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Abstract. Power signals resulting from spindle and feed motor, present a rich content of physical
information, the appropriate analysis of which can lead to the clear identification of the nature of the tool
wear. The partial least-squares regression (PLSR) method has been established as the tool wear analysis
method for this purpose. Firstly, the results of the application of widely used techniques are given and
their limitations of prior methods are delineated. Secondly, the application of PLSR is proposed. The
singular value theory is used to noise reduction. According to grey relational degree analysis, sample
variable is filtered as part sample variable and all sample variables as independent variables for modelling,
and the tool wear is taken as dependent variable, thus PLSR model is built up through adapting to several
experimental data of tool wear in different milling process. Finally, the prediction value of tool wear is
compare with actual value, in order to test whether the model of the tool wear can adopt to new
measuring data on the independent variable. In the new different cutting process, milling tool wear was
predicted by the methods of PLSR and MLR (Multivariate Linear Regression) as well as BPNN (BP
Neural Network) at the same time. Experimental results show that the methods can meet the needs of the
engineering and PLSR is more suitable for monitoring tool wear.

Keywords: partial least-squares regression; singular value decomposition; tool wear; cutting experiment.

1. Introduction

Wear and wear condition of metal cutting tool directly effect the precision, efficiency and

economic benefit of machining process. The tool wear value obtained from the NC machine on time

is compensated in time, which not only improves the machining accuracy of NC machine, but also

provides the possibility to manage the tool life on time and to optimize the cutting parameters

automatically. So tool wear monitoring is becoming more and more significant. On-line tool wear

monitoring is an important topic to flexible manufacture system. In past decade, the research of

monitoring tool wear, especially, the occurrence, development and evolvement of the tool breakage,
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has been developed so much, and some significant conclusions are obtained (Kopac and Sali 2001,

Dragos 2003, Wang and Shao 2003). But the methods to monitor the tool wear have being

researched now. Some methods are applied to the certain specific aspect, the others are on the tested

phase.

At present, the methods to obtain the cutting tool wear include direct method and indirect method.

The former is usually to measure the cutting tool wear value directly by using the optimal sensor,

such as CCD pick-up head because touching the tool shape can’t be reached in the cutting process

(Mannan and Kassim 2000). But It is very difficult to measure its value on-line accurately in the

cutting process. The latter is to calculate the wear value by measuring the cutting vibration signals

Dimla 2002) or acoustic emission (AE) signals (Srinivasa 2002, Kamarthi and Kumara 2000). The

techniques are still difficult to utilize in the real cutting process because of the complexity of real-

time power source signals, it is not easy to extract the feature information of tool wear from

complex signals in time-domain,frequency-domain. In addition, many prior methods have been

developed for monitoring tool wear by measuring spindle and feed motor power(current) and have

proved that the tool wear is very sensitive to the change of the cutting power (Xu and Chen 2007,

Shao and Wang 2004, Xu 2003, Ertunc and Loparo 2001). In the cutting process, techniques for

tool wear monitoring are being used widely using the spindle and feed motor power. It does not

interference with cutting process by measurement equipment and the machine tool didn’t formed by

reworking process. However, generation mechanisms of the milling tool wear is more complex and

in the view of various factors that affect tool wear, it is difficult to build the exact practical analysis

model. Therefore,it is necessary to use experiment data to ensure the analysis and model. In some

general methods, an explicit model is built by using Multivariate Linear Regression analysis method

(Chen 2004, Xu and Wang 2006) or an implicit model is built by using Neural Network Palanisamy

and Rajendran 2007). MLR method for monitoring tool wear by measuring spindle and feed motor

power is to establish a mathematical model between milling cutting parameters and the

classification by fuzzy pattern using MLR analysis. Then tool wear model for spindle and feed

motor power is established. Tool wear value is predicted by tool wear model. Tool wear model is

adjusted using cutting parameters to make it have better dynamic, fuzzy, real-time characteristics.So

it will be effective to be used in the nonlinear predictive control systems. NN method for

monitoring tool wear by measuring spindle and feed motor power is to establish a Neural Network

model which contain milling cutting parameters and cutting power. Then tool wear network model

is trained by using several experimental data of tool wear in different cutting process, Tool wear

value is predicted by Network model. Several problems exist with this methods, namely : (1) It is

diffcult to establish a exact practical analysis model between milling cutting parameters and tool

wear. (2) The model based on spindle and feed motor power is used to recogniz tool wear,it can

also cause larger error in different cutting process by using MLR method because tool wear model

coefficients are fixed, that is, low-precision and limiting the applications. (3) The results of

prediction usually are unstable because it is diffcult to overcome multicollinearity of variables using

MLR method. (4) NN is hard to give a reasonable interpretation at factors influencing tool wear

model. 

