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Abstract. An aggregation multigrid method (AMM) is a leading iterative solver in solid mechanics.
Recently, AMM is applied for solving Schur Complement system in the FE analysis of shell structures. In
this work, an extended application of AMM for solving Schur Complement system in the FE analysis of
continuum elements is presented. Further, the performance of the proposed AMM in multiple load cases,
which is a challenging problem for an iterative solver, is studied. The proposed method is developed by
combining the substructuring and the multigrid methods. The substructuring method avoids factorizing the
full-size matrix of an original system and the multigrid method gives near-optimal convergence. This
method is demonstrated for the FE analysis of several elastostatic problems. The numerical results show
better performance by the proposed method as compared to the preconditioned conjugate gradient method.
The smaller computational cost for the iterative procedure of the proposed method gives a good
alternative to a direct solver in large systems with multiple load cases. 

Keywords: Schur complement system; aggregation multigrid method; FE analysis; continuum elements;
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1. Introduction

This paper investigates the extended application of an aggregation multigrid method (AMM) for

solving the linear elasticity system 

AX = F, (1)

where A is a large symmetric positive definite matrix, which is constructed in a FE discretized

elliptic PDE, and F is the load matrix in multiple load cases (or multiple right hand sides). The
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dimension of the system is n and the number of the load cases is nrhs. The multiple load cases are

demanded in order to improve the efficiency of the numerical tests in a stress analysis and

mandatory in an eigenproblem as well. 

When computing the solution matrix X, both direct and iterative solver can be utilized. A direct

solver needs only one factorization even in the multiple load cases, but the computational cost of

the factorization dramatically increases as n becomes large. When A is sparse, which is generally

true in case of the FE discretization, the state-of-the-art direct solvers such as a mutifrontal solver

need the float operation of O(n2). However, as the matrix becomes denser, the computational cost

goes to O(n3). Hence, a direct solver is extremely expensive for large and dense systems.

Meanwhile, an iterative solver uses less memory and does not need the factorization, but it requires

an iterative procedure per a load case. Therefore, the multiple load cases have been a challenging

problem of an iterative solver due to the cost increase of the iterative procedure. 

In order to avoid factorizing a full-size matrix, the substructuring method splits the original

system into numerous subsystems of smaller size, and then constructs Schur Complement (SC)

system after a static condensation. The subsystems are solved quickly by the direct solver because

of the smaller size, but SC system becomes so dense that a direct solver still becomes expensive.

Hence, SC system has been generally solved by an iterative solver. One of famous iterative solvers

is the Krylov subspace method of which performance is known to be mainly dependent on a

preconditioner. Saad and Sosonkina (1999) employed and compared various preconditioners based

on inverse matrix approximation, incomplete LU factorization, or approximate block LU

factorization for each subdomain, and demonstrated their robust performances. However, a better

efficient preconditioner for the iterative solver is still demanded in order to obtain its

competitiveness in the multiple load cases compared to a direct solver. 

AMM which is a high performance iterative solver was introduced in the mid-1990s. AMM

became popular due to a near-optimal convergence of a multigrid method, which means little

effects on the convergence when varying the element size of the FE discretization. Bulgakov

(1995), Fish and Belsky (1997) have developed the iterative solver based on AMM, which

provides wide applications in the solid mechanics Bulgakov (1997). Recently, the use of AMM

for Schur complement system is introduced in the FE analysis of shell structures Ko and Lee

(2006). In this paper, we propose the extended application of AMM for the FE analysis of

continuum elements and also investigate the performance of the proposed method in the multiple

load cases. 

This paper is organized as follows. Section 2 reviews the formulation of the Schur complement

system and Section 3 describes the AMM that is applied to the Schur complement system. Finally,

in Section 4, numerical experiments and their results are presented for the FE models of continuum

elements in solid mechanics.

