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Abstract. Three dimensional coupled bending-torsion dynamic vibrations of thin-walled open section
beam subjected to moving vehicle are investigated by transfer matrix method. Through adopting the idea
of Newmark-β method, the partial differential equations of structural vibration can be transformed to the
differential equations. Then, those differential equations are solved by transfer matrix method. An iterative
scheme is proposed to deal with the coupled bending-torsion terms in the governing vibration equations.
The accuracy of the presented method is verified through two numerical examples. Finally, with different
eccentricities of vehicle, the torsional vibration of thin-walled open section beam and vertical and rolling
vibration of truck body are investigated. It can be concluded from the numerical results that the torsional
vibration of beam and rolling vibration of vehicle increase with the eccentricity of vehicle. Moreover, it
can be observed that the torsional vibration of thin-walled open section beam may have a significant
nonlinear influence on vertical vibration of truck body.
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1. Introduction 

The dynamic response of bridge subjected to moving vehicle or train has long been a challenging

topic of civil engineering. During the past century, a lot of research works have been continuously

contributed to this field. The initial work about this subject was pioneered by Inglis in (Inglis 1934),

Then, Hillerborg studied this problem by means of Fourier’s transformation method (A.

Hillergborg). In recent thirty years, increasingly complex computational models for dynamic

analysis of bridge under moving vehicle or train were proposed. On the basis of those models, this

subject has been studied intensively and lots of useful conclusions are obtained (Sridharan and

Mallik 1979, Wiriyachai et al. 1982, Chompooming and Yener 1995, Cheung et al. 1999, Yang and

Wu 2001, Cheng and Au 2001, Song et al. 2003, Xia et al. 2003, Lou 2005, Yang and Lin 2005,
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Xia and Zhang 2005). Meantime, it also should be noted that those following works are essentially

based on the early theory of Inglis and Hillerborg. 

Thin-walled beam with open section has been widely used as structural bending member in bridge

engineering. Generally, since the centroid and shear centre of thin-walled open section beam are not

coincident, the dynamic vibrations will be coupled between bending and torsion. Timoshenko and

Young (1955) firstly developed the theory for coupled vibrations of thin-walled beam. Bishop et al.

(1989) developed this theory, and gave the solution of the governing differential equations for

coupled bending-torsion free vibrations of thin-walled open section beam. Moreover, they

announced that omission of warping stiffness will cause considerable errors in the results of natural

frequencies and modes of coupled free vibration. Based on the work of Bishop et al., Tanaka and

Bercin (1999) studied the triple coupled free vibration of thin-walled beam with nonsymmetrical

open section. Recently, Li et al. (2004) investigated the free vibration of thin-walled open section

beam under axial load by transfer matrix method. For the dynamic analysis of forced vibration of

thin-walled beam under moving vehicle, the finite element method can give a general solution

(Song et al. 2003, Huang et al. 1993, 1995). However, development of analytical method based on

the classical theory should be imposed more emphasizes, since such method can provide more

comprehensive inspections into the nature. To the best knowledge of authors, the work about this

subject is limited. In the previous researches, Michaltsos et al. (2005) presented the frequency

domain solution of coupled bending-torsion vibration of the thin-walled open section beam under

moving load based on the classical vibration governing equations. 

As a semi-analytical algorithm, transfer matrix method can be efficiently used for one-dimensional

periodic structures (although not limited to this case). Once the transfer matrix of a representative

element is obtained from the classical governing differential equation, the solution of whole structure

can be obtained without requiring great computational efforts (Pestel and Leckie 1993). In those

previous literatures, the vibration of one-dimensional structure is studied comprehensively by the

transfer matrix method (Li et al. 2004, Wang et al. 1999, Lee 2000). Although the transfer matrix

method can be conveniently used in structural dynamic analysis in frequency domain, the work about

applying transfer matrix method into structural dynamic analysis in time domain is comparably rare.

Xiang and Zhao (2005) proposed an algorithm by combining transfer matrix method and Newmark-β

method to study the vertical bending dynamic vibration of bridge under moving vehicle. 