PLSR statistical analysis module performs model construction and prediction of property using the

Partial Least Squares technique. It is based on linear transition from a large number of original

descriptors to a small number of orthogonal factors (latent variables) providing the optimal linear

model in terms of predictivity. The new method developed rapidly both in theory and application in

recent years. PLSR is a method to model by using sample data. It vill combined with basic function
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of regression modeling, principal component analysis and canonical correlation analysis. It is

superior to the traditional MLR model. It can model in independent variables existing multiply

linearity correlates, that is, the method has capabilies of auto-select independent variables. When

number of sample are smaller than number of variables, regression modeling is allowed, this is

helpful for the need of application. PLSR contains all former independent variables in finally model.

each of regression coefficients on independent variables will give easy reasonable interpretation in

regression model. Through extracting component, it is better the linear correlation between

extracting component and tool wear. When regression model is reverted, it can give a explicit

expression,this provides an available reference for the qualitative studying between milling cutting

parameters and tool wear. In this paper,milling tool wear is predicted by using PLSR analysis

algorithms. In the new different cutting process, milling tool wear was predicted by the methods of

PLSR and MLR as well as BPNN at the same time. Through the comparison and analysis of the

data of the experiment, conclusion is made. 

2. The PLSR essential theory 

Provided that there are two types of variables X and Y, X includes p components 
and Y includes q components . As a lot of practical surveying data are collected,

independent variable X 

is

Where dependent variable Y is

In order to obtain the statistical relationship of the variable X and Y, firstly, the principal

component t1 is drawn from independent variable X, t1 is the linear combination of .

Then, the principal component u1 is drawn from the dependent variable Y, u1 is the linear

combination of . The following conditions must be satisfied when PLSR method draws

the two principal components.

1. The variation information in t1 and u1 is drawn as much as possible.

2. Correlation degree of t1 and u1 can be reached to the maximum

These require that t1 and u1 can represent the original data X and Y as possible, and t1 can explain

u1 well. After drawing t1 and u1, the regression of X to t1 and Y to t1 must be applied individually.

If the accuracy of the regressive equation is satisfied, the arithmetic is concluded. Or else, the

second principal component is drawn through using the remainder information that X is explained

by t1 and Y is explained by t1. The regression and draw do not stop until the accuracy is obtained. If
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there are m principal components  at last, the regression Yk to  can be applied

by using PLSR method, then the regressive equation of Yk to  can be obtained, where

 (Wang 2005).

The main calculation process. Standardize the original data X and Y, and the standardized data can

be compared together whether they have different dimension and order of magnitude or not. The

equation is as follows

 (1)

Where xij is the value of the component xj of the variable Xj in i sample,  is the average

value of varible Xj,  is the standard deviation of the varible Xj and  is the value

after standardizing xij. The data matrix  can represent the standardized X,

accordingly,  can represent Y.

Drawing the principal components. t1 is the first component of E0, that is , where w1 is

defined the first axis of E0, and it is a unit vector, . u1 is the first component of F0, that is

, where c1 is defined the first axis of F0, and it is also a unit vector, . To Solute

the following optimized equation: , btained

 

To make  and the Lagrange arithmetic is applied, there is

(2)

 

(3)

From the Eqs. (2) and (3), it is known that w1 is the unit eigenvector of the max eigenvalue on

the matrix  and c1 is the unit eigenvector of the max eigenvalue on the matrix .

After w1 and c1 are obtained, the component  is obtained. The regressive equations of

E0 and F0 to t1 are solved

(4)

 (5)

Where E1 and F1 are residual matrix of the two equations, p1 and r1 are the regressive coefficient

vector, their expressions are
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According to E1 and F1, the regressive equations of E1 and F1 to t2 are as follows

 (6)

 (7)

Where E2 and F2 are residual matrix of the two equations, and p2 and r2 are the regressive

coefficient vector, their expression are

Up to step m, according to Em−1 and Fm−1, the unit eigenvector wm of the maximum eigenvalue on

the matrix  and the unit eigenvector cm of the maximum eigenvalue on the

matrix  can be found. 