2. Schur formulation 

The substructuring method divides an original domain into numerous subdomains, which are

decoupled and connected with others by interfacial variables only. Hence the matrix components

representing the coupling terms among the inner variables of the subdomains become zero. By

partitioning into N subdomains, the original system of Eq. (1) is rearranged as the following

structure
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 (2)

where each Bi represents the relations among the inner variables Xi, Ei denotes the coupling among

the interfacial variables and the inner variables of a subdomain and C stands for the relations among

the interfacial variables. By so-called static condensation, the Schur Complement (SC) and the right

hand side matrices associated with the interfacial variables are given as

, (3)

,  (4)

in which Bi = LiUi, where Li, Ui denote the factorized lower and upper triangular matrices for i-th

subdomain and Ci is the contribution matrix of i-th subdomain to C. Using Eqs. (3)-(4), the original

system is condensed to the SC system

. (5)

By factorizing CSC into LSCUSC, then . Once Y is obtained, the solution X of the

original system is recovered by the following procedure 

,     where  i = 1,......N. (6)

The size of the SC matrix has reduced to the number of the interfacial variables, but the matrix

becomes dense. In addition, the SC matrix preserves the SPD of the original system Saad (1996).

When solving the interfacial system, an iterative solver is more preferred than a direct solver if the

number of the interfacial variables becomes large. The Krylov subspace method is frequently used

for solving the SC system and it requires a preconditioner to accelerate its convergence. One-level

preconditioners for the SC matrix have been introduced by many researchers. Among them, we

adopt an incomplete factorization for each subdomain Saad and Sosonkina (1999), Saad (1996) as

the one-level preconditioner. To construct it, SC is first approximated by the static condensation

after incomplete factorizing Bi matrices as 

, (7)

in which , where  are the low and upper triangular matrices after the incomplete

factorization (IC), and  is the approximate SC matrix. Afterwards, the preconditioner MSC is

composed of the incomplete factorized matrices as
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. (8)

For second order elasticity problems such as the FE analysis of continuum elements, the condition

number grows asymptotically as O(h−2) where h is the maximum diameter of the discretized

elements. In the case of the SC system, Brenner (1999) defined the upper and lower bounds of the

condition number in m-th order Sobolev space by

, (9)

where H is the maximum diameter of the subdomains and α, β are constants independent of H and

h. The condition number of the SC system grows as O(h−1H−1) because the displacements of the FE

models of continuum elements are often approximated on the first order Sobolev space.

3. Multigrid method

A multigrid method is motivated by the fact inexpensive iterative solvers, such as Gauss-Seidel,

are effective at reducing the high frequency error. These solvers are called smoothers because they

render the error geometrically smooth by reducing the high frequency content. However, smoothers

are ineffectual at reducing the low frequency error. The low frequency error can be reduced

effectively with solving the coarse version of the problem, which a main procedure of the multigrid

method and called coarse grid correction. Here, a two-level multigrid method is described as

follows 

Algorithm 1 Basic two-level multigrid 

1: pre-smoother: 

2: coarse grid correction : find V from the coarse problem

3: prolongate and correct the solution by 

4: post-smoother : 

where the prolongator P transfers from Rm to Rn (m < n). The space Rm is called the coarse grid

space, Rn is the fine grid space, and PT A P is the coarse grid operator. D is a preconditioner for the

smoother, which can be a diagonal matrix or incomplete factorized matrices. The multigrid methods

are used as stand-alone solvers or preconditioners for an iterative solver such as the Krylov

subspace method. 

Algebraic multigrid methods are methods that construct the coarse grid operator algebraically.

More specifically, they refer to the multigrid method that constructs the coarse grid operators from a

stiffness matrix alone, with little or no extra data required from the application. Such method is the

aggregation multigrid (AMM) which utilizes the nodal coordinate as the extra data and we employ

AMM because AMM shows best performance in solid mechanics Bulgakov (1995; 1997).

3.1 Aggregation multigrid method (AMM)

In solid mechanics, the AMM utilized the rigid body modes, which are easily constructed from

the nodal coordinates. Several rigid body mode methods have been developed Bulgakov (1995),
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Fish and Belsky (1997). They have shown near-optimal convergence of a multigrid method, which

means that the convergence is barely affected by the variation of the element size.