In the present study, the authors intend to study the three-dimensional coupled bending-torsion

dynamic vibrations of thin-walled open section beam subjected to moving vehicle following the

basic idea proposed by Xiang and Zhao (2005). The classical vibration equations of thin-walled

beam are used to model the forced vibrations of bridge. A 7DOF vehicle model, which comprises

of 3 rigid bodies, one for the truck body and two for the axle sets, is adopted. 

2. Formulation of the transfer matrix 

2.1 Governing vibration equations 

For generality, a thin-walled beam with nonsymmetrical open section shown in Fig. 1 is

considered. The shear center and centriod are denoted by S and C respectively. In the Cartesian

coordinate system illustrated in Fig. 1, the x axis coincides with the elastic axis (i.e., loci of the

shear center). yc and zc are the coordinates of centriod C in Syz plane. Using d’Alembert principle,
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the differential equations for coupled vibrations of thin-walled beam can be written as 

(1)

(2)

(3)

where u and v represent the displacements of shear centre S in y and z directions, and θ is the

torsional rotation angle about x axis. EIz and EIy are the flexural rigidities about the neutral axes in

Sxz and Sxy planes, respectively. EIω and GIt are the warping and torsional constants. m is the mass

per unit length, and mω is the polar moment of inertia about the shear center per unit length. c is the

damping coefficient. Py(x,t) and Pz(x,t) are the external forces acted on the beam along y and z

directions, and Tx(x,t) represents the applied torque about x axis. 

To obtain the time-domain solutions of Eqs. (1) to (3), the incremental form of Eqs. (1) to (3) for

time step i can be written as 

(4)

(5)

(6)
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Fig. 1 The thin-walled beam with nonsymmetrical open section 
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It can be observed that there exist coupled terms in Eqs. (4) to (6). Therefore, it is almost

impossible to obtain the analytical solutions for Eqs. (4) to (6) directly. To overcome this dilemma,

those coupled terms are moved to the right hands, and Eqs. (4) to (6) will be rewritten as 

(7)

(8)

(9)

Then, those three coupled equations can be solved by the iterative scheme described as following. 

First, the values of  and  at the right hands of Eqs. (7) to (9) 

are set to be zero, and those three equations are uncoupled and can be solved by the following 

presented time-domain transfer matrix algorithm. Then, substituting the values of ,

 and  obtained from the previous step into the right hands of Eqs. (7) to (9), the

new results of the displacements, velocities and accelerations can be computed with a similar

procedure. This process will be repeated until a satisfactory convergence is reached. 

2.2 Time-domain transfer matrix method 

Using the idea of Newmark-β method (1959), the incremental acceleration and velocity at time

step i can be given as

(10)

(11)

in which y,  and  can represent the displacement, velocity and acceleration of u, v, or θ,

respectively. Newmark suggested that the value of parameter β would be in the range of .

For  this method is proven to be unconditionally stable and provides satisfactory accuracy.

 Substituting Eqs. (10) and (11) into Eqs. (7) to (9) yields
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(12)

(13)

(14)

Thus, Eqs. (7) to (9) are transformed to differential equations, which can be solved by the transfer

matrix method conveniently. The solution of Eq. (12) or (13) by the transfer matrix method can be

found in the study of Xiang and Zhao (2005). In this paper, the solution of Eq. (14) will be

presented. 

The characteristic equation of Eq. (14) can be expressed as

(15)

Generally, the value of the torsional constant GIt is far less than that of the warping constant EIω,

therefore, the four characteristic roots of Eq. (15) can be written as

±k1 ± k2i (16)

Then, the solution of Eq. (14) is given as 

Δθi = c1 f1 (x) + c2 f2 (x) + c3 f3 (x) + c4 f4 (x) + (17) 

in which c1~c4 are a set of coefficients,  is the particular solution of Eq. (14), and the

expressions of fj(x) are given as

f1(x) = cosh k1x · cos k2x,     f2(x) = cosh k1x · sin k2x

f3(x) = sinh k1x · cos k2x,     f4(x) = sinh k1x · sin k2x (18)

By adopting the method of variation of parameters, the solutions of Dj(x) can be determined (Zill

and Cullen 2001). The analytical expressions of Dj(x) when the right hand of Eq. (14) is a

concentrated load or a linear varying distributing load are given in the appendix.