 (8)

 (9)

To ascertain the number of variable tm and um. The number of variable tm, um usually are decided

by the predicted residual error sum of squares (PRESS), that is, on every step, PRESS is residual

square sum of estimated value and actual value on independent variable after a sample being lost. 

 (10)

If  is lower than the prearranged accuracy, the iteration step ends, or else,

tm and um are drawn continuously to calculate iteratively (Tang 2002).

 (11)

 (12)

Because  are all expressed by the linear combination of , the

regressive equation of  to  can be obtained.

 (13)

Where Fk is residual matrix. According to the reverse process of standard, Y* reverts to Y.

3. The basis theory of the singular value

Tool wear signals typically have very low signal-to-noise ratio because of the variety of noise

sources in the milling process. However, relatively little work has been done on tool wear signal
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enhancement and noise reduction. For monitoring tool wear, most monitoring systems either use the

noise signals directly without pre-processing, or simply lowpass filter the signal to average out the

corrupting noise sources while relatively easy to implement, these techniques have proven to be

generally ineffective at reducing the noise and tend to remove information necessary. To choose

more effective signal, the improved signal is proposed by using adaptive reduction algorithm. The

noise can exist in the collect data because there is much error in collecting initial data and much

system error of the machine tools itself as well. The noise reduction must be done before obtaining

the sample data. 

3.1 The singular value decomposition (SVD)

In the singular value theory, SVD of m × n dimension matrix X ( ) that any of

their rank is equal to r is shown as , where U and V respectively is  and

 dimensions orthogonal matrix, and , .  is a

diagonal matrix and its main diagonal element is all nonnegative value and arranges according to

following order: , where  is the singular value of the matrix

U, U and V respectively is the left and right singular matrix of X.

Supposed that the time series measured power signal is x(i),  a m × n dimensions

matrix is composed according to certain method.

 

(14)

Where Dm is known as the reconstruction attractor orbital matrix and it can be expressed exactly

as . D is a m × n dimension matrix which is composed by non-noise time series and W

is also a m × n dimensions matrix which is composed by noise time series. SVD of Dm is as follows

(15)

Where  is a singular value matrix and ,

0), . If the series signals are not of noise or its signal-to-

noise ratio is very high, ; if the series signals include noise or are of

the low signal-to-noise ratio, . In the calculating process, if

the m and n is not too small, the attractor orbital matrix Dm must be singular and the noise signals

W is a column with full rank matrix. According to SVD theory, k maximum singular value 
is selected and other singular values are equal to 0, then a matrix  is obtained in the reverse

process of the singular value decomposition. Therefore, the slick response signals  is an optimum

approximation matrix without noise and its rank is r.
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(16)

If the signal is slick and don’t include the noise, the first several values of {si} are big, and others

are equal to 0. If the signal includes the noise, {si} is not equal to 0. Because the energy of the

noise signal is wide on the frequency domain distribution, singular value is far less than the primary

signals. Therefore, the value after the point in the si~i curve that the drops and then becomes

smooth contributes to the noise. Make their singular value equal to 0, and a new matrix can be

obtained.

3.3 The phase space reconstruction

A method to reconstruct the phase space was proposed by Packard based on single variable time

series (Packard 1980). Supposed that the time series of a dimension observation is ,

, . m dimension phase space is constructed in terms of sampling with

equal space length and time delay τ, τ is integral times of Δt. m dimension phase space is defined

as follows

 (17)

Where m is embedding dimension, τ is time delay and , Δt is interval time between

sampling data and K is random integer. According to Tankens’ embedding theory, the method

obtaining condition vector Xi from time series xi is called time delay embedding method.

Embedding dimension m and time delay τ must be selected carefully in order to give really

expression to the dynamical characteristic from the measuring signal based on time delay

embedding method. Tankens’ embedding theory fails to show the principle of selecting the time

delay, but only consider that as long as embedding dimension fills with , reconstruction

phase space and the system phase space are differential coefficient homeomorphism, that is,

topology equivalence, their dynamical characteristic is completely similar in the qualitative sense.

When D dimension attractor can embed in  dimension phase space, the geometry

characteristic of the initial attractor can be reappeared, and the evolvement law of the system can be

researched.