The aggregation is a kind of fine/coarse grid splitting, but has a simple relationship between the

fine and coarse grids in order to reduce the computations in constructing the coarse grid operator.

Aggregates refer to the sets of the nodes connected to each other and play the part of the nodes in

the coarse grid space. 

3.1.1 Construction of aggregates
When applying a typical aggregation to the SC system, we need to aggregate each subdomain

separately in order that the coarse grid spaces preserve the relationship among the subdomains as

same as the fine grid space. This aggregation is referred to as SC-aggregation. Coarse/fine grids are

selected by strong connectivity, which is denoted in Vanek et al. (1996), based on the stiffness

matrix of l-th level, Al. Hence a neighborhood set Nl
s(ε) with the strong connectivity of l-th grid is

defined as 

N
l
s(ε) (10)

which is subjected to the condition that t must belong to the same inner part of the subdomain or

the interface including s. In Eq. (10), ε is a dropping limit to exclude weakly connected components

and is called aggregation tolerance Ko and Lee (2006). When the aggregation tolerance is zero,

each aggregate has the maximum number of the nodes and the number of the aggregates then

becomes miminum. 

3.1.2 Intergrid operator

After the nodes belonging to each aggregate are determined, the intergrid operator, that is, the

prolongators and restrictors are constructed based on the rigid body modes Fish and Belsky (1997).

The rigid body modes Φst are defined for t-th aggregate of the coarse grid and s-th node of the fine

grid and expressed by XT corresponding to three translations and XR corresponding to three

rotations. Note that each aggregate in the coarse grid spaces will have six degrees of freedom even

if each node in the finest grid space does not have six degrees of freedom. The FE model by the

continuum elements has three translation degrees of freedom per node therefore the intergrid

relation by the rigid body mode can be expressed as 

(11)

where In is an identity matrix with n size, and the block Δ represents the contribution of the

rotational variables of s-th fine grid to the translations of t-th coarse grid. The block is defined as

, (12)

in which , where qk is the k-th coordinate of the corresponding node; the superscript

denotes the index of the nodes (or the aggregates) and the subscript stands for the index of degrees

of freedom of the node. If (XR)s is existed, the intergrid relation of the rotational degrees of

freedoms by the rigid body modes can be expressed by .
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When constructing the intergrid operator for the model of the continuum elements, difficulties are

on the different number of d.o.f. per a grid between the coarse and fine spaces. The coarse grid

operators constructed by Φst of Eq. (11) may be singular. The difficulty is resolved when Q matrices

after QR factorization of the rigid body modes are adopted instead. By the modified intergrid

operator, the coarse grid operators become nonsingular and positive definite Adams (2002). The

smoothed aggregation Vanek, Mandel and Brezina (1996) is not included for a simple implementation.

The prolongators in the nl-level case are constructed via the following algorithm. 

Algorithm 2 Construction of prolongate operators and coarse grid matrices

1: For each aggregate t,  at  where, 

2: if , construct 

3: QR factorize 

4: Pl is a block diagonal matrix with Pl
t  s in the t-th diagonal block

5: Construct the coarse grid operator of l-th grid, 

6: , if , go to procedure 2

where  is the initial prolongator of t-th aggregate, and  is an intermediate prolongation

operator. In procedure 3, Pt corresponds to the Q matrix after QR factorization is used as the actual

prolongator at the present grid level, and  corresponds to the R matrix after QR factorization is

used as the initial prolongator at the next grid level.

For the system of Eq. (2), the prolongator is composed of the local prolongators correspond to the

inner parts of the subdomains and the interfaces, which are separately constructed according to the

SC-aggregation. Thus the prolongator becomes the following block rectangle matrix 

.  (13)

This is also separated into the subdomain form of

,   , (14)

where Pi is the prolongator of the inner part of i-th subdomain, (PN+1)i s are the prolongators of the

interfacial part of i-th subdomain generated by PN+1, which becomes the prolongator of the

interfacial variables.

