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Elasticity solutions for a uniformly loaded annular
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Abstract. The axisymmetric problem of a functionally graded annular plate is considered by extending
the theory of functionally graded materials plates suggested by Mian and Spencer (1998). In particular,
their expansion formula for displacements is adopted and the hypothesis that the material parameters can
vary along the thickness direction in an arbitrary continuous fashion is retained. However, their analysis is
extended here in two aspects. First, the material is assumed to be transversely isotropic, rather than
isotropic. Second, the plate is no longer tractions-free on the top and bottom surfaces, but subject to
uniform loads applied on the surfaces. The elasticity solutions are given for a uniformly loaded annular
plate of functionally graded materials for a total of six different boundary conditions. Numerical results
are given for a simply supported functionally graded annular plate, and good agreement with those by the
classical plate theory is obtained.
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1. Introduction

Functionally graded materials (FGMs) are a new type of inhomogeneous material wherein the

volume fractions of constituent materials vary continuously in some specific directions, such as

thickness direction. Therefore, their macroscopic material properties exhibit a smooth and

continuous change in these directions, which satisfy the different requirements for material service

performance at different locations in the structures. The concept of FGM (Yamanouchi et al. 1990,

Koizumi 1993) was initiated for super heat resistant materials used in aerospace engineering so as

to overcome the interface problems due to the mismatch of materials in traditional composites. Now

FGMs have been used in many fields, such as electronics, chemistry, nuclear energy and
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biomedicine, etc, and have shown a wonderful application prospects.

The problem of a homogeneous plate subject to uniform loads is one of important classical

research topics in elasticity. Timoshenko and Woinowsky-Krieger (1959) and Lekhnitskii (1968)

adopted the classical plate theory (CPT), which employs a number of simplifying assumptions about

the stress and displacement fields, to study isotropic and anisotropic plates. Love (1927),

Timoshenko and Goodier (1970) and Ding et al. (2006) presented a series of analytical solutions for

isotropic and transversely isotropic circular and annular plates subject to uniform loads directly

based on the three-dimensional (3D) elasticity theory.

A number of works have been conducted on the analysis of elastic behavior of FGM plates.

Reddy et al. (1999) examined the axisymmetric bending of functionally graded circular and annular

plates by developing the exact relationships between the solution of CPT and that of the first-order

shear deformation plate theory (FSDT). The asymptotic method was used to analyze the thermo-

elastic coupled deformation of isotropic FGM rectangular plate by Reddy and Cheng (2001). Vel

and Batra (2002) presented an exact 3D solution for the thermo-elastic deformation of simply-

supported isotropic FGM plates. A 3D elasticity solution for an isotropic FGM rectangular plate

with simply supported edges subject to transverse loading was developed by Kashtalyan (2004).

Soldatos (2004), on the basis of the refined plate theory, developed Stroh-like complex formalisms

and studied the bending problem of inhomogeneous anisotropic rectangular plates. Prakash and

Ganapathi (2005) investigated the dynamic instability characteristics of aero-thermo-mechanically

stressed functionally graded plates using finite element procedure. Ootao and Tanigawa (2005)

analyzed exactly the transient problem of thermoelasticity involving an orthotropic functionally

graded thick strip due to nonuniform heat supply in the width direction. Based on the CPT, Chi and

Chung (2006a, 2006b) presented analytical solutions for simply supported isotropic FGM plates.

Employing a discrete layer theory in combination with the Ritz method, Ramirez et al. (2006)

presented an approximate 3D analysis of anisotropic functionally graded rectangular plates. Based

on the piezoelasticity method and state space formulations, a simply supported hybrid plate

consisting of top and bottom functionally graded elastic layers and an intermediate actuating or

sensing homogeneous piezoelectric layer was investigated by Bian et al. (2006). Using the stress

function method, Li et al. (2006, 2008) obtained elasticity solutions for transversely isotropic FGM

circular plates subject to pure bending as well as a load in form of qrk (k is zero or a finite even

number). Mian and Spencer (1998) developed an ingenious method and obtained a class of 3D

solutions for isotropic FGM plates with traction-free surfaces; in their analysis, the material

properties are assumed to vary arbitrarily with the thickness-coordinate. Efforts on finding similar

analytic solutions to this class of problems were firstly made by Kaprielian et al. (1988) and Rogers

(1990). Using complex function method, England (2006) made a further extension by accounting

for particular pressures, which satisfy the biharmonic equation or higher-order ones, applied to the

top surface.