When the phase space is reconstructed, the selection of time delay τ must assure that every

component is relative independence. That is, the relativity of the phase space ordinate is as less as

possible. Autocorrelation correlation function and mutual information method are very ordinary

methods in selecting the time delay. In this thesis mutual information method is used to select the

time delay because it is more advanced (Wang and Cao 2005, Erdogmus 2004). Mutual information

principle: supposed the states of the discrete variable X and Y are m and n, their entropy function is

defined as follows 

(18)

Where pi is probability which variable X appears in the i state. The combination entropy of the

variable X and Y is defined
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(19)

Where pij is probability that variable X appears in the i state and variable Y appears in the j state.

According to the definition of the entropy of X and Y and combination entropy of X and Y, the

mutual information can be derived as follows 

(20)

The total dependency of two variables can be measured by the mutual information function.

Because the mutual information value of the first minimum is less and the two-double inception is

differentiated more clearly, the dynamic characteristic of the attractor can be analyzed qualitatively

and qualitatively through reconstructing the phase space. It is a better method to select time delay.

Therefore, the optimal value is ascertained by using the average mutual information method, that is,

selecting time delay when the mutual information function reaches the minimum firstly as time

delay τ reconstructing the phase space. The relation between the mutual information and the time

delay τ is shown in Fig. 1. According to the mutual information method, the time delay of the time

series signals of the current is ascertained, that is, . 
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Fig. 1 The relation curve between mutual information
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Embedding dimension m is usually obtained from time series phase space reconstruction

according to formula . But such embedding dimension is not sure of minimum

embedding dimension. Although much large embedding dimension can reconstruct the phase space

such calculation easily increases other statistic complexity and is easily disturbed by outside noise.

So it is necessary to search a minimum embedding dimension to reconstruct completely the phase

space. Selection of common embedding dimension has system saturation method, false neighboring

method and Liangyue Cao method and so on. The method of selecting the embedding dimension

was proposed by Liangyue Cao in 1997. The method defined two parameters E1(m) and E2(m),

among them, the minimum embedding dimension m was decided by E1(m), and pointed out when

E1(m) tends to be steadily in along with the evolution, the corresponds value m is the minimum

embedding dimension. At the same time, E2(m) can not be used to obtain the minimum embedding

dimension, but it has a very good function, that is, it can be used to distinguishing random series or

chaotic series from time series. It is random series if E2(m) is equal to 1 or is near to 1 to any m.

Therefore, to real chaotic series, E2(m) can not be equal to 1 to any m. Generally, E2(m) tends to 1

to a real chaotic series. Thus, it is a direct and simple method to decide whether the time series has

fractal characteristic of the chaos series. In Fig. 2, the minimum embedding dimension extracted by

Cao method is nearly 10. Therefore, the singular value decomposition matrix is consisted of

10×1015 dimensions where . 

3.4 Revision and test 

Firstly, the time delay τ and embedding dimension m is obtained by using the mutual information

method and the minimum embedding dimension. Then the matrix  is composed of the time

series xi. rmax singular values of  are obtained by using the singular value decomposition.

According to the singular value contribution factor si~i curve k maximum singular values 

are selected and other singular values is equal to 0.  can be calculated and be transformed to

 using the reverse process, where series  includes less noise than series xi.

In order to obtain the ideal signals, every  must be added correspondently and be

averaged. Thus the signal  after noise reduction is the ideal signal. Fig. 3 illustrates the time
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P Xi( )
P Xi( )
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, ,
ui … ui n 1–+
, ,
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Fig. 2 The minimum calculation dimension of Gao method
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domain shape of spindle power signals in the tool wear initial stage (VB = 0.08) and the tool wear

normal stage (VB = 0.17). In both the initial stage and the normal stage, the time domain shape

distinction of power signals is not very obvious. The result shows that a lot of noise is contained in

signals.In order to outstanding information characteristics of the tool wear, original data is reducted

using noise reduction method of SVD, power signals of noise reduction are shown in Fig. 4.

4. The application

The monitoring system is composed of the measuring component, data collection, data processing

and output monitor. The collection parameters are the input voltage, current of the spindle and feed

motor. The collection instrument completes conversion of the signal and exchange of the data with

the upper computer according to MODUBUS RTU agreement on time-sharing. The input modal

vector consists of exchange of the data. The monitoring system of milling tool wear is shown in

Fig. 3 The spindle power signals 

 Fig. 4 The power signals of noise reduction 
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Fig. 5. The recognizing model of milling tool wear is shown in Fig. 6.