3.1.3 Coarse grid operator

The SC coarse grid operator can be constructed by the two approaches: (i) the condensation after

the coarsening each subdomain and (ii) the coarsening after the condensation. The latter approach

based on the algebraic multigrid method for the SC system was developed by Carvalho, Giraud, Le

Tallec (2001). However, the latter approach is not suitable for the AMM, because the aggregation

utilizes the nodal coordinates to represent the intergrid rigid body modes; thus the former approach

is adopted.

For the simplicity of exposition, we consider the case of the two grid case where superscript 0

means the coarse grid space and no superscript means the fine grid space. Based on the former

approach, the SC coarse grid operator is constructed by the following steps. First, the original
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system matrix of each subdomain is assembled and transformed into the coarsened system by using

Eq. (14)

.  (15)

Then, the SC coarse grid operator is constructed by the condensation in the same manner as the

finest grid space because the SC-aggregation prevents undesirable coupling in the coarse grid space:

, (16)

where . In nl-grid case, the processes similar as Eq. (15) are executed in sequence from

the fine grid to the coarsest grid and the coarsest grid operator can be constructed in the similar

form of Eq. (16). 

3.1.4 Preconditioner for SC matrix

As we mentioned, the multigrid method is used as the preconditioner of the Krylov subspace

method and many researchers introduces their own techniques. Among them, we adopt the

technique which Bulgakov proposed and is called multilevel aggregation method (MLA) Bulgakov

(1995, 1997). MLA employs only the post-smoother of Algorithm 1. Here, all procedures are

described in the two-grid case for the simplicity of exposition. In order to construct the

preconditioner for the Krylov subspace method, an auxiliary equation is defined as 

,   (17)

where R is the residual of the SC system and V is the approximate error of the fine grid space. 

First, the residual of the SC system is calculated by

. (18)

Then, the right-hand side vector R is restricted to the coarse grid space as 

. (19)

Next, the correction vector V 0 is obtained by solving the system of the coarse grid space

. (20)

Then, the post-smoother is applied to approximate the fine grid residual as

(21)

Ai
0

Bi
0    Ei

0

E
T( )i

0
    Ci

0

Pi( )T     0

0     PN 1+( )iT
Bi    Ei

Ei
T    Ci

Pi    0

0    PN 1+( )i
= =

Pi( )TBiPi      Pi( )TEi PN 1+( )i
PN 1+( )iTEi

TPi      PN 1+( )iTCi PN 1+( )i
=

CSC
0 Ci

0 Ei
0( )T– Ui

0( ) 1–
Li
0( ) 1–

Ei
0

i 1=

N

∑=

Bi
0 Li

0Ui
0

=

MSCV R=

R CSCY GSC–=

R
0

PN 1+( )TR=

V
0

CSC
0( ) 1–

R
0

USC
0( ) 1–

LSC
0( ) 1–

R
0

= =

Vj 1+ Vj ŨSC
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where  and j is the number of the smoothing iterations. When the incomplete

factorization is utilized as the preconditioner of the smoother, quicker convergence has been

observed Bulgakov (1995), Fish and Belsky (1997). Hence the incomplete factored matrices of the

approximate SC in Eq. (8) are used in Eq. (21). The number of the smoothing iterations has been

recommended to be between 1 and 3. 

Let us set j = 0 from Eq. (21), we have

. (22)

By substituting Eqs. (19) and (20) into Eq. (22), the approximate error is computed by

. (23)

Finally,  in the two-grid case is obtained by using Eq. (23) and Eq. (17):

.  (24)

The inverse matrices in the right hand side are not actually calculated, but instead the factorized

matrices are utilized. The preconditioner in Eq. (24) is not symmetric, although all SC matrices are

symmetric. Hence the preconditioner cannot be used in the preconditioned conjugate gradient

(PCG). Instead, the preconditioned conjugate gradient squared (PCGS) is employed for non-

symmetric cases Sonneveld (1989) and it is implemented in the form similar to that described in Ko

and Lee (2006). 