From Eq. (17), and considering  the analytical 

expressions of incremental torsional rotation ratio , incremental bimoment ΔBi, and incremental

torque ΔTi are obtained
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(28)

Once the transfer matrices for all elements are known, multiplying those matrices successively, the

global transfer matrix for whole structure is obtained 

(29)

i.e.,

{Z}n+1 = [T]G{Z}0 (30)

where {Z}m (m = 1 ~ n + 1) is the state vector of the mth node, [T]G is the global transfer matrix, and

[T]m (m = 1 ~ n) element transfer matrix of the mth element. Once the global transfer matrix is

obtained, the boundary condition should be introduced into Eq. (30). For example, the boundary

conditions for the torsion of simply supported thin-walled beam are specified as θ = 0 and B = 0.

Then, the value of {Z}0 is solved. Finally, substituting {Z}0 into Eq. (29), the results of all state

vectors can be computed successively. 

3. Vehicle model 

To investigate the dynamic responses of vehicle, a lot of 2D or 3D vehicle models, which

consider such vehicle motions as bouncing, swaying, pitching, yawing, rolling, sliding, and so on

are proposed during the past three decades. The vehicle model adopted in the present study is

illustrated in Fig. 2. In this model, the vehicle consists of three rigid bodies: one for the truck body,

and two for the axle sets. The truck body is modeled as a rigid body with mass mc and mass

moment of inertia Jcx and Jcz about x and z axis through its centroid. Therefore, 3 DOFs are
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set is assumed to be a rigid body with mass mb1 or mb2 and mass moment of inertia Jbx1 or Jbz2

about x axis through its centroid. Then, the motions of axle set can be described by the vertical

displacement (yb1 or yb2) and the rotation about the x axis (φbx1 or φbx2). It is always assumed that the

wheels keep in contact with the bridge. Using d’Alembert principle, the motion equations of vehicle

can be finally obtained. To obtain the dynamic responses of vehicle, following the procedure

presented by Xiang and Zhao (2005), the motion equations of vehicle vibration can be transferred as

algebraic equations with the idea of Newmark-β method. The vertical interactive force Py
i 
between

the ith tire and bridge is given as 

(29)

(30)

(31)

(32)

in which the dot stands for differentiation with respect to time t, and g is gravity acceleration. 

4. Example studies 

4.1 Example 1: A simply supported thin-walled beam under moving force 

The coupled lateral-torsion vibration of a simply supported thin-walled beam with open section

subjected to moving constant force, as illustrated in Fig. 3, is investigated by Michaltsos et al.
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Fig. 2 The vehicle model 
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(2005). In this paper, this example is adopted to verify the accuracy of the presented algorithm. 

The span of beam is 50 m, and the structural properties are given as following: E = 2.1 × 1010 Pa, Iz =

0.227 m4, Iy = 1.654 m4, Iω = 0.88 m6, It = 6 × 105 m4, m = 2512 kg/m, mω = 1476.6 kgm2/m, yc = 1.376

m, and zc = 0. The damping coefficient of beam is assumed to be zero. In the study of Michaltsos, the

moving force model is used, and two levels of the magnitude of moving force Py are considered,

i.e., Py equals 1500 N or 50000 N, respectively (Michaltsos et al. 2005). For the presented vehicle

model, the following data are assumed: mc = 0.5 Py/g, mb1 = mb2 = 0.25Py/g, Jcx = Jcz = Jbx1 = Jbx2 = 2.0

kgm2, Lx1 = Lx2 = Lz1 = Lz2 = 0.1 m, Lb = 0.2 m, Kya1 = Kya2 = Kya3 = Kya4 = Kyb1 = Kyb2 = Kyb3 = Kyb4 =

