wave):

The values of amplitude ratios  in case of ET/MGT (NS) show same trend of variations as in

case of ET/MGT (TS) with difference in their magnitude in the whole range. The variations of

amplitude ratios  in case of ET/GT (NS) are greater than ET/GT (TS) in the range ,

 and then have same variations in the remaining range. These variations are shown in

Fig. 1.

The values of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS) initially increase

sharply and then decrease in the whole range. The variations of amplitude ratios  in case of ET/

GT (NS) are greater than in case of ET/GT (TS) in the range ,  and then

have same behavior in the remaining range. These variations are shown in Fig. 2.
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Figs. 1-6 Variations of amplitude ratios with angle of incidence for LD-wave

Fig. 1 Fig. 2

Fig. 3 Fig. 4

Fig. 5 Fig. 6
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The variations of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS) increase

sharply in the range  and decrease sharply in the remaining range. The values of

amplitude ratios  in case of ET/GT (TS) are smaller than in case of ET/GT (NS) in the range

, greater in the range ,  and are close to each other in the

remaining range. These variations are shown in Fig. 3.

It is observed from Fig. 4 that the values of amplitude ratios  in case of ET/MGT (NS) and

ET/MGT (TS) increase sharply in the range  and decrease sharply in the remaining

range. The values of amplitude ratios  in case of ET/GT (TS) is greater than  in case of ET/

GT (TS) in the range  and have similar behavior in the remaining range.

The values of amplitude ratios  in case of ET/MGT (TS) are greater than in case of ET/MGT

(NS) in the range . The values of amplitude ratios  for ET/GT (NS) and ET/GT

(TS) have same trend of variation except in the range , . These

variations are shown in Fig. 5.

Fig. 6 shows that the values of amplitude ratios  for ET/MGT (NS), ET/MGT (TS), ET/GT

(NS) and ET/GT (TS) increase in the range  and then have an oscillatory behavior in

the remaining range. 

(b) Incident thermal wave (T-wave):

The values the amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS) increase in the

range  and decrease in the remaining range. The values of amplitude ratios  in case

of ET/GT (NS) are greater than in case of ET/GT (TS) in the range ,  and

are close to each other in the remaining range. These variations are shown in Fig. 7.

 Fig. 8 shows that the values of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS)

increase in the whole range. The variations of amplitude ratios  in case of ET/GT (NS) are

greater than in case of ET/GT (TS) in the range ,  and are very close to

each other in the remaining range. 

The values of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS) increase in the

range  and decrease in the remaining range with difference in their magnitudes. The

variations of amplitude ratios  in case of ET/GT (TS) are greater than ET/GT (NS) in the range

 and are smaller in the remaining range. These variations are shown in Fig. 9.

The variations of amplitude ratios  in case of ET/MGT (TS) are greater than in case of ET/

MGT (NS) in the range . The values of amplitude ratios  in case of ET/GT (NS)

are greater than ET/GT (TS) in the range  and are very close to each other in the

remaining range. These variations are shown in Fig. 10.

It is observed from the Fig. 11 that the values of amplitude ratios  in case of ET/MGT (NS)

and ET/MGT (TS) increase in the range  and decrease in the remaining range. The

values of amplitude ratios  in case of ET/GT (NS) and ET/GT (TS) have similar behavior in the

whole range except in the range .

The values of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS) have an

oscillatory behavior in the range . The variations of amplitude ratios  in case of ET/

GT (NS) and ET/GT (TS) increase in the range  and have an oscillatory behavior in the

remaining range. These variations are shown in Fig. 12.
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Figs. 7-12 Variations of amplitude ratios with angle of incidence for T-wave

Fig. 7 Fig. 8

Fig. 11 Fig. 12

Fig. 9 Fig. 10
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Figs. 13-18 Variations of amplitude ratios with angle of incidence for CD-I wave

Fig. 13 Fig. 14

Fig. 15 Fig. 16

Fig. 17 Fig. 18
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(c) Incident coupled transverse displacement and microrotationl wave (CD I-wave):

Fig. 13 shows that the values of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS)

initially increase and then decrease in the remaining range. The variations of amplitude ratios  in

case of ET/GT (NS) and ET/GT (TS) increase in the whole range except ,

.