NC milling XKA714 is used as experiment equipment in the cutting process. The experimental

conditions include high-speed steel is as tool material, 45 steel is as workpiece material after being

hardened and tempered, the hardness is HRC38~50, and the tool wear value VB is recorded with

tool microscope. The sample data consists of the 96 sets of data which are collected on the different

cutting conditions. Using the above-mentioned theory of SVD and the method of noise reduction,

the noise were disposed from the power signals which data sample cycle is 1 second and the sample

number is equal to 1024. According to the mutual information method, the time delay of the time

series signals on the power is ascertained, that is, τ = 1. According to Gao method, the minimum

embedding dimension of the attractor orbit matrix is about to 10, thus the embedding dimension is

equal to 10 in this research, or m = 10. Therefore, the SVD matrix is consisted of 10 × 1015

dimensions where . 

As it is shown in Fig. 7 and Fig. 8, every curve is obtained in the same cutting condition (the

cutting speed is 8.792~21.98 m/min, the feed speed is 20~35 mm/ min, the cutting depth is 2~5

mm, the value of the tool wear respectively is 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, Table 1 is the

example of 8 sets of the samples). v is cutting speed, f is feed speed, ap is cutting depth, Ps is the

spindle power, Pf is the feed power and VB is the tool wear value. 

In the cutting process, the sample variable is screened firstly before the model is made because

there are many factors influenced on the tool wear. The grey relational degree analysis method is

applied on this thesis. Standardize the sample data, The method regards the tool wear serial as

primary-serial  and the other as sub-serials , then formula for computing relational

N m 1–( )τ– 1024 10 1–( ) 1 1015=×–=

X0 t( ){ } Xi t( ){ }

Fig. 5 The monitoring system of milling tool wear

Fig. 6 The recognizing model of milling tool wear 
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coefficient of primary-serial  and sub-serials  at time  is as follows

(21)

Where  represents absoluteness difference of two compared serials at k time, namely

, . Δmax represents the maximum of absoluteness difference in

all compared serials at every time. Δmin represents the minimum of absoluteness difference in all

compared serials at every time. ρ is distinguishing coefficientits range of values is from 0.1 to 0.5.

 (22)

Eq. (22) is relational degree of primary-serial  and sub- serials , and the greater

r0i is, the closer serials  and  are. When ,
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---------------------------------=
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t( ){ } XPs
t( ){ }, , ,

Fig. 7  The sample data of spindle  power                       Fig. 8  The sample data of feed power  

Table 1 Example of tool wear sample

No. v/m·min−1 f /mm·min−1 ap/mm Ps /w Pf /w VB/mm

1 8.792 20 3 860 165 0.05

2 13.19 35 3 1036 186 0.1

3 8.792 25 5 980 183 0.15

4 11.43 35 3 1145 185 0.2

5 15.386 35 3 1233 203 0.25

6 8.792 20 3 1057 180 0.3

7 9.671 35 3 1195 207 0.35

8 11.43 35 3 1208 218 0.4
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 and  are taken into Eq. (21) and Eq. (22), Table 2 shows the relational degree of

sample variable series. 

From Table 2, it is found that the relational degree between the tool wear and feed speed are

lower than other sample variables. It is very important to test and compensate the tool wear on-line

if the effect of the feed speed in the modelling process by using PLSRA method is ignored because

the feed speed can be adjusted in the actual cutting process in order to delete the effect of the

variable of the feed speed on testing. Because the feed speed usually is adjusted on the actual

machine process, the variation feed speed can’t affect the test when it is ignored. According to this

analysis, all sample variable  and part variable  are taken as

independent variable and VB as the dependent variable. Thus the parameters of PLSR model can be

obtained and researched. Then according to PLSR calculation step Eqs. (1)~(13) as well as the

modeling sample data, and reference dropped trend of PRESS statistic and error statistic, the

regressive model can be built when the latent variable is selected. 

Fig. 9 is static drop trend on part sample error and Fig. 10 is static drop trend on all sample

variable error. From Fig. 9 and Fig. 10, the error of the PRESS statistic and the error statistic are

close to 0 when the latent variable is 3, thus the regressive model is set up by using them. After the

relative parameter has been selected, the standard regressive coefficient of the dependent variable

effected by the independent variable can be got as Table 3.