200 N/m, and cya1 = cya2 = cya3 = cya4 = cyb1 = cyb2 = cyb3 = cyb4 = 0. In this study, the eccentricity e of 2 m

is adopted. The moving velocity of load vl is 20 m/s for Py equals 1500 N, and 10 m/s for Py equals

50000N. The results of the vertical displacements of centroid, transverse displacements of deck, and

rotational angle about shear centre at midspan are plotted in Figs. 4-5. To verify the accuracy of the

presented procedure, the vertical displacement is compared with the analytical solution given by

Krylov (1905), and the transverse displacement and rotational angle are compared with those

presented by Michaltsos et al. (2005). 

From Figs. 4-5, it can be observed that the results of this paper agree with those previous

researches well. The discrepancies may be due to the different theories adopted in programming and

the inertia of vehicle considered in the present study. 

4.2 Example 2: A simply supported beam bridge under a moving suspended rigid body 

To verify the accuracy of dynamic response of vehicle, a simply supported beam subjected to

moving suspend rigid body as illustrated in Fig. 6 is studied. The properties of beam are assumed to

be L = 30 m, E = 2.943 × 104 MPa, I = 8.65 m4, m = 3.6 × 10 kg/m, and c = 0. For the moving rigid

body, the following data are adopted: mc = 5.4 × 105 kg , Jcx = 1.38 × 107 kg m2, mb1 = mb2 = Jbx1 = Jbx2 =

0, Kyb1 = Kyb2 = Kyb3 = Kyb4 = 2.0675 × 104 kN/m, cyb1 = cyb2 = cyb3 = cyb4 = 0, Kya1 = Kya2 = Kya3 = Kya4

= 4.135 × 1012 kN/m, cya1 = cya2 = cya3 = cya4 = 0, and Lx1 = Lx2 = 8.75 m.

The moving velocity of vehicle is 27.78 m/s (100 km/h). In this example, only the vertical

vibration of bridge and vehicle is concerned. Yang and Wu (2001) studied the dynamic response of

this example also. The time history responses of midpoint vertical displacement of beam, and

vertical acceleration of rigid body are plotted in Figs. 7-8, respectively. As can be seen, the results

presented in this paper agree with those of Yang and Wu very well, and the results comparison

demonstrates the accuracy of the method presented by authors. 

Fig. 3 A simply supported thin-walled beam under moving force 
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Fig. 4 The dynamic displacements of bridge at
midspan when Py = 1500 N, e = 2 m, and
vl = 20 m/s 

Fig. 5 The dynamic displacements of bridge at
midspan when Py = 50000 N, e = 2 m, and
vl = 10 m/s 

Fig. 6 A simply supported beam subjected to a moving suspended rigid body 
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4.3 Example 3: A simply supported thin-walled beam under moving vehicle 

As shown in Fig. 9, a simply supported thin-walled beam with following properties, L = 30 m, E = 2.0

× 1011 Pa, Iz = 0.1773 m4, Iy = 1.528 m4, I = 0.5197 m6, It = 1.74 × 104 m4, m = 3349.6 kg/m, mω = 3.54

× 104 kgm2/m, yc = 0.678 m, zc = 0, and c = 0, is considered. The parameters for the vehicle are

assumed to be: mc = 21000 kg, mb1 = mb2 = 200 kg, Jcx = 32000 kgm2, Jcz = 74000 kgm2, Jbx1 = Jbx2 =

300 kgm2, Lx1 = Lx2 = 2.1 m, Lz1 = Lz2 = 0.9 m, Lb = 1.8 m, Kya1 = Kya2 = Kya3 = Kya4 = 6.4 × 105 m/N,

cya1 = cya2 = cya3 = cya4 = 7.5 × 103 Ns/m, Kyb1 = Kyb2 = Kyb3 = Kyb4 = 1.2 × 106 N/m, and cyb1 = cyb2 = cyb3

= cyb4 = 2.1 × 104 Ns/m. The moving velocity of vehicle is 80 km/h (22.22 m/s). 