The values of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS) initially increase

in the range  and then decrease in the remaining range. The values of amplitude ratios

 in case of ET/GT (NS) are greater than ET/GT (TS) in the whole range . These

variations are shown in Fig. 14.

The values of amplitude ratios  in case of ET/MGT (NS), ET/MGT (TS) ET/GT (NS) and ET/

GT (TS) initially increase with difference in their magnitudes and then decrease in the whole range.

The values of amplitude ratios  are demagnified by dividing the original values by 10 in case of

ET/GT (NS) and ET/GT (TS).These variations are shown in Fig. 15.

The values of amplitude ratios  shows same trend of variations as the values of amplitude

ratios  (incident CD I-wave) with difference in their magnitudes. These variations are shown in

Fig. 16. 

The values of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS) initially increase

and then decrease in the remaining range. The values of amplitude ratios  in case of ET/GT

(NS) are greater than ET/GT (TS) in the whole range . These variations are shown in

Fig. 17.

The values of amplitude ratios  in case of ET/MGT (NS), ET/MGT (TS) ET/GT (NS) and ET/

GT (TS) have an oscillatory behavior in the range  and then are very close to each

other (near zero value). These variations are shown in Fig. 18.

(d) Incident coupled transverse displacement and microrotationl wave (CD II-wave):

The values of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS) initially increase

in the range  and then decrease in the remaining range. The variations of amplitude

ratios  in case of ET/GT (TS) are greater than ET/GT (NS) in the whole . These

variations are shown in Fig. 19.

It is observed from Fig. 20 that the values of amplitude ratios  in case of ET/MGT (NS) and

ET/MGT (TS) initially increase in the range and then decrease in the remaining range. The values

of amplitude ratios  in case of ET/GT (NS) and ET/GT (TS) increase in the range .

,  and decrease in the remaining range.

The values of amplitude ratios  in case of ET/MGT (NS), ET/MGT (TS) ET/GT (NS) and ET/

GT (TS) initially increase and then decrease in the whole range. The values of amplitude ratios 

are demagnified by dividing the original values by 10 in case of ET/GT (NS) and ET/GT

(TS).These variations are shown in Fig. 21.

The values of amplitude ratios  shows same trend of variations as the values of amplitude

ratios  (incident CD II-wave) with difference in their magnitudes. These variations are shown in

Fig. 22.

Fig. 23 shows that the values of amplitude ratios  in case of ET/MGT (NS) and ET/MGT (TS)

initially increase in the range  and then decrease in the remaining range. The values of

amplitude ratios  in case of ET/GT (NS) and ET/GT (TS) increase in the range ,

,  and decrease in the remaining range. 
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Figs. 19-24 Variations of amplitude ratios with angle of incidence for CD-II wave

Fig. 19 Fig. 20

Fig. 21 Fig. 22

Fig. 23 Fig. 24
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GT (TS) have an oscillatory behavior in the range  and then show small variation near

zero value. These variations are shown in Fig. 24.

8. Conclusions

Numerical calculations in detail have been presented for the case of LD-wave, T-wave, CD I-

wave and CD II-wave incident at the interface of model considered. The theory of micropolar

generalized thermoelasticity given by Eringen (1968) and Lord and Shulman (1999) has been used

to solve the problem. The analytical expression for reflection and transmission coefficients of

various reflected and transmitted waves have been derived for normal force stiffness, transverse

force stiffness. It is observed that values of amplitude ratios in case of ET/MGT (NS), ET/MGT

(TS) for ,  and  have similar behavior with differences in magnitude for all values of θ0
in case of incident LD-wave and T-wave. It is also observed that values of amplitude ratios for ,

,  and  in case of incident CD I-wave and incident CD II-wave shows same trend of

variations with difference in their magnitudes. The model adopted in this paper is one of the more

realistic forms of the earth models and it may be of interest for experimental seismologists. This

problem, though theoretical, may be of some use in engineering, seismology and geophysics etc.
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