The regressive mathematic model of tool wear based on all sample variables and part variable can

be obtained by using the reversal calculation on standard regressive coefficient according to Table 3.

XPf
t( ){ } XVB t( ){ }

v f ap Ps Pf, , , ,( ) v ap Ps Pf, , ,( )

Table 2 Relational degree sort of sample variable series

Series

Relational degree 0.6888 0.5981 0.7001 0.8119 0.8079

Sort 4 5 3 1 2

Xv t( ){ } Xf t( ){ } Xap
t( ){ } XPs

t( ){ } XPf
t( ){ }

Fig. 9 Trend diagram of part variable sample error Fig. 10 Trend diagram of all sample variable error

Table 3 Standard regression coefficient of independent variable effected by dependent

Independent variable v f ap Ps Pf

Dependent variable VB1 part −0.5361 — −0.1485 0.6031 0.5068

Dependent variable VB2 all −0.3369 −0.4287 −0.2142 0.4714 0.7414
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 (23)

 (24)

From the static data of the Table 4, the fitting effect of the regressive model of the tool wear can

be shown. It is also shown the drop of the sum of model error squares and the drop of PRESS

statistic in the state of being standardizing the data, at the same time, the decision coefficient of the

fitting the relative model is obtained, from which it can be seen that the fitting degree of the

regression model is better when 3 latent variable are drawn out. 

5. The verifying data and on-line forecast

5.1 The verifying of the model data

The model sample data was verified using Eq. (23) and Eq. (24) and tool wear VB' also can be

obtained. Fig. 11 was the verify result of part sample variable, and Fig. 12 was the verify result of

all sample variable. Many calculation value are close to the actual value from Fig. 11 and Fig. 12 as

well as Table 5. By comparison with the tool wear, we are told, the fitting effect of all sample

variables calculation value  are superior to the calculation value  of the part sample

variable whenever the mean point of view or absolute error are taken into account. It shows that the

feed speed and other cutting parameters are strongly correlated with the tool wear. The estimated

value of the regressive coefficient will be changed a lot and will affect the value of the estimated

tool wear, when the feed speed is ignored. 

VB1
′ 0.758926– 0.029223v– 0.024757ap– 0.000586Ps 0.003776Pf+ +=

VB2
′ 0.765035– 018363v 0.008942f–– 0.03571ap– 0.000458Ps 0.005524Pf+ +=

VB1
′ VB1

′

Table 4 Error square sum and decision coefficient after data standardization

The num of the latent variable 
 Error square sum Decision coefficient R2 PRESS statistic

1 32.3420 32.3420 0.6596 0.6596 33.6155 34.1398

2 12.0234 5.4425 0.8734 0.9427 12.7070 5.9432

3 11.4870 3.4861 0.8791 0.9633 11.9831 3.7856

VB1
′ VB2

′ VB1
′ VB2

′ VB1
′ VB2

′

Fig. 11 Verify result of part sample variable Fig. 12 Verify result of all sample variable
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5.2 On-line forecast

In order to test whether the model of the tool wear can adopt to new measuring data on the

independent variable, the spindle power and feed power are measured in the new different cutting

process (the cutting speed is 6.594~26.376 m/min, the feed speed is 10~35 mm/min the cutting depth

is 2~5 mm, the value of the tool wear respectively is 0.075, 0.125, 0.175, 0.225, 0.275, 0.325, 0.375,

0.425, Table 6 is the example of the 8 sets of sample). Thus, the tool wear that can be estimated on-

line in the actual cutting process is forecasted. The forecast result of calculation value VB' compares

with measuring value VB (Fig. 13 and Fig. 14). It can be seen from Fig. 13 and Fig. 14 that the

better forecast value is obtained through calculating the mathematical model of the tool wear. 

Table 5 The absolute difference of tool wear in different sample variable

Measuring value VB 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Calculation value of part 
sample variable 

Mean 0.074 0.106 0.140 0.226 0.263 0.299 0.331 0.364

Absolute difference 0.085 0.064 0.07 0.066 0.061 0.091 0.108 0.134

Calculation value of all 
sample variable 

Mean 0.068 0.103 0.136 0.211 0.254 0.302 0.341 0.387

Absolute difference 0.046 0.021 0.052 0.023 0.033 0.034 0.048 0.064

VB1
′

VB2
′

Fig. 13 Forecast result of part sample variable  Fig. 14 Forecast result of all sample variable