In this example, the authors intend to investigate the influences of eccentricity of vehicle e on the

dynamic responses of beam and vehicle. For dynamic vibration of beam, the torsion vibration is the

Fig. 7 Dynamic midspan vertical displacement of
beam 

Fig. 8 Vertical acceleration of rigid body 

Fig. 9 A simply supported thin-walled beam with open section under moving vehicle 
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most direct response induced by eccentricity of vehicle. In Fig. 10, the time history of rotational

angle and bimoment of beam at midspan with different eccentricity of vehicle are plotted. For

dynamic vibration of vehicle, due to the rotation of beam, the rolling vibration of truck body will be

Fig. 10 The dynamic torsional responses of bridge at midspan 

Fig. 11 The vertical vibration of truck body 

Fig. 12 The rolling vibration of truck body 



Dynamic analysis of thin-walled open section beam under moving vehicle 615

activated. Meantime, the rotation of beam produces an additional vertical deflection of deck at

contact points between tire and bridge, which will influence the vertical responses of truck body.

Therefore, the dynamic vertical deflection and acceleration, rolling angle and acceleration of truck

body are given in Figs. 11 and 12. 

From Fig. 10, it can be found that the dynamic torsional vibrations of beam increases almost

linearly with the eccentricity of vehicle. Generally, the major cause for vehicle-induced vibration of

bridge is the gravity of vehicle. With increment of eccentricity of vehicle, the torque applied on the

beam increase linearly. Therefore, a near linear relationship between torsional vibration and

eccentricity of vehicle can be predicted. Since the rolling vibration of truck body is mainly activated

by torsion of beam, a similar tendency is also observed for rolling vibration of truck body in Fig.

12. However, for the vertical vibration of truck body, an obvious nonlinear increase of dynamic

responses with the eccentricity of vehicle is observed. To give a more clear inspection about this

phenomenon, the relations between absolute maximum vertical dynamic deflection and acceleration

of truck body and eccentricity of vehicle e are plotted in Fig. 13. It can be found that the maximum

responses of vertical vibration of truck body trend to increase more quickly with increment of

eccentricity of vehicle. As mentioned above, an additional vertical deflection of deck is caused by

rotation of beam, and this additional vertical deflection is a production of rotational angle of beam

and transverse distance between tire and vertical symmetric axis. Since the rotational angle of beam

is an almost linear function of eccentricity of vehicle, the additional vertical deflection of deck will

be approximate second times function of eccentricity of vehicle. Therefore, a nonlinear increase of

vertical vibration of truck body with eccentricity of vehicle can be observed. 

 

5. Conclusions

In this paper, an algorithm, which combines transfer matrix method with Newmark-β method, is

presented for dynamic analysis of thin-walled open section beam subjected to moving vehicle. An

iterative scheme is proposed to deal with the coupled bending-torsion terms in the governing vibration

equations. Through two numerical examples, the accuracy of the algorithm is demonstrated. 

Considering that the memory requirement of this algorithm is low, and only matrix multiplication

operation is involved in solution, the proposed algorithm may be more efficient compared with the

Fig. 13 The relations between absolute maximum vertical dynamic response of truck body and e 
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finite element method. 

The effect of eccentricity of vehicle on vibrations of thin-walled open section beam and vehicle

are studied. From the results, it can be found that eccentricity of vehicle has an almost linear

influence on the torsional vibration of beam and rolling vibration of truck body. Moreover, it can be

concluded that the torsional vibration of thin-walled open section beam may have a significant

nonlinear influence on vertical vibration of truck body. This phenomenon should be imposed further

researches in the following studies. 
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Appendix 

When the right hand of Eq. (14) is a concentrated load, which is given as P · δ (x − x0), the analytical
expressions of Dj(x) are given as 

When the right hand of Eq. (14) is a linear varying distributing load, which is given as P0 + ax, the analyti-
cal expressions of Dj(x) are given as 
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