In this paper, the method suggested by Mian and Spencer (1998) is extended, through appropriate

modifications, to consider a transversely isotropic FGM plate subject to uniform loads applied on

the top and bottom surfaces, and the simplified two-dimensional (2D) governing equations are

derived. The material properties can vary arbitrarily in a continuous fashion along the thickness of

the plate. Elasticity solutions for FGM annular plates are presented for a total of six different

boundary conditions at the cylindrical edges.
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2. Basic equations for axisymmetric problem

Consider the axisymmetric problem in cylindrical coordinates (r, θ, z). Denote ur and w as the

displacement components in the r- and z- directions, respectively; σr, σθ, σz and τrz as the stress

components; εr, εθ, εz and γrz as the strain components. The equations of equilibrium in absence of

body forces are

(1)

The stress-strain relations for transversely isotropic material can be expressed as (Ding et al. 2006)

(2)

where cij are the elastic constants. For FGM, cij are functions of z, i.e., cij = cij(z).

According to Mian and Spencer (1998), we seek the following solutions of Eqs. (1) and (2)

,

(3)

where A, B, C, D, F and G are functions of z, and

. (4)

Substituting Eq. (3) into Eq. (2) gives

,
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, (5)

where the prime denotes derivative with respect to z.
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By substituting Eq. (5) into Eq. (1), and setting

, (6),(7),(8)

. (9),(10)

we have

, (11)

(12)

where κ1 and κ2 are arbitrary constants, and

(13)

If H and I are not zero simultaneously, it follows from Eq. (12) that

(14),(15)

where κ3 and κ4 are arbitrary constants. Then Eqs. (11) and (12) become 

, (16)

(17)

By virtue of Eqs. (14) and (15), it follows from Eq. (16) that

. (18)

Integrating Eqs. (15) and (16) in turn leads to

, (19)

, (20)

where Ci (i = 1,2,3,4,5,6) are integral constants which can be completely determined from the

cylindrical boundary conditions.

3. Determination of the functions A(z), B(z), C(z), D(z), F(z) and G(z)

Consider an annular plate of height h, inner radius r0, outer radius r1, as shown in Fig. 1, subject

to uniform loads q1 and q2. Obviously, we have τrz = 0 at z = ±h/2 σz = −q1, at z = −h/2, and σz = −q2

at z = h/2.

By substituting the expressions for τrz and σz in Eq. (5) into the boundary conditions at z = ±h/2,

we obtain

, (21),(22)
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, (26)

. (27)

Integrating (6)-(10) and (17) and making use of the boundary conditions (21)-(27) and relation (18),

yields

,
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, (28)
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Fig. 1 The geometry and coordinates of annular plate
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(31)

we can deduce from Eq. (3) that

A(0) = 0,     B(0) = 0,     C(0) = 0,     D(0) = 0,     F(0) = 0,     G(0) = 0 (32)

Substituting Eq. (28) into Eq. (32) gives

,

,

,

. (33)

In such a way, the functions A(z), B(z), C(z), D(z), F(z) and G(z) can be determined completely.

4. Resultant forces

By virtue of Eq. (5), the expressions for the radial resultant force Nr(r), bending moment Mr(r)

and shear force Qr(r) are 
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(38)

(39)

5. Solutions for six kinds of annular plates

For the annular plate, there are three cylindrical boundary conditions at r = r0 and r = r1,

respectively, which can be used to determine the six integral constants in the solutions (19) and

(20).

5.1 Simply supported-simply supported (SS) annular plate. 

The boundary conditions are

.     (i = 0,1) (40)

5.2 Clamped-Clamped (CC) annular plate. The boundary conditions are

.     (i = 0,1) (41)

5.3 Annular plate with inner edge simply supported and outer edge clamped (SC) or

inner edge clamped and outer edge simply supported (CS)

The boundary conditions are comprised of Eqs. (40)1 and (41)2 or Eqs. (40)2 and (41)1, respectively.

5.4 Annular plate with inner edge free and outer edge clamped (FC) or inner edge

clamped and outer edge free (CF)

The boundary conditions are, respectively.

. (42)

. (43)

Substituting Eqs. (19), (20), (34), (35) and (36) into the corresponding boundary conditions, the

six equations to determine the six integral constants Ci (i = 1,2,3,4,5,6) can be readily derived, and

the corresponding solutions are obtained completely.

6. Results and discussion

For convenience, the following dimensionless quantities are introduced 
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,

where  and all the results are

given at .

Example 1: Simply supported homogeneous isotropic annular plate.

The present method is first validated by comparison with the CPT solutions (Young and Budynas

2002) for a homogeneous annular plate subject to a uniform load on the top surface, with

h = 0.002 m, r0 = 0.025 m, r1 = 0.1 m, and v = 0.3.