Table 6 On-line forecast sample example of tool wear

No. v/m·min−1 f /mm·min−1 ap/mm Ps /w Pf /w VB/mm

1 8.792 20 3 875 166 0.075

2 13.19 35 3 1031 189 0.125

3 9.671 35 3 1032 182 0.175

4 11.43 35 3 1116 190 0.225

5 15.386 35 3 1220 210 0.275

6 8.792 35 3 1171 193 0.325

7 9.671 35 3 1198 206 0.375

8 11.43 35 3 1286 214 0.425
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5.3 Comparison with other methods 

In the new different cutting process, milling tool wear was predicted by the methods of PLSR and

MLR (Multivariate Linear Regression) as well as BPNN (BP Neural Network) at the same time.

The results of the prediction and experiment were shown in Fig. 15 and Table 7. Through the

comparison and analysis of the data of the experiment, to PLSR method, the maximal absolute error

of the results of the prediction and experiment is within 0.035mm, the average error is within

0.028mm, which can meet the needs of the engineering; to MLR method, the maximal absolute

error of the results of the prediction and experiment is within 0.053mm, the average error is within

0.047mm, which can meet the needs of the engineering. But we found the results of the prediction

on the method are very unstable in a lot of the experiment. Problem may arise for different reasons,

but multicollinearity of variables using MLR method can lead to main one. When linearly correlates

of model are tested to be outstanding by F-test, t-test of almost all regression coefficients is not

outstanding, the positive and the negative of regression coefficients are contrary results to

expectation. The result of tool wear prediction turned out contrary to our expectations. If there is

one or more to outstanding about the correlation coefficients, this shows that all independent

Fig. 15 Forecast results of three method 
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variables are correlation in model, that is, multicollinearity is existed in variables; to BPNN method,

the maximal absolutee error of the results of the prediction and experiment is within 0.047mm, the

average error is within 0.041mm, which can meet the needs of the engineering. However, since it

can not be known exactly to conception and nature of approximation samples in BPNN application,

this is very difficult even for reaching actual requirement even network error is 0. it is even hard to

solve is replaced by a very small error. This is the so-called over fitting the phenomenon. It will

effect directly generalization ability of network and will also make network lost their practical value

at last. The generalization ability factors of effecting network are as follows,including sample

properties and network itself influenced by many factors. Even though three methods can meet the

needs of the engineering, through the comparison and analysis of the data of the experiment, No

matter what you take into account, error or stability in the whole process monitoring, PLSR is more

suitable for monitoring tool wear.

6. Conclusions

1. PLSR is suitable for analysis and modeling for monitoring tool wear in milling process. The

results of the prediction and experiment on line show that tool wear mathematic model can obtain

better tool wear value.

2. When monitoring tool wear is used to PLSR method, after selecting appropriate variables,

existing multiply linearity correlates between dependent variable and first principal component of

independent variables, PLSR model can obtain the high precision and reliability and its expression

is simple and clear. It can give easy reasonable interpretation to factors effecting tool wear in

cutting process and also can reveal the relationship between independent variables and dependent

variable.

3. From computational requirement.Unfortunately, in most application the assumption is not

reasonable. In order to make feature vectors more suit to be modeled, PLSR modeling may use the

direct computation method and also iterative algorithm. Its calculation amount is small, at the same

time calculation amount of prediction is very small. This is very important to research real-time on-

line modeling and correct model algorithm.

4. Compared the regression model of the part sample variable with the model of the all sample

variable, it can be found that the latter has better forecast effect than the former has, but the former

can adopt to the polytrope on the coarse production easily.

Table 7 Error statistics on tool wear (unit/mm)

Methods
Groups

1 2 3 4 5 6 7 8 9

PLSR
Maximal absolute error 0.029 0.028 0.027 0.032 0.031 0.030 0.035 0.035 0.030

Average error 0.027 0.026 0.025 0.030 0.029 0.028 0.032 0.031 0.027

MLR
Maximal absolute error 0.050 0.053 0.049 0.051 0.047 0.047 0.050 0.048 0.048

Average error 0.045 0.051 0.046 0.049 0.046 0.045 0.047 0.046 0.047

BPNN
Maximal absolute error 0.041 0.045 0.042 0.042 0.046 0.047 0.040 0.041 0.042

Average error 0.039 0.042 0.040 0.039 0.044 0.046 0.038 0.038 0.040
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