In nl multi-level case, the Eq. (19) is changed into

(25)

which presents the multilevel coarsening. The Eq. (22) is also changed into 

,   (26)

The inverse of the multi-level preconditioner is not constructed explicitly, but instead the serial

matrix-vector multiplications are utilized. 

4. Numerical experiments and discussion 

4.1 Solution methods 

We employ the mutifrontal solver Ashcraft and Grimes (1999) for the SC system (SC-MFS) and

PCG for the SC system (SC-PCG) in order to compare to MLA for the SC system (SC-MLA). We

also adopt the corrected incomplete Cholesky, which is one of robust incomplete factorizations

Saint-Georges et al. (1999). Original domain is partitioned by METIS Karypis, which is a public

code and has the function minimizing edge-cut. 
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The proposed method, SC-MLA needs a number of parameters. The influence of some parameters

has been investigated in the previous research Ko (2004) hence we determine the values based on

the results of the research. First, the fill-in terms of the incomplete factorization are determined by

the drop tolerance φ, which is given by 10−3 for SC-PCG and by 10−2 for SC-MLA. 

(27)

where ξij is the off-diagonal term located in (i, j) and dii is i-th diagonal term during the incomplete

factorization. Next, the number of the iterations in the smoothers for SC-MLA is fixed to 1. The

level of the aggregation is recommended as 3 when the domain size is fixed to be nearly 1000

nodes for each subdomain. The aggregation tolerance is determined in order that the neighborhood

set has half entries of . Finally, the convergence tolerance in the iterative solvers is set to 10−6,

which guarantees the similar level of the accuracy of the solutions. A practical convergence

criterion of k-th iteration is 

 

(28)

For improving the efficiency during the iterative procedure, equivalent multiplication procedures are

implemented instead of CSCv Saad, Y. (1996): (i) Compute  (ii) Solve  (iii) Compute

. By the three steps, SC-MLA and SC-PCG do not need to construct the SC matrix in

the explicit form of Eq. (3). Hence the matrix-matrix multiplication during the static condensation in

Eq. (3)  is not required.

4.2 Cost measures

First, the number of non-zero terms (nnz) is selected as the memory usage measure. Once the SC

system is constructed, nnz of the factorized matrices of the SC matrix in the explicit form is used

for SC-MFS, which is a direct solver. For the iterative solvers such as SC-MLA and SC-PCG, the

total of nnz of the SC matrix in the implicit form and the preconditioner is counted:

nnz (SC-MFS) = nnz(LSC),

nnz (SC-PCG) = ,

nnz (SC-MLA) = .

Due to the symmetry of the matrices, each upper triangular matrix U is uncounted. 

Next, the number of float operations (ops) as the computational cost measure. ops of SC-MFS is

mainly composed of the construction of the explicit SC matrix (opsec), the factorization (opsf), the

back and forward substitutions (opsb) and the recovery procedure (opsr) as 

.

Each iterative solver method is made up of the construction of the implicit SC matrix (opsic), the
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construction of the preconditioner (opsp), the iteration procedure (opsi), and the recovery procedure

(opsr), that is,

.

Here, opsr is the same in all solvers and typically occupies the small portion of the total ops. 

4.3 Numerical examples and their SC system

The original FE models of pulley and crankshaft, which is simply called shaft, are in Fig. 1. For

the material properties, Yong’s modulus is given by 210 Gpa and Poisson ratio is 0.3. The first

model is the pulley which transfers rotational forces from an automobile engine. The clamped

boundary conditions are in the the inner circle surface and forces are given at some attachment area

by a belt. The second model is the crankshaft which changes the translational motion to the

rotational motion in an automobile engine. The symmetry boundary conditions along the horizontal

axis are given at the left end and the clamped boundary conditions are given at the right end. Forces

on the area where a connecting rod attaches are given in the vertical direction. The finer FE models

of the pulley and the crankshaft are also employed and denoted by f-pulley and f-shaft. 