It is seen from Table 1 that the present elasticity solution agrees well with the classical plate

theory; it is expected for the thin plate considered in this example. 

Example 2: Transversely isotropic FGM annular plate

Now consider an FGM annular plate of r0 = 0.25 m, and r1 = 1 m, subject to uniform load acting

on the top surface. The material constants are assumed to be in the form of (Reddy et al. 1999)

   (i, j = 1,2,3,4,5,6)

where  are those of Al2O3 at z = −h/2,  are those of Titanium at z = h/2, both given in

Table 2 (Ding et al. 2006). The parameter λ is usually referred to as the gradient index since it

reflects the degree of material inhomogeneity. 

Fig. 2 shows the variations of the elastic constant c11 along the thickness direction for different

values of λ. Obviously, λ = 0 corresponds to the case of homogeneous material (Al2O3), while λ > 0

corresponds to FGM with material properties changing continuously from Al2O3 at z = −h/2 to

Titanium at z = h/2.

Tables 3 and 4 give the dimensionless deflection , normal stress  and shear stress  of the

FGM annular plate with six kinds of boundary conditions and three values of λ, for thickness-to-

span ratio β = 0.2 and β = 0.3, respectively. It is found that: 

(1) The deflection increases with λ, regardless of the boundary conditions and the value of β. This

is simply because the whole rigidity of the FGM plate decreases with λ. The deflections of CF and

CC annular plates are, respectively, the biggest and smallest among the plates with the six kinds of

boundary conditions; 

(2) With the increase of λ, the absolute value of normal stress decreases firstly and then increases

gradually, except the CC annular plate with β = 0.3, for which the normal stress is always

σr σr q⁄=      σθ σθ q⁄=      σz σz q⁄=      τrz τrz q⁄=, , ,

r r0 r1+( ) 2⁄=  r2 r1 r0–=  D0 Eh
3

12 1 v
2

–( )⁄=  q 1 10
6
  N m

2⁄×=, , ,
r r=

Cij Cij
0 A( ) 0.5 z h⁄–( )λ Cij

0 T( ) 1 0.5 z h⁄–( )λ–[ ]+=

Cij
0 A( ) Cij

0 T( )

W2 σr τrz

Table 1 Dimensionless deflection 

r0/r1
0.1 0.3 0.5 0.7

CPT 0.00600 0.00290 0.000800 0.000100

Present 0.00607 0.00286 0.000795 0.000106

Table 2 Elastic constants of Al2O3 and Titanium (Unit: GPa)

Materials

Al2O3 460.2 174.7 127.4 509.5 126.9

Titanium 162.4 92 69 180.7 46.7

W1 r 0,( )

c11
0 c12

0 c13
0 c33

0 c55
0
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decreasing. The normal stresses at z = h/2 are compressive for FC and CF boundary conditions, and

tensile for other kinds of boundary conditions, regardless of the value of β;

(3) With the increase of λ, the absolute value of shear stress decreases, except the SC and CS

annular plates with β = 0.3, for which the shear stress first decreases and then gradually increases.

Shear stress for CC, SC and FC boundary conditions shows a reverse sign compared with other

three kinds of boundary conditions, regardless of the value of β;

(4) The constraints imposed on the outer boundary have more obvious influence on the deflection

and stress than those on the inner boundary, as can be seen from the comparison between SC plate

and CS plate or that between FC plate and CF plate. With β increasing, the absolute values of

Fig. 2 Variation of elastic constant c11 along the thickness

Table 3 Dimensionless deflection and stresses (β = 0.2)

B.C.
(× 10-4)

λ = 0 λ = 2 λ = 4 λ = 0 λ = 2 λ = 4 λ = 0 λ = 2 λ = 4

SS 2.3526 4.5494 5.0404 16.5334 12.2439 13.3335 0.2448 0.1819 0.1673

CC 0.4608 0.8858 0.9642 4.3029 3.3572 3.5276 -0.0686 -0.0663 -0.0648

SC 0.8318 1.6150 1.7771 6.2651 4.8370 5.1709 -0.8898 -0.8788 -0.8776

CS 1.1158 2.1243 2.3318 9.1785 6.6047 7.0679 1.1419 1.0857 1.0769

FC 3.0677 6.0410 6.5850 -2.5217 -1.3547 -1.6069 -2.6250 -2.5401 -2.4811

CF 9.0881 17.1374 18.5306 -14.8677 -12.5627 -13.3890 4.8750 4.7173 4.6078

Table 4 Dimensionless deflection and stresses (β = 0.3)

B.C.
(× 10-4)