After partitioning all examples by 1000 nodes for each subdomain, Table 1 shows the changed

properties from the original matrices to the SC matrices. As described in section 2.1, the d.o.f of the

SC matrix is reduced to 1/3~1/4 and its density, which is (100 × nnz)/(d.o.f)2, increases by around

100 times. 

opsSC MLA– SC PCG–,
opsic opsp opsi opsr+ + +=

 Fig. 1 The FE models of (a) the pulley connected with a belt, and (b) the crankshaft of an engine 

Table 1 Information of the original matrices and SC matrices after partitioning all examples (nnz represents
the entries of the lower triangular matrices)

Examples
Original matrix A Schur Complement matrix (the explicit form)

d.o.f. nnz Density (%) N d.o.f. nnz Density (%)

pulley 42,054 7.8e05 0.08 14 10,497 3.0e06 5

shaft 44,892 9.3e05 0.09 15 10,127 3.2e06 6

f-pulley 271,584 5.7e06 0.01 90 91,389 4.3e07 1

f-shaft 321,555 7.1e06 0.01 107 108,350 5.1e07 1
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4.4 Performance comparison

4.4.1 SC construction and preconditioner 

The SC matrix in the explicit form should be constructed in SC-MFS. Though the iterative solvers

can use the implicit forms, they require their preconditioners; thus, we added the cost for

constructing the preconditioner to the construction of SC matrix for the iterative solvers. We

tabulated the ops and nnz of each method for those procedures in Table 2. 

It is indicated from the table that the ops and nnz of SC-PCG and SC-MLA, even though they

include the cost for constructing the preconditioner, are smaller than those of SC-MFS. Hence, in

the preliminary stage, the iterative solvers have advantage in view of the cost than the direct

approach. Between the two iterative solvers, SC-MLA in which the larger drop tolerance is used

results in smaller ops than SC-PCG. However, SC-MLA additionally needs the SC matrices and the

approximate SC matrices of the coarse grid spaces; thus, SC-MLA requires larger nnz than SC-PCG.

4.4.2 Comparison between two iterative solvers

When we experiments the two finer models, we chose the same H/h ratio (1000 nodes per a

subdomain), which means the decrease of both of h and H. Subsequently, the condition number

increases according to the order O(H−1 h−1). In order to investigate the performance of the two

iterative methods, we represented the number of iterations, ops and elapsed times of the iterative

procedures in Table 3. 

As seen in the table, the number of iterations increases by over 2.6 times in SC-PCG, meanwhile

less 1.3 times in SC-MLA when they are applied to each finer example. Due to the better

convergence of SC-MLA, ops and the elapsed time of it are much smaller than those of SC-PCG,

specially, 1/10 for the f-shaft. Subsequently, the ratio of the iteration cost to the total cost for SC-

MLA is less than that of SC-PCG. 

The maximum MFLOPS of PCGS in SC-MLA is 90 and that of PCG in SC-PCG is 105 by Intel

Pentium 4 CPU 3.00 GHz when they are complied by Intel C++ complier Ver. 10. The both

Table 2 ops and nnz when constructing the SC matrices and corresponding preconditioners

Examples
SC-MFS SC-PCG SC-MLA

ops nnz ops nnz ops nnz

pulley 1.67e09 2.99e06 5.33e08 2.00e05 5.27e08 4.99e05

shaft 2.58e09 3.28e06 8.53e08 3.26e05 7.10e08 5.80e05

f-pulley 1.37e10 4.30e07 4.45e09 1.08e06 4.64e09 3.77e06

f-shaft 2.35e10 5.17e07 7.00e09 1.45e06 6.44e09 3.94e06

Table 3 The number of iterations, opsi (ratio to the total ops), elapsed times of SC-MLA and SC-PCG (opsi :
ops in the iterative procedure)