λ = 0 λ = 2 λ = 4 λ = 0 λ = 2 λ = 4 λ = 0 λ = 2 λ = 4

SS 0.5450 1.0449 1.1737 7.5580 5.5350 6.0634 0.1439 0.1083 0.0980

CC 0.0910 0.1750 0.1905 0.9471 0.8668 0.8339 -0.0457 -0.0442 -0.0432

SC 0.1798 0.3467 0.3842 2.1212 1.6621 1.7292 -0.7088 -0.6901 -0.6971

CS 0.2421 0.4608 0.5112 3.3945 2.4297 2.5553 0.8968 0.8533 0.8604

FC 0.5925 1.1653 1.2659 -1.5341 -0.9088 -1.0614 -1.7500 -1.6934 -1.6541

CF 1.7191 3.2490 3.4952 -6.9001 -5.7269 -6.0943 3.2500 3.1448 3.0719

W2 r 0,( ) σ
r

r h 2⁄,( ) τrz r 0,( )

W2 r 0,( ) σ
r

r h 2⁄,( ) τrz r 0,( )
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deflection and stress decrease correspondingly.

Figs. 3-8 depict the distributions of dimensionless displacements and stresses along the thickness

direction of the SS FGM annular plate for different values of λ, with the thickness-to-span ratio

being β = 0.3.

Figs. 3 and 4 depict the distributions of dimensionless radial and axial displacements  and

. Fig. 3 indicates that  changes almost linearly along the thickness direction, regardless of the

magnitude of λ. From Fig. 4, one can see that  almost keeps invariant along the thickness

direction for λ = 0; but for λ = 2 or 4,  is no longer linearly distributed. The absolute value of

 or  at the same point of the plate increases with λ.

Figs. 5 and 6 show the distributions of dimensionless radial and hoop stresses  and ,

respectively. It is found that  and  are almost linearly distributed along the thickness for λ = 0.

However, for λ = 2 or 4, the distributions of  and  are no longer linear. For larger λ, the

distributions are similar, and at the same point, the magnitudes of  and  change little with λ.

Fig. 7 gives the distributions of dimensionless axial stress . It is found that the distributions of

 seem to be similar for different λ. The absolute value of  for λ = 0 is bigger than those for

λ = 2 or 4. In fact, for larger λ (say bigger than 2),  changes little with λ.

Ur

W2 Ur

W2

W2

Ur W2

σr σθ

σr σθ

σr σθ

σr σθ

σz

σz σz

σz

Fig. 3 Dimensionless radial displacement (× 10-6)
(β = 0.3, SS)

Fig. 4 Dimensionless axial displacement (× 10-4) 
(β = 0.3, SS)

Fig. 5 Dimensionless radial stress (β = 0.3, SS) Fig. 6 Dimensionless hoop stress (β = 0.3, SS)



Elasticity solutions for a uniformly loaded annular plate of functionally graded materials 511

Fig. 8 shows the distributions of dimensionless shear stress . It is found that the distribution

curves of  along the thickness direction are analogous to the parabola, regardless of the

magnitude of λ. For λ = 0, the maximum shear stress takes place at z = 0, while it shifts to the

position approaching to the z = −h/2 and decrease gradually with λ.

7. Conclusions

The governing Eqs. (15) and (16) for transversely isotropic FGM plate subject to uniform loads

are obtained by extending the method suggested by Mian and Spencer (1998). The material

coefficients can vary arbitrarily in a continuous fashion with the thickness-coordinate. Elasticity

solutions for FGM annular plate for a total of six different cylindrical boundary conditions are

presented. The present theory differs from the CPT mainly because it exactly satisfies the basic 3D

elasticity equations and the boundary conditions at the top and bottom surfaces, and employs only

the simplified boundary conditions in the CPT at the cylindrical boundary.

The theory is first clarified by comparing with the CPT solution for a thin homogeneous plate.

The bending of a transversely isotropic FGM annular plate is then examined. It is shown that the

boundary conditions and the material inhomogeneity have important effects on the response of the

FGM annular plate, and the effect of constraints imposed on the outer boundary is greater than that

of constraints on the inner boundary. Therefore, the mechanical behavior of FGM annular plates can

be optimized by adjusting properly the factors mentioned above in engineering applications.

Although there are simplifying assumptions in a Saint-Venant sense made around the edge of the

plate, the present analysis does not employ other simplifying hypotheses about the stress and

displacement field along the thickness as in usual plate theories. Hence, the proposed elasticity

solution can serve as good benchmarks for accessing validity of various approximate plate theories

or numerical methods that may be used in the analysis of FGM plates.
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