Examples
SC-PCG SC-MLA

# of iter. opsi (ratio %) Time(sec.) # of iter. opsi (ratio %) Time(sec.)

pulley 270 1.03e09 (66) 20.1 14 3.01e08 (36) 4.7

shaft 362 2.58e09 (75) 24.4 17 5.18e08 (42) 5.7

f-pulley 707 2.22e10 (83) 356.5 17 2.39e09 (38) 33.1

f-shaft 1124 5.61e10 (89) 651.5 21 4.70e09 (42) 64.0
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MFLOPS are not enough speed compared to 531 MFLOPS for factoring the SC matrix in SC-MFS

because the two iterative routines do not have a high performance BLAS. Thus the software

optimization in view of the speed will be required. For this reason, we plotted only ops and nnz in

the next comparison.

4.4.3 Comparison of two iterative solvers to SC-MFS 

SC-MFS should factor the SC matrix in the explicit form, which causes large amount of nnz and

ops. For a single load case, the costs of the two iterative methods compared to SC-MFS are

depicted in Fig. 2. 

According to it, SC-MLA requires more memory usage than SC-PCG, but memory usage under

10% compared to SC-MFS. The smaller amount of the memory usage compared to a direct solver

has been one of major advantages of an iterative solver. The results of Fig. 2 also show that SC-

MLA requires less computational cost than SC-MFS and SC-PCG. Specially, ops of SC-MLA are

under 16% compared to that of SC-MFS for all examples. This result is caused by the fact that the

number of the iteration is considerably small compared with SC-PCG according to the results of

Table 3 and the factorization is conducted on much smaller size subsystems and the SC matrix of

the coarse grid space in SC-MLA. It is noticeable that the ratios of ops and nnz for the both

iterative solvers decrease as the size of the problems increases. Therefore, SC-MLA is expected to

spend less cost than SC-MFS in larger systems. 

4.4.4 Multiple load cases

The multiple load cases have been a challenging problem for an iterative solver because the

iterative procedure is required per a load case. Meanwhile, one back and forward substitution per a

load case is demanded for a direct solver, but the cost of it is considerable smaller than that of the

factorization. In addition, the construction of the right hand side of the SC system in Eq. (4) and the

recovery procedure in Eq. (6) are needed per a load case for every method. 

Fig. 2 The ops and nnz ratio of the examples discretized by the continuum elements
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The convergence rate of SC-MLA when applied to different load cases has been investigated in

the previous research Ko (2004), which says that the difference of the convergence rate is not

considerable. Hence, we chose duplicated load cases as a typical case of the multiple load cases. We

summarized the additional cost and the total cost for 50 duplicated load cases in Table 4.

It is indicated from the table that the additional cost of SC-MLA are larger than that of SC-MFS,

but smaller than that of SC-PCG. Subsequently, SC-PCG requires much more ops than SC-MFS in

case of 50 nrhs for all problems. Meanwhile, SC-MLA needs more cost for the first two models,

but smaller ops than SC-MFS for two finer models in the same case. Therefore, SC-MLA can be a

competitive iterative solver in case of 50 nrhs for the two finer examples considering the much less

amounts of the memory usage compared to SC-MFS. 

5. Conclusions

In this paper, we presented the extended application of the aggregation multigrid method for

solving the Schur Complement system (SC-MLA) in the FE analysis of the continuum elements.

Also, we have investigated the performance of SC-MLA for a certain number of the duplicated load

cases. SC-MLA showed competitive performance compared to the direct solver, SC-MFS for the

finer examples under the given number of the loads. Namely, SC-MLA only needed less than 65%

float operations and 3% non-zero terms of SC-MFS for the finer examples with 50 nrhs. The

numerical results of Fig. 2 show that the performance of SC-MLA is expected to be better in larger

systems. Therefore, SC-MLA can be a good alternative of a direct solver for considerably large FE

systems under the multiple load cases. Future work includes the parallelization and the applications

to dynamic problems such as an eigenproblem or a frequency response problem. 
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